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By means of field-theoretical methods, the critical indices and correlation functions of percolation theory 
are calculated and the analog of the equation of state is constructed. For 3 < d < 6 space dimensions the 
indices are equal to 'Y=8/(2+d), v=4/(2+d), P=2(d-2)1(d+2) and f1=P+'Y=2. This is in 
agreement with computer calculations, which for d = 3 give the following values of the indices: 
P = O.35±O.OS, 'Y = 1.69±O.05, v = O.9±O.05 and f1 = 2.2 ±O.3. 

PACS numbers: 64.ID.+h 

1. INTRODUCTION 

It is well known that the problem of percolation very 
much resembles the problem of second-order phase 
transitions (cf., e. g., the reviewsU,2l ). In percolation 
theory, the analog of the order parameter is the "power" 
of an infinite cluster. This analogy was formulated 
mathematically rigorously by Kasteleyn and Fortuin, r3l 

who showed that the percolation problem is the limiting 
case of the so-called S-model for S-I. A scaling hy­
pothesis for the percolation problem has been formulated 
using this analogy. r4-8] 

On the other hand, the theory of second-order phase 
transitions can be formulated from a microscopic point 
of view (cf., e.g., n,Bl), using field theory. One can 
use either the e-expansion method, r71 or renormaliza­
tion-group theory directly in three-dimensional 
space. r9tlO] It is therefore natural to attempt to con­
struct, using the field theory for the S-model, a micro­
scopic scaling theory for the percolation problem too. 
The first attempt in this direction was made by Harris 
et al., rll] who carried out the e-continuation from six­
dimensional space (since the corresponding field theory 
is logarithmic in six-dimensional space). InUll, how­
ever, the Hamiltonian of the S-model was replaced by 
another model Hamiltonian, introduced by GoIner. r121 

This replacement is, generally speaking, not justified, 
and this is obviously why the Fisher parameter T/ cal­
culated by Harris et ale rll] turned out to be negative, 
which would be completely incomprehensible. 

In the present paper we shall consider the bond prob­
lem in percolation theory, using the field theory for the 
S-model directly in the three-dimensional case, analo:­
gouslytotheway in which this was done earlierr9.10) for 
the theory of second-order phase transitions. We shall 
calculate the critical indices, correlation functions and 
analog of the free energy for the percolation problem, 
as functions of the concentration q of broken bonds and 
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of the fictitious magnetic field x introduced by Kasteleyn 
and Fortuin. r3l USing three results, we shall then cal­
culate the thermodynamic functions of a disordered Ising 
ferromagnet as functions of the temperature and the 
real magnetic field at low temperatures near the per­
colation threshold. 

2. CONNECTION BETWEEN THE S-MODEL AND THE 
PERCOLATION PROBLEM 

Since the analogy between the percolation problem 
and the partition function of the S-model has been for­
mulated in the language of the mathematical theory of 
linear finite graphs, r3l we shall briefly derive the prin­
cipal results of this work in the language of statistical 
physics. The S-model (the Ashkin-Teller-Potts mod­
el £13, Ul) is a generalization of the Ising model. Suppose 
that at each site of the lattice there is a certain object 
which can be in one of S possible states, while the en­
ergy of the interaction between sites depends only on 
whether the objects at neighboring sites are in the same 
states or in different states. A solid solution of S com­
ponents with equal concentrations can serve as one of 
the realizations of this model (just as one realization of 
the Ising model isa solUtion with two components).'rlie--S­
model with S= 2 corresponds to the Ising model. We 
shall write the Hamiltonian of the S-model in two phys­
ically equivalent forms: 

(la) 

(lb) 
i,1I 

Here J is the exchange integral, J 1 = JS-l, Wo = p.H, H is 
the magnetic field, p. is the magnetic moment, WI 

= waS-I, S is the number of components, and (J', is the 
index labeling the components of the S-model. 
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Formula (la) is convenient in that the ground-state en­
ergy is equal to zero, but it is more convenient to con­
struct the field theory by starting from formula (lb). 
We shall consider a simple cubic lattice consisting of 
N sites and L = 3N bonds between the sites. Then from 
(la) it is easy to obtain the following expression for the 
partition function of the S-model: 

Z=qL.E [II (1+ : Ila i a ,) II exp[x(llo r 1) 1]. 
~ L X 

(2) 

x=2w'!T. q=e-2J1T • p=l-q. 

In the expression (2), llL denotes a product over all L 
bonds and llN denotes a product over all N lattice sites. 

We shall calculate the partition function (2) by expand­
ing it in p/q and summing the resulting expressions over 
all possible configurations of the lattice, just as is done 
for the two-dimensional Ising model. [15] We then obtain, 
after straightforward calculations, 

Z= .E pRqL_R II [x(nx) l"\ 
conf n=-1 

x(x)=1+(S-1)e-'. (3) 

In the expression (3) the summation is taken over all 
possible configurations of the lattice, there being R 
bonds and L-R broken bonds in each concrete configura­
tion; N" is the number of connected clusters of size n 
(concerning the concept of a cluster, see, e.g., [2-6]). 

We note now that, since p +q = 1 and q< 1, formula (3) 
can be given a probability-theory meaning. We introduce 
the concept of averaging over the configurations of a lat­
tice with broken bonds, [2] with the quantity q playing the 
role of the probability that a bond is broken. We denote 

<1>.= L;pRqL-Rf. (4) 
conf 

where f is a certain physical quantity defined on the lat­
tice (for more detail about the averaging (4), see[2]). 
Then the formula (3) can be rewritten in the form 

(5) 

Precisely such expressions were obtained by Kasteleyn 
and Fortuin. [3] 

We now consider the limit S-l, N - 00; we shall as­
sume that (S -1)N« 1. We shall calculate the function 
K(x), which is simply related to the free energy of the 
S-model: 

InZ(x) ~ 
K(x)= lim lim-(--) = ~ 'Y.e-oz. ,,_= 8_, N S-1 

o (6) 
'Yo = lim N-'<N.>n. 

The function K(x) coincides with the generating func-
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tion introduced by Essam and Gwilym[4] for the percola­
tion problem. It is then not difficult to show that such 
quantities as the infinite-cluster power P(p), the analog 
S(p) of the susceptibility[2] and also the correlation func­
tion g(r) can be expressed in the form of averages for 
the S-model. We note first of all that, for the bond 
problem[4-6] we are conSidering, 

P(p)=1- .E'n'Yo=1+limK'(X). __ 0 (7) 
o 

S(p)=.E 'n''Yo=limK''(x). __ 0 (8) 

In the expression (7), and also everywhere in the follow­
in~, !;' denotes a sum over finite clusters only. 

We shall now define the correlation function[506]: 

(9) 

where g,_ = 1 if the sites i and k belong to the same clus­
ter and g,_ = 0 otherwise. It is not difficult to show that 
for q< qc (qc is the critical concentration of bonds), the 
Fourier transform g(k) has the form 

g(k)=P'Il(k) +g,(k). (10) 

where a sum only over finite clusters appears in gl. The 
formula (10) is analogous to the usual formula from the 
theory of phase transitions. 

As in the derivation of (5), it is easy to show that P(p) 
and g(r) can be represented in the form of averages in 
the S-model: 

1 1 
g(r,-r,)=lim- «Silo i,-1) (Slla,,-1) > = lim-S <Po "P •• ). (11) 8_, S-1 B_' -1 

P I · 1 SII 1 I' <Pa,,) 
= lm-S 1 < 0-1- )= lm-S l' 

8-1 - 1 S-1-
(12) 

where the averaging is performed with the partition func­
tion (2) of the S-model. Here it is necessary to remem­
ber, as before, that (S -1)N« 1. 

We shall also write out the expression for (S6 a,l -1) 
for x,*O: 

(13) 

where ({Jc is the complete analog of the magnetization in 
a magnetic field. 

To conclude this section we note that .I, H, and T, in­
troduced in this section, are purely formal quantities, 
while the physical quantities are q and x (we recall that 
q is the probability that a bond is broken). Therefore, 
the expansion in J/T, which we shall use in the following, 
is in fact an expansion in In(I/q). 

3. THE DIAGRAM TECHNIQUE 

We proceed now to construct the diagram technique. 
For Simplicity we shall confine ourselves to the case x 
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= 0 and q > q c. The generalization to the case x,;. 0 or 
q< qc is trivial, and therefore, when we have need of it, 
we shall simply write out the answer. For x= 0 and q 
> qc, obviously, q>c = 0, and therefore it is only necessary 
to consider g(r). In this case we shall use the Hamil­
tonian (lb) with w1 = O. First of all we note the following. 
If we attempt to put S = 1 immediately in (1), absolutely 
nothing is obtained. Therefore, we shall consider all 
the quantities of interest to us (the correlators, vertex 
functions, etc.) for arbitrary values of S, and then take 
the limit S= 1 in the final expressions. All quantities 
containing higher powers of S - 1 will be discarded. This 
leads, in particular, to the absence of disconnected 
graphs in the diagrammatic representation for the free 
energy. 

We shall calculate (11) by expanding in J/T. A fact 
of great importance here is that P 0'1"2 is a singular ten­
sor (not possessing an inverse), inasmuch as det P= O. 
Furthermore, for P we have 

(P').,,,=SP,,, •. (14) 

In the calculation of (11) it is necessary to choose the 
zeroth-order Hamiltonian for the calculation of the sin­
gle-cell averages. It is obvious that for w1 = 0 the aver­
aging over the zeroth-order single-cell Hamiltonian has 
the form . 

e.g., 

(15) ., 
It is not difficult to show that a diagram technique for 

(S - 1)g( Yf - Y_) can be formulated in the following way: 

1) The diagrams consist of points and lines; 

2) to each internal line corresponds a factor 
T-1J ik Paiak, where J ik =J1 if i and k are nearest neigh­
bors and J ik = 0 otherwise; 

3) tensors Pl~ correspond to end pOints; 

4) a summation is performed over all indices CJ" 

with weight l/S, and also over all internal coordinates 
r J• Obviously, linear-chain summation will give the 
following expression for the Fourier transform of g(r): 

(k)- 1 
g - 1-J,(k)IT 

(16) 

We shall calculate now the simplest graph that does 
not appear as a linear chain-that depicted in Fig. 1a. 
It is not difficult to see that it is equal to 

S-2 ~ • 
g(r,-rk)=Y i...JJ",JtlmJ,mk ' (16') 

1m 

A very important effect follows from (16'): first, we see 
that the theory of the S-model for S,;. 2 contains three-
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a 
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b 

J1 

~f~' 
~ 

J1 c r 

point vertices, and secondly, the sign of the graph 
changes as we pass through S= 2. Thus, the theory is, 
in a certain sense, an effective Xq>3-theory. However, 
as we shall see below, the usual instability for a Xq>3_ 
theory, associated with the absence of a ground state in 
this theory, disappears when S= 1. Naturally, this is 
associated with the fact that for S= 1 the physics of the 
phenomenon turns out to be completely different from 
that in an ordinary Xq>3-theory. As usual, in such 
cases the correlation-function singularities associated 
with the three-point vertex are stronger than the sin­
gularities associated with, e. g., the four-point vertex. 
In the following, therefore, we shall take into account 
only the three-point vertex, the bare value of which is 
equal to 00'10'200'10' , wheretheCJ,aretheindicesoftheoper­
ators associateJ with the vertex. We recall that a sum­
mation S-1:E0' is performed at each vertex (we shall as­
sign the tensors Palak to the correlation function). 

As in the theory of phase transitions, in our case the 
principal role in the internal integrals is played by small 
momenta. Therefore, we shall renormalize the theory 
immediately in such a way as to separate out the con­
tribution of the small momenta. As is usual in the site 
technique, [16.17] we introduce the function 

V.,=V(k)P." g(k)=1+V(k), 

J,(k) 1 
Vo(k)=-T-1-'j,(k)/T (17) 

A diagram technique is now formulated for the function 
V"s(k), [16.17J and it is natural to choose the function 
VOPaS as the zeroth approximation. Here, the fact that 
Vas - PaS in any order of perturbation theory is extreme­
ly important. For example, the tensor part of the graph 
of Fig. 1b for Vas has the form 

1 ~ . 
S' i...J P.,P,,-P,,= (S-2)P." (18) 

" 
from which we see that the tensor properties of the 
operator PaS lead only to the result that, e. g., a loop 
gives a factor S - 2. As we shall see belOW, an analo­
gous property is possessed by the three-point function. 

We now separate out the region of small momenta in 
Vo(k). We obtain 

Vo(k) =ro -'G,(k), J,(k) =J, (0) (1-k'ro') , 
1 • T-J,(O) 1 

Go (k) = k'+xo" x, = l.iJj) ro' ' (19) 

In the formulas (19), a is the lattice constant, Yo is de­
fined from the expansion of J 1(k), and X is the bare 
three-point vertex obtained as a result of the renormal-
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ization. A diagram technique is now constructed for the 
Green function GaB(k), which is simply related to g(k): 

Ga,(k)=G(k)Pa" g(k)=i+ro-'G(k). (20) 

We shall formulate the rules for constructing diagrams 
for GaB(k): 1) The diagrams consist of points and lines; 
2) corresponding to each line is a GOaB(k); 3) corre­
sponding to each point is a factor X; 4) at each point 
there is a summation over all internal indices, with 
weight 1/8, and there is also integration over the in­
ternal momenta. For example, the graph of Fig. 1b is 
equal to 

=}.'(S-2)Pa,Go'(k) S~G.(p)G.(P+k). (21) 
(2n) 3 

In any order of perturbation theory, GaB - Pas. 

Inasmuch as PaB is a singular tensor, the self-energy 
part cannot be defined in a tensor form. Therefore, 
we shall put 

G-'(k) =G.-' (k) -~(k). (22) 

We now determine the renormalized vertex. We shall 
consider the simplest diagram (Fig. 1c; t:..KaB.,) for the 
three-point function. A simple calculation gives the 
following expression for the tensor part of this graph: 

We see that summation over all the a j has led to a sum­
mation over one variable a and to the appearance of the 
factor 8 - 3. It is easy to show that the same thing will 
also happen for an arbitrary diagram. Thus, the dia­
gram of Fig. 1c gives the following expression for t:..Kaa.,: 

~Ka'T=~r, ~ L,G.aaG.,aG.Ta, 
a 

d'p 
~r,=(S-3) J (2n)' G.(p)G.(p+k,)G.(p+k,+k,). 

(24) 

Completely analogously, in arbitrary order of perturba­
tion theory we obtain 

(25) 

where GaB are exact Green functions and KaB"Y is the ex­
act three-point function. 

4. EQUATIONS FOR THE VERTEX AND GREEN 
FUNCTION 

The theory is constructed below in analogy with the 
theory of second-order phase transitions. We shall 
follow our previous paper. [9] The renormalization of the 
theory is carried out fairly easily, and we shall not 
dwell on it here. Near the phase-transition point, G(k) 
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has the form 

z 
G(k)= k'+x'-~. ' 

FIG. 2. 

(26) 

where ")0(2 is defined by the condition that G has a pole at 
11' = _")0(2. As was shown in[9], in the region 11' _")0(2 we 
have:!: R - 11. Inasmuch as 11« 1, we shall disregard :!: R; 

the quantity z is also determined by 11, and, therefore, 
we shall assume for Simplicity that z = 1; at the end of 
this section we shall calculate 11 from simple considera­
tions. 

After these simplifications for the calculation of the 
Green function, only ")0(2 remains to be calculated. This 
can be done with the aid of a Ward identity, using the 
formula 

drldr:=tR' r=x', (27) 

where tR is a vertex whose definition is clear from Fig. 
2a, in which we have denoted the differentiation with re­
spect to T by a wavy line. In its turn, tR is also deter­
mined by a Ward identity. This Ward identity is con­
veniently written in a form with a derivative not with re­
spect to T but with respect to r directly. For example, 
differentiation of the graph of Fig. 2b with respect to r 
will give the expression 

(S-2»" :~ , K(r)= S (~~)' G'(p). (28) 

We now replace X by the renormalized vertex r 3 taken 
at zero momenta, and replace the point at which the 
wavy line enters by tR; we then obtain for tR the equation 

{Jt. , {JK 
-=(S-2)tRU. -, U.=r, (p,=O). 
Dr or 

(29) 

It is convenient to separate out the scaling part from uR • 

We put 

(30) 

Then from (29) we obtain 

a In t. , -a-t - = So (g) = (2-S) g , t=lnr. (31) 

It is also easy to show that, as previously, [9] allowance 
for the more complicated graphs will give the equation 

(J In t. () ----a;-= s g , 

~o(g) being the first term of the expanSion of ~ in g. 

S. l. Ginzburg 

(32) 

602 



Thus, we see that the problem has been reduced to the 
calculation of the renormalized dimensionless coupling 
constant g. To calculate g we shall write the Ward iden­
tity for uB• The simplest graph for uB is represented by 
Fig. 1c with all the outgoing momenta equal to zero. 
Arguing in exactly the same way as in the derivation of 
Eq. (29) for tB , we obtain the following equation for uB 

and g: 

OU. oK 
-=(S-3)u.'-, 

Or or 
i)g 3 
Tt= ¢,(g)= -f;g+(3-S)g'. 

(33) 

Just as before, [9] it is easy to show that allowance for 
the more complicated graphs gives the equation 

oglot=¢(g). (34) 

Equation (34) is the Gell-Mann-Low equation for g, 
and l/J(g) is the Gell-Mann-Low function. The zeros of 
l/J(g) are the fixed points of Eq. (34). If go is a zero of 
l/J(g), the susceptibility index 'Y is determined by the for­
mula[9] 

1 
1 = 1-s(g,) . (35) 

In the present article we shall confine ourselves to 
treating ~(g) and l/J(g) in only the lowest orders of per­
turbation theory, i. e., we shall consider only ~ = ~o and 
l/J=l/Jo• First of all we note that, in l/Jo(g) and ~o(g), only 
the term in l/Jo(g) linear in g depends on the dimensional,... 
ity of space. This is connected with the fact that for 
arbitrary dimensionality d of space (we shall consider 
only the case 3 ~ d ~ 6), u B - r(8-4) 1 4 and, therefore, (30) 
is replaced by 

(36) 

and K.,(r) is defined analogously to (28), but with arbi­
trary dimensionality d. Then ~o preserves its form, 
and for l/Jo we obtain 

1/l, (g) =-'/, (6-d)g+ (3-S) g', (37) 

from which, in particular, it can be seen thatwe have 
a logarithmic situation for d = 6. For arbitrary d there 
is a fixed point at 

g'='/.(6-d) (S=1), (38) 

which leads to the following expression for 'Y: 

1=8/(2+d). (39) 

If we neglect the Fisher parameter 1/, we obtain from 
the scaling laws the following expressions for the "large" 
indices: 

2(d-2) 
ct=---

d+2 ' 
L\=1+~=2. (40) 

Computer calculations for the three-dimensional case 
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giveC4•8] 

"Y=1.69±O.05; p=O.35±O.05; \"=O.9±O.05; .l=2.2±O.3, (41) 

which agree fairly well with our results. Even for the 
two-dimensional case, for which our theory should be 
rather poorly applicable inasmuch as the dimensions of 
all vertices differ only by the quantity 1/ when d = 2, the 
values of'Y and Il. differ only by 15-20% from the com­
puter-calculated values[4] 'Y = 2. 37 ± O. 03, Il. = 2. 4 ± O. 2. 
This suggests that the approximation used in the present 
paper is fairly good. (Inasmuch as the index (3-1/ for 
d = 2, it is natural that, as follows from (40), p(d = 2) = O. ) 

We now write out explicit expressions for g, uB and tB 
in the three-dimensional case: 

( 64n r'/' ) -'I. 
g=g, 1 +-3- g,' A,' ' 

'/, ( 3 A,,) -'I. 
u.=A, 1+----- , 

64n:go2 lIz 

( 3 A,' -'J. 

t.= 1+---) 
641tKo2 r'l: 

(42) 

The expressions (42) are obtained from the conditions 
tB(r» A l ) = 1 and uB(r» A l ) = A~/2; we have taken into ac­
count that a 2 = 6471/3. 

We now calculate the Fisher parameter. For this we 
express ~l(k) = ~(k) - ~(O) in terms of the renormalized 
vertex r3: 

S d'p 
~, (k) =- -( -. r,'(p)G(p) [G(p+k)-G(p) J. 2,,) , (43) 

The minus sign has arisen from the factor S - 2, just as 
in formula (18). For large p the vertex r 3(P) = bp3/2 and 
the integral in (43) diverges logarithmically: 

~ ~ L\ ~,(k) ""-b' S--p'G(p) [G(p+k)-G(p) J"" --k'ln-, 
(2,,)' 6,,' k 

(44) 

where A is the momentum cutoff. Comparing (44) with 
the expansion of G(k) for 1/ln(A/k)« 1, we obtain 

t]=b'/6n'. (45) 

Thus, to calculate 7] we need to know the coefficient b. 
It does not, of course, coincide with the coefficient ago 
in uB • In order to calculate b, it is necessary to take 
the derivative of the graph of Fig. 1c with respect to the 
external momentum k, rather than with respect to r. 
As a result we obtain 

(46) 

Substituting r3= bk3/2 into (46), we obtain 

b'=:r'/2, 1]='/". (47) 

To conclude the present section we shall return to the 
formula (26). From (26) we have the following asymp­
totic forms of G in the coordinate representation: 

(48) 
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These formulas, which have been known for a long time 
in the theory of second-order phase transitions, give 
very important information about the arrangement of 
finite clusters in the percolation problem. 

5. ANALOG OF THE EQUATION OF STATE FOR THE 
PERCOLATION PROBLEM 

For the calculation of the order parameter P it is nec­
essary to write the equation of state, in which the mag­
netic field x must necessarily appear, since (as is 
well-known[S]) for X= 0 we cannot pass through the point 
T = O. Therefore, it is not P that should appear in the 
equation, but the quantity qJc defined in (13), which is the 
analog of the magnetization in a magnetic field, together 
with X (x), which is the analog of the susceptibility. We 
shall write out both these quantities: 

(49) 

It can be seen from (49) that for x» 1 the quantity qJc 
= 1, i. e., we have, as it were, complete magnetization, 
while for x- 0 we have qJc(x)=P +S(p) where S(p) is de­
fined in (8) (S=X(x= 0». For x- 0 this expreSSion coin­
cides with the usual expression for the magnetization in 
weak fields. 

Before writing the equation of state for the quantities 
of percolation theory we shall write it for a one-compo­
nent system in ordinary :\qJ'-theory. [9] The renormalized 
Hamiltonian of this problem has the form 

(50) 

where H is the magnetic field. We introduce the aver­
age qJ": 

cp(r)=cp.(r)-cp" <cp.(r)=cp,. (51) 

We then obtain 

where V is the volume of the whole space and F is the 
free energy. 

The eqUation of state is obtained from the conditions 

(53) 

Fulfilment of the first Eq. (53) causes the term linear 
in qJ in H/T to vanish. From (53) we have 

1 1 r' ilcp, 
H=-XCP'-3 .. cpo, )(= ilH· (54) 
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The second equation is obtained from the definition of X 
and qJc' 

We assume now that r,o is a function only of X and is 
defined in the same way for T> 0 and T< O. Then, using 
the results of the previous paperC9] in the quadratic ap­
proximation and taking into account that r,o=3uR (uR was 
determined in[9]), we obtain (since X = r .1) 

(55) 

Equation (55) is easily reduced to the linear parametric 
equation of state that was discussed by Migdal[lS1 (cf. 
also[Sl). First of all we note that in the quadratic ap­
prOXimation it follows from our previous work[9] that 
for a one-component field 'Y = 1. 2, ,9 = O. 3 and 'Y + 8 = ~. 
The condition 'Y+,9=~ is necessary[S.lS] to make Eq. (55) 
self-consistent. If we put 

(56) 

then Eq. (55) is brought to the form 

h=cp(m) =m-lO/,nm'. (57) 

Equation (57) is the simplest equation of state in para­
metric form. 

Repeating almost verbatim the calculations carried 
out above, using the expression (30) for uR and taking 
into account that r 30(x)=uR(r=X·1), we obtain the follow­
ing equation of state for the percolation problem: 

(58) 

Like (55), Eq. (58) can be written in the following form: 

h=cp(m) =m-21'nm', 
(59) 

From (40) it can be seen that we have 'Y = 1.6, ,9 = O. 4 and 
,9 +'Y = 2, the latter being necessary for the self-consis­
tency of (59). We note that (59) differs from (57) in that 
an m2 term appears in (59) in place of m 3 in (57). This 
is connected, naturally, with the fact that the order 
parameter is our case is an essentially positive quan­
tity, and there is no invariance with respect to replace­
ment of m by - m. For space dimensionalities d > 6 
Eq. (58) (for X= 0) is replaced by the following equation: 

(60) 

which is the exact analog of the Landau theory of phase 
transitions for the percolation problem. In this case the 
indices are equal to ,9 = 1, 'Y = 1, v = t and 1/ = O. 

We turn now to the solution of (59). The self-consis­
tency condition for the solution of (59) is the condition 
,9 +'Y = 2, which is fulfilled in our approximation. Solving 
(59) as in[s.l8l, we obtain the following expression for X: 

( ) -c ( 1-41'n ml'"( ) 1 X m,'r - ., 
T 

(61) 

where C is a constant. If we put 
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e=2n"'m, p=(CI;IYIT, (62) 

we obtain from (59), (61) and (62) 

(63) 

where A and B are constants. The expressions (61)-(63) 
determine the equations of state in parametric form. 

The fact that 13 +'Y = 2 gives us the possibility of solving 
these equations in explicit form. As a result, we obtain 

=~[ (y'+1)'/'+"I,y ] 1 

)( X'" 'l,y'+'I, ' (64) 

= B xJ/' y'+'I,-y (y'+t) '/. [ 'l,y'+'I, ] ~ 
cpa 1 2y~+25/, 'I,y+(y'+t)'/' 

y=T(Alx)'''. 
(65) 

It can be seen from (64) that fPc - 0 for T» Xl/2 and T > 0, 
andfPc-(-T)Bfor ITI»xl/2andT<0. Also, X-ITI'" 
for ITI »Xl/2, the coefficients of ITI-r being different 
for T >0 and T< O. At T= 0 we have X - X- r/2, and fPc 
- XBI2. 

Inasmuch as X and fPc are related to the cluster-size 
distribution 'Y n, we can determine the asymptotic forms 
of 'Yn from (64). For this it is most convenient to use 
formula (49). Since the principal contribution to the 
sum (49) is given by values n» 1, 'Yn can be calculated 
by replacing the sum in (49) by a Laplace integral and 
inverting the latter. As a result, we obtain for T> 0 

"(.-n-', n<tIAT', 
"(.-exp {-A,,'n}, n~lIAT', 

g=3-"(12=2.2. 
(66) 

We have omitted the pre-exponential factor in the sec­
ond of the formulas (66). In the paper[4] of Essam and 
Gwilym the following expression for g, calculated on a 
computer, is given: g= 2. 2 ± O. 2, which agrees with (66). 

6. THERMODYNAMICS OF A DISORDERED ISING 
FERROMAGNET NEAR THE PERCOLATION 
THRESHOLD 

In this section we shall consider the thermodynamic 
functions of a disordered Ising ferromagnet at low tem­
peratures T«Jo and with IJoH- Tr4, where J o is the ex­
change integral, T is the temperature and H is the mag­
netic field (of course, Jo. T and H have no relation to the 
formal Jo, T and H in the S-model that we introduced in 
Sec. 2). We consider first of all the ground-state ener­
gy E. Inasmuch as 

E = ~ 1 .. <8;,8.>., (67) .. 
it is easy to show also (as is done in the usual theory of 
phase transitions[8]) that the singular part of E is equal 
to 

(68) 

where a is the analog in the percolation problem of the 
specific-heat index. It can be seen from (40) that only 
the second derivative a2E/aq2 goes to infinity. 
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In order to calculate the magnetization and suscepti­
bility we shall calculate the free energy. Following Dunn 
et al., [5] we shall assume that for T«Jo the dependence 
on the exchange integral drops out, inasmuch as all the 
spins are ordered within the finite clusters. Then the 
free energy f per lattice site is equal to 

(69) 

The magnetization M and susceptibility XR per site are 
respectively equal to 

M=I-I[t-2 ~f ~], 
~ t+enx 

41-1' ~f, enx 
XR=- n "(.---, 

1. (1+e~)' 

(70) 

(71) 

where X= 2IJoH/T. The connection between the real ther­
modynamic functions and the percolation functions can 
be seen immediately from the expressions (70) and (71). 
For example, from (6) and (70) we have 

~ (_t)m-' 
t=-1~--m-K(mx), 

m_' 

while M is analogously related to fPc, and XR to X. 

(72) 

From the expressions (49) and (71) we obtain the re­
lationship between the asymptotic forms of M and XR and 
the asymptotic forms of fPc and X: 

M=I-Icp" ""=1-1')(11, x<'t"; 

M=I-I [ t -2 ~f n"(.e- nx ] , )(.=41-1')(11, x>,'. 
(73) 

. 
Using the asymptotic form of X, we obtain for XR the fol­
lowing expressions: 

(74) 

and, since 1 - 'Y /2 = O. 2, X R - T-O,2 in the second case. 
We note that, by using the explicit expressions (64) and 
(65) for X and fPc, we can also write corresponding ex­
pressions for M and XR; however, we shall not do this 
here. 

In conclusion the author would like to express his 
gratitude to S. V. Maleev for discussing the work. 
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Carrier statistics and thermal relaxations in inhomogeneous 
semiconductors 
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Zh. Eksp. Teor. Fiz. 71, 1159-1165 (September 1976) 

The statistics of electrons in an inhomogeneous semiconductor in which the energy bands are modulated 
by a Gaussian random potential are considered. It is assumed that only one type of partially compensated 
donor level is present in the semiconductor. The position of the chemical-potential level, the degeneracy 
criterion, the features of the temperature dependences of the free carrier density, and conductivity are 
investigated, as is also the kinetics of the establishment of the stationary conductivity following an abrupt 
variation of the sample temperature. It is shown that in an inhomogeneous and weakly compensated 
semiconductor the process is characterized by anomalously high relaxation times that have an activation 
dependence on the temperature. 

PACS numbers: n.20.Pa, 71.20.+c 

1. INTRODUCTION 

It is well known that statistical fluctuations or tech­
nological inhomogeneities of the impurity ion concen­
tration can produce in semiconductors an inhomogeneous 
electrostatic potential that modulates the energy bands. 
In some cases (for example in strongly compensated or 
irradiated semiconductors) the amplitude of this poten­
tial can become appreciable. This leads to a number 
of Singularities in the kinetic properties of the semicon­
ductors, such as a residual photoconductivity, an anom­
alous temperature dependence of the Hall mobility, 
etc. [11 These phenomena are observed in experiment 
quite frequently, as is evidenced by the significant in­
homogeneity of many real semiconductors. A consis­
tent theoretical study of the properties of inhomoge­
neous semiconductors is therefore useful. 

This paper deals with the statistics of the carriers 
and, in particular, with the question of the temperature 
dependences of the equilibrium concentration and con­
ductivity in inhomogeneous semiconductors. The kinet­
ics of the establishment of the indicated equilibrium 
values following an abrupt change of temperature is also 
investigated. 
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2. CHEMICAL-POTENTIAL LEVEL AND 
DEGENERACY CRITERION 

We consider a semiconductor with a modulating ran­
dom potential V(r) described by a distribution function 
F(V). Assume that the sample contains uniformly dis­
tributed donor levels with concentration N D and binding 
energy el • The random potential is due to the inhomo­
geneous distribution of the acceptors having an average 
concentration NA.ll If the correlation length of V(r) ex­
ceeds the radius of the donor states, then the energy of 
the latter can be described by the same distribution 
function F. 

We assume that the electron density n in the band is 
quite small, n« N A' We can then neglect the depen­
dence of the random potential on n, and determine the 
chemical-potential level!; from the expression 

~ 

J dVF(V)f(V-B,) = (ND-NA)IND (1) 

where j(e) is the Fermi function. There being no alter­
nate assumptions, we take the random potential to be 
Gaussian 
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