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Starting from the kinetic equation for the quasiparticle distribution function and from considerations of 
gauge invariance, a complete system of linear hydrodynamic equations for the A phase of superfluid lHe is 
obtained. All the thermodynamic quantities and (in the T-approximation) kinetic coefficients appearing in 
the equations are found and expressed in terms of the Fermi-liquid parameters of the Landau theory. It is 
shown that in the range of applicability of hydrodynamics (WT< 1) there exist two regions of frequency, in 
which the equations of motion for the orbital angular-momentum vector have a fundamentally different 
character. At low frequencies this equation is a diffusion equation, while at higher frequencies it decribes 
the propagation of weakly damped orbital waves with a linear dispersion law. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION 

A number of experiments carried out recently (mea
surements of the fourth-sound velocity and heat flows, 
and experiments with a vibrating wire in the liquid; 
cf. U 1) prove incontrovertibly that the A and B phases of 
liquid 3He are superfluid liquids. On the other hand, 
magnetic-susceptibility measurements and linear and 
pulsed NMR make it possible to identify these phases 
with the so-called Anderson-Brinkman-Morel and 
Balian-Werthamer states (cf. the review[Zl) for Cooper 
pairing of 3He atoms in a state with angular momentum 
1 = 1 and spin S = 1. 

The Anderson-Brinkman-Morel state, corresponding 
to the A phase, is characterized by the following order 
parameter: 
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(1.1) 

where 0- are the Pauli matrices, V is a unit vector, 
n=k/lkl, and .:1=.:1' +i.:1" where.:1' and.:1" are real 
vectors, equal in magnitude (1.:1' I = 1.:1"1 = .:1(T» and 
mutually perpendicular. Their vector product .:1' x.:1" 
= ~Z(T) 1 defines the direction (common for all pairs) of 
the orbital angular momentum of a pair in the absence 
of walls or of external fields. Thus, the coordinate (or 
orbital) part of the order parameter is specified by the 
position of the triad of vectors .:1', .:1", 1. We shall 
assume that in equilibrium the vectors .:1', .:1", 1 are 
directed along the axes X, Y, Z respectively. 

We shall describe small deviations from the equilibri
um position as a rotation (specified by a vector 8 equal 
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in magnitude to the angle of rotation) of this triad of 
vectors. In the hydrodynamics regime the vector 8 is 
a slow ly varying function of the coordinates and time. 
By virtue of the small magnitude of the spin-orbit inter
action (cf.(2]), the dynamics of the vector 8 can be 
treated independently of the dynamics of the spin vari
able V. In the present paper we shall not be interested 
in the spin hydrodynamics, the derivation of which can 
be found, e. g., in the papers of Combescot[3] and 
Graham and Pleiner, [4] and so we shall discard the spin 
part of the order parameter (1. 1) and consider only its 
orbital part 

1n=n~=1(T) sin8nexp (i¢n), (1. 2) 

where OD and ¢D are the plar and azimuthal angles of 
the vector n (the polar axis is directed along 1). 

Since the phase ¢D and modulus ~(T) sinOD = ~(T) I nx 11 
of the order parameter depend on the direction of the 
unit vector 1, the A phase of 3He should exhibit aniso
tropic properties analogous to those of a nematic liquid 
crystal in which the axis of each molecule is parallel to 
a specified direction, common for all the molecules. 
In particular, the hydrodynamics of the A phase of 3He 
should be anisotropic, i. e., should contain tensor quan
tities as the coefficients. Such a system of hydrody
namic equations, with allowance for dissipative terms, 
was proposed by Graham, [5] starting from considera
tions of Galilean invarilince and invariance under time 
reversal and from the axial symmetry of the A phase; 
however, he left open the question of the calculation of 
the phenomenological parameters appearing in this sys
tem. 

In the present paper we have obtained a complete sys
tem of linear hydrodynamic equations for the A phase, 
starting from the kinetic equation for the quasi-particle 
distribution function and from considerations of gauge 
invariance, just as was done in the paper by Betbeder
Matibet and Nozieres[6] for an isotropic superfluid Fer
mi liquid (see also[7], in which an anisotropic superfluid 
Fermi liquid, but with a frozen 1 equal to its equilibrium 
value, was considered). All the thermodynamic quanti
ties and (in the T-approximation) kinetic coefficients ap
pearing in the equations are found. They are expressed 
in terms of the Ferni-liquid parameters of the Landau 
theory. We emphasize that in the calculation of all the 
quantities we have not assumed that the interaction lead
ing to the pairing is weak; we use only the smallness of 
Tel eF • The point is that strong-coupling effects (cf. the 
review[2]) are important only in the order-parameter 
equation, .which we have not used, assuming that (1.2) 
is its solution with a ~(T) which can be taken from ex
periment. 

It is shown that in the hydrodynamic regime WT« 1 
there exist two frequency regions, in which the equations 
of motion for the vector 1 have a fundamentally different 
character. At low frequencies the hydrodynamics of 
Graham[S] obtains, and the equation for 1 is a diffusion 
equation, while at higher frequencies, but within the 
limits of applicability of hydrodynamics (WT« 1), the 
equation of motion for 1 describes the propagation of yet 
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another sound-orbital waves with a linear dispersion 
law. 

2. THE SYSTEM OF HYDRODYNAMIC EQUATIONS 

The hydrodynamics of an isotropic superfluid Fermi 
liquid was obtained by Betbeder-Matibet and Nozieres. [6] 

According to them, a nonequilibrium state of the system 
is specified by three variables: the quasi-particle dis
tribution function IIt(r, f) and the condensate phase cp(r, f) 
and density p(r, f). The latter two variables are canoni
cally conjugate for fixed lit. In the case of the A phase 
these quantities are supplemented by the unit vector 1 
indicating the direction of the orbital angular momentum 
of a pair. In place of the variables cp(r, f) and l(r, f) it 
is convenient to introduce the vector of the local angle 
of rotation 8(r, f), which is connected with them by the 
relation 6cp = - 1. 60, 61 = 68 x 1. The variable canonical
ly conjugate to the rotation-angle vector 8 is the gener
alized angular momentum L. 

Thus, the state of the A phase is specified by the fol
lowing variables: IIt(r, f), 8(r, f) and L(r, f). The total 
energy of the A phase obeys the following thermodynam
ic indentity: 

6U = EEklh·.-M60+0I6L, (2.1) 
k 

where", and M are respectively the angular velOCity 
and generalized torque. 

The equation of motion for the function lit is the kinetic 
equation 

ilv. + ilVk ilEk _ il\'. ilE. = I {Vk}, 
ilt ilr ilk ilk ilr 

(2.2) 

which holds for[6] W, VF q« ~(T), where W and q are the 
frequency and wave vector, respectively. The equations 
of motion for the variables 8 and L are Hamilton's equa
tions: 

(2.3) 

We note that in the case of ordinary superfluidity the 
equations corresponding to Eqs. (2.3) are 

As will be seen below, these equations are the z-compo
nents of Eqs. (2.3). The system of equations (2.2)
(2.3) completely describes the system, both in the low
frequency hydrodynamic regime WT« 1 and in the high
frequency regime WT» 1 (but w« ~(T», if the expres
sions for Et , M and '" as functions of lit, 8 and L are 
known. 

In the hydrodynamic regime WT« 1, in place of the 
quasi-particle distribution function IIt(r, f) we can intro
duce hydrodynamic variables: the excitation-flux density 
P and entropy density S, defined by the equalities 

p= ~k6vk' T68 = E (E.-kv") 6v., . • 
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where the velocity y" of the normal component and the 
temperature T are the variables thermodynamically con
jugate to the quantities P and S. In this case, (2.1) is 
rewritten in the form 

6U =T6S+v"6P-M69+ro6L, (2.4) 

and the distribution function I't(r, t) is close to its local
equilibrium value, which depends on the local energy 
Et and the temperature and velocity of the normal com
ponent: 

6v.' ( 6T) 6v.=- IlE.-kvn-E.- +g. aE. T . , 
(2.5) 

• t ( E.) v. = 2 1 - th 2T . 

Here gt is the nonequilibrium correction to the distri
bution function and must be found by solving the kinetic 
equation. 

The equations for P and S can be obtained by taking the 
corresponding moments of the kinetic equation: 

(2.6) 

where S'J is the tensor corresponding to the entropy 
density carried by the normal component (cf. [71): 

(2.7) 

and is connected with the entropy density S by the rela
tion S'j =S61j. 

The system of equations (2.3), (2.6) completely de
scribes the hydrodynamics of the A phase of 3He. 

Separating out the dissipative terms in the right-hand 
sides of Eqs. (2.3), (2.6), we rewrite this system in the 
following form: 

L, - M,n =- "VLiL/J); + "VL,.jM; - "VL,pp/ - "VL ,s6T, 

6, - (o)i
R =- "V.;LjffJ; + "Vo,./II; - "V"pp;" - "Vo,sllT, (2.8) 

P, + S'\,T = - "VP.L,.ffJ; + "VP .• ).Ju; - "VP.p.v;" - "Vp.s6T, 
. 1 1 t} 1 

. S + V, (Sv,") =- "VSL,ffJ, + \"s.i'Vl, - "Ysp,v,n - '(ssIlT. 

Here MR and wR are the equilibrium parts of the gener
alized torque M and angular velocity w; the yare the dif
ferent generalized kinetic coefficients, which, in the 
T-approximation, can be written in the form (see Appen
dix A) 
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(2.9) 

,,!Spi=Yp;s=O. 

In the expressions (2.9) the derivatives of E t with re
spect to 8 and L are taken at constant y" and T; T is the 
temperature-dependent relaxation time. Near Tc the 
quantity T coincides with the relaxation time in the nor
mal Fermi liquid. In order that the hydrodynamic 
equations be closed, it is necessary to relate the quan
tities E t , M R , wR and P to the quantities 8, L, y" and T. 

3. CALCULATION OF THE QUANTITIES APPEARING 
IN THE HYDRODYNAMIC EQUATIONS 

Calculation of Ek and P 

To find E t we shall assume, as in[61, that the quasi
particles of the superfluid Fermi liquid are formed from 
the quasi-particles of the normal Fermi liquid, with a 
spectrum et which, by virtue of the smallness of TifF' 
is not affected by the phase transition to the superfluid 
state. Therefore, the quasi-particle energy is ex
pressed in terms of et by 

E.= (s.'+ I ~.I ') ",+1/2(8.-8_.), 

6.=1/2 (8.+8_.). 
(3.1) 

The energy of the normal quasi-particles depends on 
the gradients and time derivative of the phase of the or
der parameter, which play the role of an external field. 
This dependence can be obtained by generalizing the ex
pression for et in the case of an isotropic superfluid 
Fermi liquid, when the phase cP does not depend on k 
(cf. [6-81): 

r-~ a<t>.) 
2 ak ' (3.2) 

where nt is the distribution function of the normal quasi
particles and/t.to is the Landau Fermi-liquid function . 
The distribution function nt is expressed in terms of the 
distribution function I't(r, t) for the quasi-particles of 
the superfluid liquid by means of a Bogolyubov trans
formation, in which, as in (3.2), it is necessary to shift 
the momentum and coordinate by ~ 'i1 CPt and - ~ a CPt/ ak 
respectively: 

( 1 n.=n k - 2 vep., 1 ij¢.) r+--
2 ak ' (3.3) 

_ 1 [s. . ] 11=2 E. (\".1""\1_.-1)+(".-\1_.+1) . 

The dependence of the phase CPt on the coordinates and 
time can be found with the aid of formula (1. 2), which 
shows that the phase of the order parameter coincides 
with the azimuthal angle CPD of the vector n; under a ro-
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tation through an angle li8(r, t), this angle changes by an 
amount 

69.=-21.60(r, t), I _ 1 [nX [IXn)) 
·-2 [IXn)' 

We note that the expressions (3.2) and (3.3) can be 
derived with the aid of a gauge transformation eliminat
ing the dependence of the phase CPt on t, rand k. Under 
such a transformation, the term 

Jd'rL[ ~ ~.(r,t)+::.¢.(r.t)]n.(r.t) . . 

(3.5) 

is added to the Hamiltonian of the system. 

The formulas (3.1)-(3.4) determine the dependence of 
Et on the variables 8, 6 and lit: 

(3.6) 

The variational derivative gt.t. of the quasi-particle en
ergy with respect to the quasi-particle distribution func
tion has the form 

• ~k6" g •• ' = / •• ' +--A •• ', , , E.E., , (3.7) 

where 1:.1' is the odd part of the Fermi-liquid function 
It.l', and \:.t. is expressed in terms of the even part 
It t by means of the equation 

dQ" 
A.", = /'\' - Ny J ~ /: ... 'X(n")A ... ,." (3.8) 

The derivatives of Et with respect to 8 and 8 at fixed 
lit are equal to 

iJE. I = t>. (T)(nl)[nxn{ 1 + -.h... iJN F ~ In~) 
00 ,.iI Ek \ N F iJeF F. + 5 Tc 

- UF ~ d4~ (6n. n' + F n. n') In' (n'v), (3.9) 

oe,. I = - ~ [I~ - N F ~ d4Q' An, n'J( (n')ln'] , 
00 d Ek .1 n 

where NF is the density of states at the Fermi surface 
and F •••• =NF/t,l" 

In local equilibrium, using the expression for lillt 
from (2.5), keeping only the first three harmonics of the 
function F •• ~, and neglecting (by virtue of the smallness 
of Tel F) the temperature dependence of E t , we !>btain 
for liEt the following dependence of Et on 8 and 8: 

1.(kV)O m . 
6E'=--m-'-+3m' F.kJ 

+ t>'(T) (nlXo8[nXI)) (1+~ oN, ~In~) 
E. Ny iJe, F, + ~ T, 

(3.10) 

+- 10 1----nXI 6' [qi . ( 1 F, ) '] 
E. 2(1+F,) • .1. 2 F,+5[ . 

Here 68 1 = liB -1(1. liB) = Ix iiI, and j is the liquid flux 
density 

i = ~ kn. = P + i" (3.11) 
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where P is the flux of the excitations and jo is the super
fluid flux, which, by virtue of (3.3), has the form 

(3.12) 

Calculation of jo with neglect of terms - ~(T)/eF gives 

(3.13) 

Substituting the variation lillt of the distribution function 
in local equilibrium into the expression for P and using 
(3.10), we obtain for j 

. __ 1_.. + "'u.n+L( _ ) ( IVO.J.' + liV0.1. ) 
/i- 2mP', V,{J? Po, 4m 1 ~II 1+'/,F.~.1. 1+'/,F'~II' 

(3.14) 
where p~J and p~J are respectively the tensors of the su
perfluid and normal components, satisfying the relation 

m' (A 1 A)-' 
Pi;'=P-~ .. I+-~ , 

m 3 pj 

(3.15) 

The expression (3.14) coincides with the expression 
for the flux obtained by Cross[91 from a microscopic 
theory. The formulas (3.11), (3.12), (3.14) determine 
the momentum P of the quasi-particles: 

P = L:>6vt = p' (v' - 2~ Vcp) 
k 

_L[ ~II+·/,F.~.J. (1'\')0, + ~1I(1+·/.F.) I(VO )] 
4m 1 + '/,F,lD -'- ~ 1 + '/3F'~1I .1.' 

Calculation of the generalized angular momentum L 

For this, as previously, [101 we shall make use of the 
gauge transformation, under which the expression (3.5) 
is added to the Hamiltonian. The first part of this extra 
term is equal to 

- S d'r6(r. t) ~ I.". (r, t). 
• 

Noting that the addition to the Hamiltonian should have 
the form - f a}l B. L, we obtain the following expression 
for the variation of the generalized angular momentum: 

(3.16) 

Substituting lint from (3.3) for local equilibrium, we 
have 

(3.17) 

where the generalized susceptibility X and the density 
LOP of the spontaneous angular momentum of the A phase 
are equal to 

N, _ N, (In (t>(T) ) + ni 5 F, ) 
'XB= 4(1+F.) , '1..1..- 8 -w- '2-'6 F,+5 ' 

1 5 iJN 0 (3.18) 
L'P=---lilt>'(T)-' In-~-' 

6 F, + 5 oe, T,' 
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In calculating XIJ and UP we have confined ourselves to 
just the first three harmonics of the function F.,.,. 

We emphasize that the generalized angular momentum 
L differs from the total angular-momentum density i., 
the variation of which in a departure from equilibrium 
has the form 

(3.19) 

The difference in the coefficients of L"P in formulas 
(3.17) and (3.19) arises from the fact that the Lagrangian 
of the system contains, beside the term quadratic in e, 
a term proportional to the product of e and 6, viz., 
- te [6Bx L]. 

The value of the angular-momentum density L can be 
obtained directly from the expression for the superfluid
flux density jo (cf. (3.12» by integration by parts: 

S d'roL = S d'r[l'iol= - ~ S d'r .E ([kX~~k] o¢. - [kX a::] on.) 
• 

= S d'r (.E I.On. + 4-[00 x L'P~= S d'r(Xa + [00 x L'P]). 
k - (3.20) 

Thus, the angular momentum i. is the total angular mo
mentum~of the super-fluid flow. For more detail about 
this, see Appendix B. 

In formula (3.17), the generalized angular momentum 
is expressed in terms of the variables 6 and e. But if 
we make use of the variables 8 and L, this formula 
gives the dependence of the angular velocity won 6 
and L: 

(3.21) 

Calculation of MR 

We shall consider the longitudinal and transverse com
ponents of the vector M separately. Inasmuch as 66~ 
= - 6cp, it follows from the gauge transformation that 

OE 1. 
M'=6;=- 2m 'Y!. (3.22) 

We note that, by virtue of (3.16) and (3.4) , 

and, consequently, the z-component of the equation L 
= M is none other than the continuity equation 

We shall represent the perpendicular component Mf in 
the form 

(3.23) 

The values of the last four derivatives are found by 
equating mixed derivatives of the functional U - P . vn 

-TS: 
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dM.L R dil1," 
oq;- = - Ju:;:-

p (1 i) =-.)-.(I--(jJII) 1 l;FOll T 1 1 F\I (IY)(Y--I\IV», 
_In -r 3 1 I r- /:; 1 )u 

dM ,R -Uw" 1 (3.24) 
_.~ = ~ _J_= _ -(!iJI1Ln"}J, 

dL-j dtl.L' ~x.L 
dIVI.LR as 
~ = au:::- "" lJ, 

dM.L:" = ai') =_L[<1>u+,,/,F,IJi.L(Oii_I.l,JIV 
av) "B.L' 4m 1 + I,F,<1>.L 

+ <1>11(1+'1,1<',) leV -110)] 
1 + 'I,F,tD ll J • •• • 

It remains to elucidate the form of the tensor aMfd 
ae ~j. Inasmuch as the energy U depends quadratically 
on the spatial derivatives of B~, this tensor can be ex
pressed in terms of three temperature-dependence coef
ficients: 

d,u.L," = [e, (T)o"iimn+'I,e,(T) (6. mojn+ii'n6Jm) +e,(T)o.;i",lnj vm V n. 

Cl8 'I 
- (3.25) 

To calculate the coefficients Ch Ca and C3 it is no 
longer sufficient to use the technique developed above. 
We need to take into account the dependence of the phase 
of the order parameter on the space and time derivatives 
of the vector 8 (cf. Appendix B). The results of the cal
culations coincide with those of the microscopic deriva
tion carried out in the papers by Cross[9] and Wolfle. [11] 

Near Te, 

(3.26) 

and, compared with these, the coefficient Cz is small in 
the parameter t:.(T)!Tc • 

Calculation of the kinetic coefficients 

The kinetic coefficients defined by the expressions 
(2.9) are obtained by substituting formula (3.10) for Et 
into these expressions. Taking into account, each time, 
only the leading terms in w!t:.(T), qVF!t:.(T) and t:.(T)! 
eF , we have 

XS~(IlI)' [nXll'(I -x(n»], 
4n 

4, S dQ r:N, 
y, • =l;lj- -(l-x(n»+(ii<;-l.ll)-s ., 

" .V, 4n X.L· 

S dQ (n!)' (5 F,[nXI]') X ---(l-x (n») 1-----, 
4n[nXlj" 2 F,+5 

(3.27) 

6,p J dQ [ 1, ( I )~ y. p =--- --(1-x(n» (nl)'I,I,tV+-[nXljli"i-li" 
i) mNF 4:rt • 2 

:hp dQ (5FdnXIJ') ---S-(1-x(n»)(nl)2 1----- [((j'I-IJJIV+l1(V.-l.Iv)], 
4mx" 4n :2 F,+5 
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The terms )lSL and )Iss. can be neglected, since, com
pared with the other terms, they are of higher order 
in the gradients. 

We shall turn our attention to the dissipative term 

(3.28) 

in the equation for the angular momentum. In the ab
sence of flow of the normal component, it has been ob
tained by Cross and Anderson. [12J This term describes 
the frictional torque that arises when the angular veloc
ity of rotation of the vector I differs from the angular 
velocity! curl v" of the rotation of the normal compo
nent. Thus, if we rotate a vessel with A phase at a con
stant angular velocity, then, after the relaxation time 
- )I LL/ NF has elapsed, the vector I will rotate together 
with the vessel. The law of approach to the asymptotic 
behavior has the form 

6.1 = 12 (rotvn).1 [l-exp (_ 81«t )] 
NFln(t~(T» . 

(3.29) 

The nontrivial law of approach to the asymptote is ex
plained by the presence of retardation in the coupling 
between the angular momentum L and angular velocity 
8 (cf. (3.18» 

IlL.1(t) = S d'tx.1('t)li.1(t-'t). 
o (3.30) 

S dCJl . N, 
x.;.('t)= 2;'X.1Wr'·' "" 8 -T-+-~--''''''(-T) 

4. ORBITAL WAVES 

The superfluid flow is described by the first two 
equations of the system (2.8). In the papers of other 
authors, [5. 11-13 J the equations corresponding to these are 

(4.1) 

where the angular momentum :f. is equal to the sponta
neous angular momentum L"P, i. e., its variation is 

(4.2) 

The difference between the system (4.1)-(4.2) and the 
first two equations of (2.8) is that the term containing 
the generalized susceptibility Xl (cf. (3.19» is not taken 
into account in the expression (4.2). (In (4.1), the free 
energy F is assumed to be independent of 8, and there
fore i. appears in place of the generalized angular mo
mentum L.) The absence in Eq. (4.2) of a term con
taining Xl 'has led to the conclusion that orbital waves 
are absent, since the mode corresponding to the dynam
ics of the vector I was found to be purely diffusive by 
virtue of the smallness of I L"P I «)ILL' [12.14J 

We shall show that allowance for the term proportional 
to Xl leads to the possibility of propagation of weakly 
damped orbital waves for T- Te. [10J In fact, we shall 
consider Eq. (2.8) in the fourth-sound regime (v" =0), 
neglecting the temperature variation. Then, .neglecting 
the term I L"P I «)ILL, neglecting the term )lss.L in com-
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parison with 8 by virtue of the smallness of W7« 1, and 
also neglecting the term YSL« 1 for T- Te, we obtain the 
first two equations of (2.8) in the form 

Separating out the longitudinal and transverse compo
nents in these equations, we obtain 

(4.3) 

From this it can be seen that for w« )ILL/Xl the equation 
for the angle (J 1 has a purely diffusive character, since 
in it we can neglect the first term in comparison with 
the second, and, consequently, orbital waves are ab
sent in this regime. 

In this region of frequencies the orbital motion can be 
observed in an indirect way, e. g., from the influence 
it exerts on the propagation of ordinary sound. An anal
ysis of Eqs. (2.8) shows that the orbital motion gives 
an additional contribution to the attenuation of first 
sound. Near Te, 

CJl=cq(1-iyq), (4.4) 
P (qI)2[qXI]2 

'1=10 + 8y« q4 

where )I is the sound attenuation in the normal Fermi 
liquid. 

When Y LL/Xl «W« 7-1, which is possible only near Te 
(cf. [10J), we can neglect the second dissipative term in 
comparison with the first dynamical term and we then 
obtain two sound-like branches of weakly damped orbital 
waves with the spectrum 

, PII' ,2q'+(qJ)' 
CJlII = 8m'XL q 2q'-(qJ)" 

(4.5) 

Ctl.1' =~(q'+2(qJ)'). 
8m'XL 

which is obtained by substituting Mf and j from (3.23) 
and (3.14) into (4.3), using the expressions (3.26) for 
C1 and C3 • The spectrum of the longitudinal oscillations 
(68 1 II ql or lill Cll) has been written in the approximation 
Xl» XII, which holds by virtue of the large value of Fo 
(cf. 3.18». These oscillations are coupled with ordi
nary sound (oscillations of p or cp). Owing to this cou
pling (albeit small by virtue of the smallness of X"/Xl)' 
longitudinal orbital waves can be excited as ordinary 
sound. The transverse orbital waves (lie 11 qJ are not 
coupled with density oscillations. 

In conclusion, for purposes of reference, we give the 
expressions for the coefficients appearing in the phe
nomenological hydrodynamics of Graham[5J (as through
out, we use the smallness of T JeF ): 

I,ll ) 
1+'/,F.<Ilu • 

K.=4m'C .. K,=4m'(C.+C,). K,=4m'(C.+C,). 

6=--P-, ~=-'t-~J dQO-x(n». 
Tj = 21«' 41« 1+Fo i1p 4n 
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• a" J dQ SQ= 1+F. Pap 4;(l-x(n» (6'1-3n,n;) , 

.p' J dQ p' 
v,IoI' = -2N -4 (i-X (n» (3n.n.-6,.) (3n,nj-6 11 ) +--

p n ~u 

X [ (6,,-l.i,) /./;+ (6 .. -/./,) l.ll+ (6;;-/,11) 1./,+ (6101-/./1) l;l, 1, 

3.p JW J dQ avO 
)(;;=--- ds -S'-n,nl' 

mm'T' 4n aE 

The authors are grateful to E. 1. Kats and 1. M. 
Khalatnikov for their interest in the work, and also to 
A. J. Leggett and S. Takagi for sending the preprint 
which stimulated the appearance of Appendix B in this 
paper. 

APPENDIX A 

For illustration we shall consider the first of Eqs. 
(2.3). The right-hand side of the first equation of (2.8) 
is the nonequilibrium part MD of the generalized torque 
M (the index D signifies "dissipative"). The nonequilib
rium part MD arises because of the dependence of M on 
the quasi-particle distribution function vII:, which con
tains the nonequilibrium correction Ovf: 

MD E 6M . D E aE., D = -6v. =- - 6v., 
6v. ao • (A.1) 

• • 
The quantity Ovf does not coincide, generally speaking, 
with the quantity gil: introduced in (2.5), which is found 
from the kinetic equation and, in the T-approximation, 
is equal to 

av.' [ aE. ({J {JE) ( 6T )] g.=-.- -- -+-V kv"+E.- , 
{JE. {Jt {Jt ak T 

(A. 2) 

This is because, in the expression (2.5), the term OEII: 
itself depends on Ovf through the equality (3.6). Using 
(2.5) and (3.6), we find the relation between Ovf and gil:: 

6v.D = E~·,·,g·· (A.3) .' 
where the matrix {311:.11:' satisfies the equation 

(A. 4) 

On the other hand, noting that this same matrix f'1I:.1I:' ap
pears in the relation between BEII:/B6 for fixed VII: and 
BEt / B6 for fixed v" and 1', we obtain 

The time derivative of the energy Ell: can be expressed 
in the following way: 

aE. {JE., ' {JE., L' + {JE. 'n+ iiE. T· _=- 0+- -v -, at ao v",, aL V",T avo fj T 

Having convinced ourselves that the time derivatives of 
v" and l' can be neglected, inasmuch as they appear in 
terms that are small in the parameter 1'cieF, we ob
tain the expressions (2.5) for the kinetic coefficients 
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YLL, Yu and YLP' The remaining coefficients are ob
tained either in an analogous way or by using the right
hand sides of Eqs. (2.6). Of course, the T-approxima
tion gives only a crude estimate of the kinetic coeffi
Cients, although it does enable us to obtain their orders 
of magnitude. For an exact calculation of each of the 
kinetic coefficients it is necessary each time to solve the 
kinetic equation with a collision term, as is done, e. g., 
in the papers of Soda and FujikiC151 and Valls and Hough
ton, (161 in which the viscosity and thermal-conductivity 
coefficients are calculated. 

APPENDIX B 

Under a gauge transformation, the term (3.5) is added 
to the Hamiltonian of the system. Inasmuch as - M is 
the variation of the free energy with respect to 6, 

E a ¢. E a,p. (kV) 
!'tI=- n.-(kV)--= ---n.(r). ao 2m' ao 2m' 

(B.1) 
• • 

We substitute nt(r) from (3.3) into (B.1) and obtain 
for M the following expression: 

1 \"1 ( an av ) 2 --LJ --- 1.(kV) "'. 
2m'. as aE 

(B.2) 

(for simplicity we neglect the Fermi-liquid corrections). 
As it should, M depends on the second derivatives of 6 
with respect to the coordinates. We note that (B.2) does 
not give the full value of the quantity M. In fact, n t de
pends not only on the gradients of 9, but also on 6 itself, 
through 

6IA.I'=- (60 [kX ~ak]) IA.I'=2A'(T) (nl: (68[nXI». 

Therefore, in order that all terms of the form Vi V 19", 

be taken fully into account in M, we must find the phase 
CPII: of the order parameter to terms linear in the gradi
ents. For this we shall perform a rotation transforma
tion, through an angle 66 independent of the coordinates 
and time. The rotation operator has the form 

Under this transformation the Hamiltonian is supple
mented by the term 

J \"1 ( . (kV») -- d'r LJ o+-m-O L.(,), 

• (B.4) 

We now perform the Bogolyubov transformation 

on the whole Hamiltonian, including (B.4), and require 
that the coefficients of the nondiagonal terms bot bll: and 
b; b:t vanish. Here it is not difficult to see that the 
change of Ut and Vt on account of (B.4) can be compen
sated by a gauge transformation defined by the operator 
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c56.(r.t)=-26e(r,t)l. + .~. I' (~+ kV )611\.1', 
4E.- 1\. at m 

(B.5) 

c51.l.I'=-c50(r, t) [kX 3~] 11\.1'. 

Substituting (B. 5) into (B.1), we obtain the full value 
of the torque M, coinciding with the result of the mi
croscopic derivation of[9.11l. 

We note also that the dependence of the phase on iJ 
changes the magnitude of the generalized susceptibility 
X.1' Indeed, substituting (B. 5) into the expression (3.20) 
for the angular momentum L, we obtain additionally the 
term x:S.1, where 

Y..L'=- Np ~([kxl..]II\.I)'~~(E-'th!!....) (B.6) 
16 ~ 3k E.' aE 2T . 

In the region of existence of the A phase this quantity is 
small compared with (3.18), inasmuch as it does not 
contain the factor In(.6.(T)/w), and, in addition, is pro
portional to pS near Te. 

The formulas (3.18) and (B.6) for the generalized 
susceptibility X.1 are valid in the hydrodynamic limit WT 

«1. In the high-frequency, zero-sound limit, when 
.6.(T)>> w» 1h, the distribution function does not have 
time to adjust to the change of 8, i. e., lit must be re
garded as independent of 8. For the total X.1 we obtain 
the following expression: 

N E 's"" 
)(. =~ ~E-'th-[ 1.l.I' ([kXl..] ¢.) +-([kxl..111\.1? ] . 
.- 16. 2T 3k E' 3k 

(B.7) 

This expression coincides with the result of Leggett and 
Takagi, [17] which is thereby valid only in the high-fre
quency limit. 

We note also that in the high-frequency limit a term 
proportional to the vector 8.1 appears in Mol (cf. [17]). 

This is connected with the dependence of Mol on lit. In 
the low-frequency limit; when lit is the local-equilibrium 
distribution function, Mol does not depend on 8 but de
pends only on the gradients of 8, inasmuch as the energy 
of the system does not change on rotation of the entire 
system through angle 8. In the high-frequency limit the 
distribution function does not have time to change with 
change of 8, and therefore it is necessary to eliminate 
from Mol the terms connected with the variation of lit: 

IlM-L I ( aE )' avo 
~~1l\'=-2c50-L~ ae.:. DE 
, . 

I 11\ I' av' [ -3 ] )' = --'Il0ol ~-'---( kX- 11\.1 ",,-Mol'. 
2 £..J E' aE 3k 

(B. 8) 

• 
Consequently, inasmuch as there was no term propor
tional to 8.1 in the hydrodynamic limit, the term ~ ap
pears in the high-frequency (zero-sound) limit. 

As already noted in the text, the quantities L and L 
appearing in the present paper are the generalized and 
total angular momentum of the superfluid flow, since 
they arise from the superfluid flux jo (cf. (3.20)) and do 
not contain the angular momentum r x P of the excita-
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tions. The total angular momentum of the liquid is 
equal to 

~ d:.(r) )=L(r)+[rXP]. (B. 9) 

The equation for the total angular momentum of the sys
tem can be obtained by varying the expression (B.4) 
with respect to 8: 

a~. V'~. -,- (L.(r»=-- k.<L.(r», 
ot m 

(B.10) 
k • 

i. e., as we should expect, the total angular momentum 
of the liquid is conserved, which cannot be said of the 
quantities L and r x P separately. The equation for the 
angular momentum r xp of the excitations can be found 
from the kinetic equation (2.2). Subtracting it from 
(B.10), we obtain the equation for the superfluid angular 
momentum L in the form 

al. 1 ~a¢. -=- -(kV)n.(r)+Mr" at 2m ao • 

where Mrr is the frictional torque due to the excitations, 
equal to the transfer of angular momentum per unit 
time from the excitations to the superfluid flow. The 
principal contribution to Mrr is given by the term (3.28): 

The presence of such a term is characteristic for the 
hydrodynamics of any liquid having an internal rotational 
degree of freedom (see the book by GyarmatiC18 ]). 

(Note added in proof (July 23, 1976). As was first 
noted in a paper by Saslow (W. M. Saslow,J. Low 
Temp. Phys. 23, 495 (1976)), the entropy-density ten
sor (27) is isotropic. It is easy to verify this by inte
grating (2.7) by parts.) 
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Microscopic scaling theory in the percolation problem 
s. L. Ginzburg 
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By means of field-theoretical methods, the critical indices and correlation functions of percolation theory 
are calculated and the analog of the equation of state is constructed. For 3 < d < 6 space dimensions the 
indices are equal to 'Y=8/(2+d), v=4/(2+d), P=2(d-2)1(d+2) and f1=P+'Y=2. This is in 
agreement with computer calculations, which for d = 3 give the following values of the indices: 
P = O.35±O.OS, 'Y = 1.69±O.05, v = O.9±O.05 and f1 = 2.2 ±O.3. 

PACS numbers: 64.ID.+h 

1. INTRODUCTION 

It is well known that the problem of percolation very 
much resembles the problem of second-order phase 
transitions (cf., e. g., the reviewsU,2l ). In percolation 
theory, the analog of the order parameter is the "power" 
of an infinite cluster. This analogy was formulated 
mathematically rigorously by Kasteleyn and Fortuin, r3l 

who showed that the percolation problem is the limiting 
case of the so-called S-model for S-I. A scaling hy
pothesis for the percolation problem has been formulated 
using this analogy. r4-8] 

On the other hand, the theory of second-order phase 
transitions can be formulated from a microscopic point 
of view (cf., e.g., n,Bl), using field theory. One can 
use either the e-expansion method, r71 or renormaliza
tion-group theory directly in three-dimensional 
space. r9tlO] It is therefore natural to attempt to con
struct, using the field theory for the S-model, a micro
scopic scaling theory for the percolation problem too. 
The first attempt in this direction was made by Harris 
et al., rll] who carried out the e-continuation from six
dimensional space (since the corresponding field theory 
is logarithmic in six-dimensional space). InUll, how
ever, the Hamiltonian of the S-model was replaced by 
another model Hamiltonian, introduced by GoIner. r121 

This replacement is, generally speaking, not justified, 
and this is obviously why the Fisher parameter T/ cal
culated by Harris et ale rll] turned out to be negative, 
which would be completely incomprehensible. 

In the present paper we shall consider the bond prob
lem in percolation theory, using the field theory for the 
S-model directly in the three-dimensional case, analo:
gouslytotheway in which this was done earlierr9.10) for 
the theory of second-order phase transitions. We shall 
calculate the critical indices, correlation functions and 
analog of the free energy for the percolation problem, 
as functions of the concentration q of broken bonds and 
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of the fictitious magnetic field x introduced by Kasteleyn 
and Fortuin. r3l USing three results, we shall then cal
culate the thermodynamic functions of a disordered Ising 
ferromagnet as functions of the temperature and the 
real magnetic field at low temperatures near the per
colation threshold. 

2. CONNECTION BETWEEN THE S-MODEL AND THE 
PERCOLATION PROBLEM 

Since the analogy between the percolation problem 
and the partition function of the S-model has been for
mulated in the language of the mathematical theory of 
linear finite graphs, r3l we shall briefly derive the prin
cipal results of this work in the language of statistical 
physics. The S-model (the Ashkin-Teller-Potts mod
el £13, Ul) is a generalization of the Ising model. Suppose 
that at each site of the lattice there is a certain object 
which can be in one of S possible states, while the en
ergy of the interaction between sites depends only on 
whether the objects at neighboring sites are in the same 
states or in different states. A solid solution of S com
ponents with equal concentrations can serve as one of 
the realizations of this model (just as one realization of 
the Ising model isa solUtion with two components).'rlie--S
model with S= 2 corresponds to the Ising model. We 
shall write the Hamiltonian of the S-model in two phys
ically equivalent forms: 

(la) 

(lb) 
i,1I 

Here J is the exchange integral, J 1 = JS-l, Wo = p.H, H is 
the magnetic field, p. is the magnetic moment, WI 

= waS-I, S is the number of components, and (J', is the 
index labeling the components of the S-model. 
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