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The statistics of electrons in an inhomogeneous semiconductor in which the energy bands are modulated 
by a Gaussian random potential are considered. It is assumed that only one type of partially compensated 
donor level is present in the semiconductor. The position of the chemical-potential level, the degeneracy 
criterion, the features of the temperature dependences of the free carrier density, and conductivity are 
investigated, as is also the kinetics of the establishment of the stationary conductivity following an abrupt 
variation of the sample temperature. It is shown that in an inhomogeneous and weakly compensated 
semiconductor the process is characterized by anomalously high relaxation times that have an activation 
dependence on the temperature. 

PACS numbers: n.20.Pa, 71.20.+c 

1. INTRODUCTION 

It is well known that statistical fluctuations or tech­
nological inhomogeneities of the impurity ion concen­
tration can produce in semiconductors an inhomogeneous 
electrostatic potential that modulates the energy bands. 
In some cases (for example in strongly compensated or 
irradiated semiconductors) the amplitude of this poten­
tial can become appreciable. This leads to a number 
of Singularities in the kinetic properties of the semicon­
ductors, such as a residual photoconductivity, an anom­
alous temperature dependence of the Hall mobility, 
etc. [11 These phenomena are observed in experiment 
quite frequently, as is evidenced by the significant in­
homogeneity of many real semiconductors. A consis­
tent theoretical study of the properties of inhomoge­
neous semiconductors is therefore useful. 

This paper deals with the statistics of the carriers 
and, in particular, with the question of the temperature 
dependences of the equilibrium concentration and con­
ductivity in inhomogeneous semiconductors. The kinet­
ics of the establishment of the indicated equilibrium 
values following an abrupt change of temperature is also 
investigated. 
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2. CHEMICAL-POTENTIAL LEVEL AND 
DEGENERACY CRITERION 

We consider a semiconductor with a modulating ran­
dom potential V(r) described by a distribution function 
F(V). Assume that the sample contains uniformly dis­
tributed donor levels with concentration N D and binding 
energy el • The random potential is due to the inhomo­
geneous distribution of the acceptors having an average 
concentration NA.ll If the correlation length of V(r) ex­
ceeds the radius of the donor states, then the energy of 
the latter can be described by the same distribution 
function F. 

We assume that the electron density n in the band is 
quite small, n« N A' We can then neglect the depen­
dence of the random potential on n, and determine the 
chemical-potential level!; from the expression 

~ 

J dVF(V)f(V-B,) = (ND-NA)IND (1) 

where j(e) is the Fermi function. There being no alter­
nate assumptions, we take the random potential to be 
Gaussian 
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F(V)=(1/n'''M exp (_VZ/~') 

(the energy is reckoned from the mean value of the bot­
tom of the conduction band). All the conclusions ob­
tained below remain in force qualitatively also if the 
random potential has a different character. From (1) 
and (2) we obtain the answer for i; in the form 

(2) 

The dependence of the factor ,\ on the parameters of the 
problem is shown in Fig. 1. It is seen that at tempera­
tures several times smaller than the average amplitude 
~ of the inhomogeneities, the value of ,\ tends to a con­
stant~, 1. e., i; ceases to depend on the temperature. 

The average free-carrier density 

- . 
n=2"'m'''n-'h-3 J def(e) J dV(e-V)'!.p(V) (3) 

is described in the nondegenerate case by the expres­
sion 

n=N, exp [ (tiT) + (M2T)' I, 

N,=2(mTI2nh')'h. 
(4) 

and in the case of the completely degenerate case at 
1:<0 we have (the inhomogeneities play an insignificant 
role at i;>0): 

n-(mMh')"'exp (-t'/~'). (5) 

Comparing (4) with (5) we obtain the nondegeneracy cri­
terion i;< - ~2/2T, or 

(6) 

It is seen that in an inhomogeneous semiconductor the 
degeneracy sets in at a lower carrier density than in a 
homogeneous one. We are referring here, of course, 
to degeneracy "in the mean, " since an inhomogeneous 
sample, at any carrier density, can contain both degen­
erate and nondegenerate sections. 

3. TEMPERATURE DEPENDENCE OF THE 
CONCENTRATION AND CONDUCTIVITY 

From (2) and (4) we easily see that in contrast to the 
homogeneous case, the temperature dependence of the 
concentration of the free carriers has not a constant 
activation energy but a sliding one, which decreases 
with decreasing temperature. The physical cause is 
the presence in the random potential of deep wells that 
are located at a distance much smaller than from the 
Fermi level. It can be shown that in accordance with 
(4) at T = T min;: ~2 /2(el - ~~) the derivative dn/ dT van-

. ishes. But since the region T - T mID is simultaneously 
the degeneracy limit, it follows that formula (4) can be 
used only at T > T min, i. e., on the rising section of the 
n(T) plot. At T:5 T min the carrier density in the band 
ceases to depend on the temperature and is determined 
by deep potential fluctuations that lie below the Fermi 
level. 
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FIG. 1. Dependence of the 
parameter A on the degree of 
compensation. Curves 1, 2, 
and 3 correspond to ~/ T = 1, 
~/T=2 and ~/T=3. The 
dashed curve is a plot of 
AO (MT-oo). At (ND-NA)/ 
ND < O. 5 the value of A is de­
termined from the easily proved 
identity).[(ND-NA)/NDl 
=- ).[1- (ND-NA)/NDI. 

We consider now the conductivity (J of an inhomoge­
neous semiconductor. If the characteristic dimension 
of the inhomogeneities exceeds the carrier mean free 
path, then the presence of inhomogeneities does not 
change the carrier mobility /J., and only modulates their 
concentration. Then 

(7) 

where neff is the density of carriers having an energy 
exceeding the "percolation energy" ep • t31 In a Gaussian 
random potential we have f, = - 0. 68 ~ [41 and at i; < f, we 
have 

neff=N,exp (~/T)G(MT), (8) 

G (x) = ~ f dy l'y f dz exp [-0.68X-z- (y-i) '] . 
11.%-0 _0,11:1: X 

G(O) = 1, and G - 0.1 Xl/2 as x - 00, but calculation shows 
that at ° ""x<6' lOZ the value of G differs from unity by 
not more than 2.5 times. We can therefore put approxi­
mately G'" 1 in (8), all the more since the formula (7) it­
self is valid only accurate to a pre-exponential factor 
that has a power-law dependence on the temperature. 

Let us analyze the temperature dependence of the con­
ductivity as described by (8). At high temperatures (T 
>~) the role of the inhomogeneities is negligible and the 
conductivity activation energy Ea, as in the homoge­
neous case, is equal to fl' At low temperatures (T«~) 
the activation energy is also constant but differs from 
ej (with the exception of the case of half-compensation): 
Eo = ej - ~~. Consequently in the general case E de­
pends on the temperature, and, as follows from the fig­
ure: 

Ea"" 81 and dEa/dT ~ ° for (ND -NA)/ND ~ 0. 5, 
and 

Ea ~ el and dEa/dT ",,0 for (ND -NA)/ND ",,0.5. 

We note that in samples with sufficient photoconduc­
tivity or with an anomalous temperature dependence of 
the Hall mobility (1. e., samples that are known to be 
inhomogeneous) the temperature dependence of the con­
ductivity is quite frequently not a simple exponential, 
but has a more complicated character, of the type de­
scribed above, which depends furthermore on the char­
acter of the processing (the degree of doping and com­
pensation, the irradiation dose, etc.). However, the 
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interpretation of these results on the basis of the con­
cepts developed above should be approached with cau­
tion. Each case calls for an individual analysis that 
takes into account the possible existence of other ef­
fects, which also alter the character of the a(T) depen­
dence, such as hopping conductivity, the presence of 
several types of impurity states, or the dependence of 
the impurity ionization energy on their concentration. 

4. THERMAL RELAXATION OF THE CONDUCTIVITY 

Besides the unusual temperature dependences of the 
concentration and the conductivity, inhomogeneous sam­
ples have one more feature-anomalously large times of 
establishment of the equilibrium following abrupt 
changes of the temperature. [5-91 The physical nature 
of such long-time conductivity relaxations was consid­
ered by Vul' and Shik. [10] We present below a rigorous 
theory of these effects in a randomly-inhomogeneous 
semiconductor. We describe the distribution of the 
electrons in a sample by the functions n(~) and v("), 
which constitute the electron density respectively in the 
conduction band and on the levels, at points where the 
bottom of the conduction band has an energy E. The pro­
cesses of electron capture on levels, and of thermal ex­
citation, are described by the equation 

(9) 

where Y. is the capture coefficient. 

If the characteristic time of the electron drift in the 
random fields of the inhomogeneities is smaller than 
the time of capture on the levels (YeND)-1 then, as shown 
earlier, [11] the capture processes can be described by 
assuming the electrons in the band to be quasi-equilib­
rium 

n(£) =N.exp [(~.-e)IT], (10) 

where the quasi-level of the chemical potential /;e is de­
termined from the neutrality condition 

(11) 

Eliminating /;e and n(e) from (9)-(11) we arrive at a final 
equation describing the establishment of equilibrium in 
the electron system 

:: = 1.{ (N.,-v) [N.,-Nr J de vF] exp[ -(eIT)-(1\'/47") 1 

-vN,exp(-eJT) }. (12) 

To calculate with the aid of (12) the kinetics of the 
variation of the concentration of the free electrons fol­
lOWing an abrupt change of temperature from T1 to Ta 
(a quantitative definition of the concept "abrupt" will be 
given below), we must put in (12) T = Ta, and use as the 
initial condition for this equation 

v(e, t=O)""v.(e)=N.,!.(e-e,), (13) 
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where 11 is a Fermi function with temperature T l' In 
principle, the solution of (12) would make it possible to 
determine completely the time dependence of the con­
centration. Unfortunately, however, this equation can­
not be solved analytically. We confine ourselves to cal­
culation of the characteristic time of the thermal relax­
ation 

, 1 (dn ) ,-. 
T = (n.-n,) de ,~o. ' 

(14) 

where nl and nz are the equilibrium concentrations in 
the band at temperatures Tl and Ta. To this end we 
seek the solution of (12) in the form 

v(e, t)=v,(e)+g(e)t. 

At t-O we have 

N.,N ~(e)-exp(-e.lT,) 
g=l· • 1 + exp[ (e-e,-~,)/T.l ' 

(15) 
~(8) =exp [- (eIT.) + (l\'/4T.')- (l\'/4T,') + (8-e,)/T.]. 

Here /;1 is the position of the level of the chemical po­
tential at the temperature T 1• Multiplying (15) by F(e) 

and integrating, we easily obtain the value dn/ dt I t=O' 

A simple analysis shows that the relaxation time cal­
culated in this manner decreases monotonically with in­
creasing compensation of the sample (i. e., when the 
chemical potential level is lowered). In the case of very 
strong compensation, when 

T tends to (YeNDtl, which is the time of capture, in the 
homogeneous case, and the kinetics of establishment of 
the thermal equilibrium in the inhomogeneous semicon­
ductor has no specific singularities at all. The same 
can be demonstrated directly from (12) inasmuch as in 
the case of strong compensation it is necessary to leave 
out v from the factor ND - v, after which this equation 
can be reduced, by multiplying by F(e) and integrating 
with respect to e, to the equation for n(t) in a homoge­
neous semiconductor. 

In the opposite limit of weak compensation, when the 
sample is cooled (T1>Ta), the first term of (15) pre­
dominates and for the characteristic time we have 

Tcool=(l.N.,)-' exp [(I\'/2T.T.)-(I\'/4T.')+(AMT.) 1. (16) 

In the case of heating (T 1 < T a) the second term predomi­
nates in (15) and 

(17) 

It is seen from (16) and (17) that in weakly compen­
sated inhomogeneous semiconductors the processes of 
establishment of thermal equilibrium are indeed char­
acterized by an anomalously large relaxation time that 
depends exponentially on the temperature. The nature 
of this phenomenon can be easily understood. Let, for 
example, the sample temperature be lowered. The part 
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of the electrons from the conduction band should be cap­
tured by the centers. But the quasi-equilibrium elec­
trons are localized at the maxima of V(r) whereas free 
locations on the levels, in the absence of compensation, 
exist only near the maxima. This leads to the need for 
activation and to the ensuing exponential slowing down 
of the process. In the case of strong compensation free 
places on the levels are available at practically any 
point, and the capture process can proceed without ac­
tivation, just as in the homogeneous case. With in­
creasing degree of compensation, the characteristic 
time of the process decreases smoothly from the value 
given by (16) to (yeND)-l. 

Inasmuch as for the existence of long-time thermal 
relaxations it is necessary to have, besides inhomo­
geneities, also a low compensation level, the phenom­
ena considered above are less frequently observed than 
long-time relaxation of the photo-conductivity, [ll for 
which the last requirement is not necessary (at least in 
the case of interband excitation). 

We can now define the concept of "abrupt" tempera­
ture change. Obviously, the approach used above is 
valid when the stationary distribution of the tempera­
ture in the sample is established within a time much 
shorter than the characteristic times (16) and (17). As 
is known from earlier publications, [5-9J these times 
were of the order of minutes or even hours, so that our 
theory cannot be used to interpret these experiments. 

For a complete description of the thermal relaxations 
of the conductivity it is necessary to take into account 
the fact that the change of temperature gives rise to 
three relaxation processes: 1) establishment of quasi­
equilibrium in the band (fast process); 2) establishment 
of equilibrium between the band and the levels (slow 
process); 3) establishment of a new value of mobility. 
In the course of the first two processes the conductivity 
varies exponentially, while in the third case in power­
law fashion. Consequently, the change of mobility dur­
ing the course of relaxation will be neglected. Writing 
down the conductivity in the form 

o"'nellexp (-!J.'/4T'), 

we easily conclude that the thermal relaxation consists 
of two parts: a low-inertia jump with amplitude 

!J.o=n(T,)ell[exp( -!J.'/4T,') -exp( -!J.'/4T,') ) (18) 

followed by a smooth variation 

oCt) =n(t)ell exp (-!J.'/4T,') , (19) 

where the n(t) dependence is described by the expres­
sions given above. 

It can be seen that the investigation of the thermal 
relaxations of the conductivity can lead to conclusions 
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on the amplitude of the inhomogeneities, and further­
more by two independent methods, namely, by studying 
the temperature dependences of the relaxation time T 

and of the low-inertia jump. 

In analogy with the formulas obtained in the present 
paper, we can write down expressions for the conduc­
tivity relaxations in the case of an abrupt change of the 
pressure applied to the sample (similar relaxations 
were observed by Vul' and Shik(91). In this case the 
range of pressure A P will be formally described as a 
shift of the level energy e I (and consequently of the 
chemical-potential level (2» by an amount 

In conclusion, we recall that the drift mobility Il, 
which enters in the formulas for (J, cannot be deter­
mined for inhomogeneous samples from Hall measure­
ments. [12,141 This must be taken into account when at­
tempts are made to compare the presented theoretical 
formulas with the experimental results. 

The author thanks A. Ya. Vul', in constant creative 
collaboration with whom this work was performed. 

OSuch a model can be used, for example, for semiconductors 
bombarded by neutrons, where the acceptors are concentrated 
in individual disordered regions. [21 
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