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We consider the influence of non-linear etTects, which arise when sound propagates in a superconductor, 
on the temperature dependence of the sound speed. We show that the experimentally observed change in 
this behavior with increasing sound wave amplitUde can be explained if we invoke a specific heating of the 
electron gas. Moreover, we show that' the minimum in the temperature dependence of the velocity of 
transverse sound remains also in the "dirty" limit, in contrast to the result obtained using the two-fluid 
model of a superconductor. 

PACS numbers: 74. 20. Ef, 74.50.Nf, 63.20.-e 

Recent experiment on sound in superconductors Cl ] have 
revealed a non-linear amplitude behavior of the sound 
velOCity. The characteristic dip in the temperature de
pendence.of the velocity below Tc was shifted to the 
higher temperature region when the sound amplitude in
creased. It is well known [2] that the presence of such 
a dip is connected with the appearance of superconduct
ing currents which screen the lattice sound flux and 
which contribute to the force acting on the lattice. The 
fields which in that case occur depend on the state of 
the electrons. We shall in the present paper, as in an 
earlier one, [3] consider the heating of the electron gas 
by the sound wave which leads to a non-linear amplitude 
dependence of the sound velocity. 

A survey of papers on the study of the sound spe.ed 
in superconductors can be found in the monograph by 
Gellikman and Kresin. [4] We note merely that we shall 
show that in the limit kl« 1, where l is the mean free 
path of an electron connected with the scattering by 
impurities, the temperature dependence of the sound 
speed in the linear approximation is appreciably dif
ferent from what follows from the simple two-fluid mod
el of superconductivity used by Ozaki and Mikoshiba. [2] 

1. SET OF EQUATIONS FOR A TRANSVERSE 
SOUND WAVE 

We shall consider a sound wave propagating along the 
z-axis and the displacement vector is u". When we 
change to a comoving system of coordinates in which 
the lattice is at rest we must add to the electron Ham
iltonian a part[5] 
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(1) 

n is a unit vector directed along the momentum. The 
second term is the deformation potential, and the third 
one is caused by the Stewart-Tolman effect. 

If we take into account the force exerted by the elec
trons we can write the equation of motion of the lattice 
in the form 

(til'-s.'k')u.+t.(k)/Mn=O, (2) 

where So is the adiabatic sound velocity in a normal 
metal in agreement with Brovman and Kagan. [6] The 
volume force density f., refers to the laboratory system 
of coordinates. We shall assume u" and A,,/c to be in
dependent of the generalized coordinates [7] and the lat
tice force is then connected with the electron force 
through the simple relation: 

a~' 
t.~_f.e' ~ --+ nmtil'u •. au. 

(3) 

The second term on the right is the inertial force 
which must be taken into account when we change to the 
laboratory system of coordinates. We can express Eq. 
(3) in terms of the electron Green function: 

ip' de d'p 
f.(k)=-,-S-. S--)- (til-kvlZ,)n.G •.• _.(p,p-k)+nmtil'u .. (4) 

n v 4m (2n 3 

which in the case of a normal metal goes over into the 
expression obtained by Kontorovich. [8] Using the Max-
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well equation j .. = ck2A .. /411" we can use the Gor'kov and 
Eliashberg[9J technique to get the current and force 
densities: 

c.. nez 
411 k-A.=~bA.-ienrou.(a-b), 

/.=,en- (a-b) A. +-irou. --nmvkdu.+nmro'u.· .ro (me)i 
C e 't ' 

3 vk S (e e-ro) S' a == -:-- - de - - -.- x<p dx, 
16 ro S. ~.-. -I (5 ) 

b=~Sde[e(e-ro)+~2 - ] S' 
16 S.6.-. 1 'P dx, -. 

I 

1] S x'P dx, 
-, 

1-x' 
!p = . 

s.+s.-.+vkx+ilT 

The integrals over the frequency must be understood 
in the analytically continued form: 

S de /(s.s.-.) ... S de [ th ( e;ro ) m."s::.) 

- th ( 2~ ) 1<6. AS.~.) + (th 2eT - th e~Tro ) 1<6."6:-.) ] , 

6.B=-(S.A).={ (e'-~')"'signe, lel~~. 
i(~'-e')'''. lel<~. 

In deriving (5) we used the identities 

(~_~) (6.+6.-.) ±'= 1- e(e-ro)±~' 
S. 6.-. ro 6.6.-. 

In principle Eqs. (2) and (5) solve the problem of de
termining the damping and the change in the sound speed. 
We note that defining the damping as the imaginary part 
of the force f .. is equivalent to the definition where the 
damping is proportional to the time-average of the 
quantity - jc-11 - # and it is equivalent to the definition 
of the damping as the imaginary part of the polarization 
operator with, inits vertices, the quantity (l)where A is 
expressed in terms of u through the Maxwell equations. 
One can easily show[3J that if we define the damping in 
this way it is proportional to the energy emitted by the 
electron system in the form of thermal phonons. 

2. TRANSVERSE SOUND VELOCITY IN A ''PURE'' 
SUPERCONDUCTOR 

We consider the case kl« 1. The force is then simply 

f.=enE., (6) 

as a - b'" 1. There is here no part of the force connected 
with the direct transfer of momentum by the lattice to 
the electrons, provided the velocity of the latter relative 
to the lattice does not vanish. This is a consequence of 
the fact that we assume the electron spectrum to be the 
vacuum one and that there are no impurities. Similarly 
the expression for the electron current in the comoving 
system, which is the same as the total current (the sum 
of the electron and the ion currents) in the laboratory is 

ek' ne' 
j. = -0 A. = - bA.-iroenu.. 

4.rr me 
(7) 

Assuming the sound wave to be weakly damped k-k 
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+ ix and taking the variation of the dispersion Eq. (2) we 
get[2J 

x 11m! 
k= 2ro'Mn -u-' 

s-s, _ 1 Ref 1 ( 1 Im/)' 
-;;-- - 2Mnro'"'7-2 2Mnro'"'7 . 

In the pure case we can neglect the square of the 
imaginary part 

s-s, m 1 ( kc )' 
--=--Re- h= =-. ' s, 2M k-b' ~ 

, 411ne' 
(i)p=--. 

m 

The quantity b is connected with the conductivity: b 
= iwma/ne2• 

(8) 

(9) 

A. We consider first of all the case of rela:tively low 
frequencies: 

ro<~ (slv) '. (10) 

As the sound wave leads to a heating of the electrons we 
must, as was shown by Eliashberg, [10J make in Eqs. 
(5) for the kinetic coefficients the substitution: tanh(e/ 
2T)-1-2nF(e)-2ni, where n~ is the non-equilibrium 
correction to the distribution function which must be de
termined from the kinetic equation. [3J Bearing this in 
mind 

b=- 7~(3) (~)' + 311i ~ 
411' T 4 vk 

1 S· ede an' 3 S· e'de an'S' (1-x')dx 
-- +-ro (11) 

2 , (e'-~') 'I, ae 2 ~ (e'_~2)'/ ae _. vkx(e'-~')"'+roe ' 

the third term causes a static correction to the Meissner 
penetration depth in the non-equilibrium case. 

At this stage it is necessary to choose a concrete 
form of the non-equilibrium distribution function. We 
shall assume that the characteristic scale "0 of the 
spread in n~ in energy in the low-frequency limit (10) 
satisfies I1(S/V)2« EO«11 and then[3J 

e ( e-~ ) ( alii' ) 'I, 
n,' = i / --;.;-' e, = ~ 7 ' 

a=~(kVPU.)'[1+(n(3) ~'kV)2]-'. 
911 1vk 311' T' ro 

The quantity y is the reciprocal of the inelastic collision 
time T 3 / w~. We then get 

b=- n(3) (~)'-~~/)+~1Ii~(1-~~) (12) 
4,,;' T 4 T 4 vk T' 

We neglected here a small equilibrium superconducting 
correction to the imaginary part. 

Under the above-mentioned limits large x are impor
tant in the integrals so that we can estimate them: 

/)=c, ( ~ )'" , 

~=c.ln[ ~ (:)'], c,-c.-1. 
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FIG. 1. 

Using (8) we get the change in the sound speed: 

8-8n =-~~~(1+~~}.-!!......., 
8 n 3n 8 M T 1 +B' 

B = uk [ 7t(3) (~)' +~Ii] 
neo 3n' T T' 

(13) 

Sft is the sound speed in the normal metal. At equilibri
um (3 = Cl = 0 and we get the well known behavior (curve 1 
in Fig. 1). ra] 

It is clear from (13) that the minimum in the tempera
ture behavior of the sound speed becomes deeper and is 
shifted into the region of higher temperatures. The 
magnitude of this shift is given by the condition 

28 ( a )' ( a ) 'I. ( IJ) ) 'I, IJ) -t(3) - +c, - - o;'/'=n-. 
3n' T T T uk 

(14) 

For not too large sound intensities the second term on 
the left-hand side plays the role of a correction. On the 
other hand, in our case the intensity must not be too 
small in order that the excitations are pushed out in en
ergy by an amount EO» ~(SIV)2. Combining the two con
ditions we find that when 

( : ) , ( -;-) • <a< ( : ) '( -;-) 'I, (15) 

the shift in the minimum in the temperature dependence 
of the sound speed is 

while the relative increase in the minimum itself is 

( -;- ) "'In [ a ( ; )' ( -;- ) 'J 
(curve l' in the figure). The non-linearity parameter 
a can be expressed in terms of the sound energy flux 
density Wwhich is incident upon the sample; a"'E~ wi 
yvknM S3. For a sound frequency w - 107 S-1 used in the 
experiments [1] our considerations are valid if a lies 
within the range (15), 10-2 « a« 103• For a flux density 
of the order of 10-2 W Icm 2 the parameter a -102 and the 
relative shift of the minimum oTIT-10-2 and the relative 
increase in its minimum is of the order of 10-1• This 
picture agrees qualitatively with the experimental data. [1] 

Let now the sound wave amplitude be rather small 
O!« slv so that the non-linearity is weak and the cor-
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rection to the distribution function is quadratic in the 
sound wave amplitudeY] 

the 9-function arises in the low-frequency limit w 

«b.{SIV)2 due to the Landau condition V· k= ~e - ~t.w' 

When the sound speed changes Eq. (13) retains its 
form with the parameters 

(13b) 

Hence it is clear that for small sound amplitudes O!« slv 
the effect is insignificant. 

B. In the other limiting case as far as the frequencies 
are concerned, w« b. and T« vk, at equilibrium with 
b. « T the function b which is proportional to the con
ductivityequals 

b=---+-- 1+-ln- -16 -3n' Il' 3ni IJ) ( Il 8Il) (IJ))' 
8 Tuk 4 uk 2T elJ) , uk 

and in agreement with Ozaki and Mikoshiba[2] the relative 
change in the sound speed as compared with the normal 
state has the form 

8-8 n 2 m u [ h' + B. h'] 
--;;;- =- 3n M --;- (h' +B.) '+1 - h"+1 (16) 

h' =~~[h+3(~)']. 
3n S uk 

When h« slv the behavior reminds one of (13) (curve 1 
in the figure) 

8-8n 2 m u B. 
--:;;;- = - 3n M -; 1+Bo" 

(17) 

while for slv« h (curve 3 in the figure) we have 

S-Sn =~ m B. (18) 
Sn 2 M h (B.+4vh!3ns) 

Curve 2 in the figure is constructed for wavelengths of 
the order of the skin depth when the frequency w-l09 

to 1010 S-l. 

The electron current which tends to screen the lattice 
current flows in the opposite direction to it and by virtue 
of the specific dispersion in the current kernel which is 
diamagnetic in character there occurs an electric field 
proportional to u. The sign of that field is such that it 
diminishes the elastic force acting on the lattice and this 
leads to some softening as compared to the adiabatic 
situation in a normal metal. In the superconducting 
state the dispersion in the current response to the vector 
potential is appreciable and this leads to a large renor
malization of the sound speed in (13) and (17): I (s - sft)1 
sft I - slv. When the temperature is lowered the diamag
netism of the electron system is strengthened and the 
magnitude of the screened field decreases. Far from 
Tc the sound speed thereby reaches its adiabatic value 
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for a normal metal. For a comparison we point out that 
the adiabatic correction to the elastic modulus in a 
superconductor causes a change in the sound speed (s 
- s")/s,, - (~/eF)2, [l1J which gives a considerably smaller 
contribution than the effects considered above. 

Taking the heating of the electron gas into account 

+~~ (1+~ln~) _ 3ni Sm e(~-OO)+4' , (n:-n:_.)a8. 
4 vk 2T eoo 2vk (8'_4') "[ (e-oo)'-4']" 

.Ho 

In the approximation linear in the intensity (a« (w/ 
~)1'2)[12) we have 

(19) 

, a.oo { 8 (e-oo) +4' e(8+OO) +4' 6 4} 
n. -4Te" [(8-00)'-4']" 6 (e-oo-4)- [(e+oo)'-4']'" (8- ), 

a.~~ (Vkpllo) , [1 + (~~)']-'. 
9n ,,!vk 2 Too 

(20) 

Substituting (19) and (20) into (9) we get the change in 
the sound speed: 

I-I . 2 m v ( (4 )'/' 4 (0) B __ " _---- 1+a. - -In- --, 
8" 3A M S 2w T 4a.' 1+B' (21) 

B~!!:...~[1+ra(,/') a.(~)'/·+a.(-24 )'/'T4ln .00,]. 
2 Too 2n¥' 4 00 ua. 

Here, as in (13), the non-linear change in the London 
penetration depth leads to a shift of the minimum in the 
temperature dependence of the sound speed to the region 
of higher temperatures. The change in the real part of 
the conductivity entails a deepening of the minimum. 

We neglect the change in the order parameter under 
the action of the sound which also can serve as a source 
for non-linearity: 

. °SD 1-2n(8) 
1=g(8'_4')'" a8. 

A 

We have shown earlier[3J that this non-linearity is im
portant in a narrower temperature range near Tc: 

(T,-T)IT-(ooIT)'. 

3. TRANSVERSE SOUND VELOCITY IN AN 
"IMPURE" SUPERCONDUCTOR 

We consider the "impure" limit w« ~« T« l/T, 
kl «1. If in a pure metal the force acting upon the lat
tice was entirely electromagnetic in origin, in the im
pure limit due to the scattering by impurities there ap
pears additionally a force connected with the direct 
transfer of lattice momentum to the electrons which 
does not vanish for E = O. To evaluate this force we 
must again use Eqs. (5) while it is advisable to split the 
force into its electromagnetic f" and its deformation I" 
parts: 
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(a-b)' 
f '=nmoo'u--' • h-b ' 

f. d = nmOO'llo (1 +b-a) - ~ nmkvau •. 
T 

In the impure case calculations give from Eqs. (5) 

(kl) , 
a=--

5 ' 

'For the sound speed we have correspondingly 

~= _~ n4'T [(kl)' -h]'[ (OOT)'-h'-h n4'T] 
sn 4M T 5 2T 

(22) 

{[( n 4"T )"] }-. n m v 00' X h+-- + (OOT) , [h'+(OOT)'] ----kl- (23) 
2 T 320 M s 4T' 

The last term is the deformation contribution to the 
change in the sound speed. 

In contrast to the case of absorption the electromag
netic mechanism for the change in the velocity dominates 
in all regions of practical interest. For h« ~2T /T- WT 

we have 

S-B. m v (kl)' B, 
-;;: = - M 750 HBo' ' 

(24) 

which agrees qualitatively with the pure case (17) (curve 
1 in the figure) except for a decrease in the magnitude 
of the effect by a factor 37T(kl)3/100 which makes it im
possible to observe the effect for sufficiently small kl. 
However, the results obtained show that as the impurity 
of the sample is increased (or the frequency decreased) 
the minimum in the temperature dependence of the sound 
speed below Tc does not vanish up to the limit of the 
resolution of the experiment. The calculations by Ozaki 
and Mikoshiba [2J indicated the vanishing of the minimum 
for (s - s,,)/ srI -10-5 but they were based upon the simple 
two-fluid model of superconductivity which in the impure 
limit gives an incorrect result. 

In the normal metal the force (5) acting on the lattice 
can be written in the form [8J 

f=en(E-jla) , a=ne'T/m, (25) 

where j is the current of the electrons relative to the 
lattice, i. e., in the comoving system of coordinates. 
In a superconductor the expression for the force can 
be reduced to a form resembling (25) with the normal 
current instead of j. The heating effects in an impure 
superconductor which arise when a sound wave passes 
through it are small for the reason that the absorption 
is then basically due to the deformation while the scalar 
potential causes a smaller change in the distribution 
function due to the scalar coherence factor. Moreover, 
the effect itself decreases by a factor kl « 1. 

We make a remark about the longitudinal sound ve
locity. In that case we must introduce two potentials
a scalar and a longitudinal vector one-which are deter
mined from the electrical neutrality condition. In the 
pure case the force acting on the lattice is, as before, 
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/=enE= ( -c-' A - v <p) en. 

For the high-frequency limit vk» T one can show that 
the role of the vector potential is unimportant and the 
corrections to the sound speed are given by the usual 
polarization operator: 

S-Sn n m v 6+" e(e-w)-Ll' e de 
-;;;-= 12 M -;- f(E'-Ll l ) 'I. [Ll'- (e-W)']'" 2T w ' 

" 
t]=Ll+ (w-2Ll) S(w-2M; 

(26) 

in the limiting cases 

(27) 

Hence it is clear that in the high-frequency limit vk» T 
the temperature dependence of the longitudinal sound 
speed has a minimum for (Tc - T)ITc - (wIT)2 with a 
relative depth of the order swlvT. 

We are grateful to G. M. Eliashberg for discussions 
of the problems mentioned here. 
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Owing to the quantum nature of the diffusion of point defects (defectons) in quantum crystals such as 
solid helium, energy is dissipated at the substitution defects even in the case of spatially homogeneous 
deformation. The absorption is due to diffusion flow of the defectons in momentum space in the absence of 
particle fluxes in coordinate space. Internal friction is connected with the deformation potential at low 
frequencies and with the inertial and activation components of the energy spectrum at high frequencies. 
The collision integral within the crystal is determined by quasielastic defect on-phonon scattering. It is 
found that the law of interaction between the vacancions and the crystal surface may be determined at low 
temperatures. The dissipation accompanying interaction between the defectons and the surface is 
determined. Diffusion-viscous flow in quantum crystals is discussed. 

PACS numbers: 67.80.Mg 

1. INTRODUCTION 

Internal friction is one of the characteristic manifes
tations of the diffusion properties of point defects in 
crystals. It is customarily assumed that in the case of 
spatially-homogeneous deformation of the crystal there 
is no energy diSSipation at substitution defects, e. g. , 
vacancies. The reason is that in the case of uniform 
deformation all the crystal lattice sites remain equiva
lent and no particle diffusion fluxes that lead to the ab
sorption of energy are produced (the force acting on a 
point defect is proportional to the gradient of the defor
mation). 

This reasoning is not applicable to quantum crystals 
of the type of solid helium with large zero-point vibra
tion amplitudes. In such crystalsC1 ,21 the point defects 
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are localized and are transformed into quasiparticles
defectons-which move practically freely through the 
crystal. The correct quantum numbers for defectons 
are the values of the quasi momenta and not of the coor
dinates. When the crystal is deformed, the energy 
spectrum of the defectons is altered. As a result, even 
in the case of uniform deformation, diffusion fluxes of 
particles are produced in momentum space. Such a dif
fusion leads to dissipation of the energy also in the ab
sence of particle fluxes in configuration space. 

For this reason, it would be of great interest to in
vestigate experimentally the internal friction at low-fre
quency compression deformations (at high frequencies 
the spatial inhomogeneity of the vibrations, which is 
connected with the finite speed of sound, is apprecia-
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