
this electron-phonon interaction which gives rise to the 
effect of superconductivity. The superconducting state 
occurs only in metals for which the electron-phonon in
teraction is sufficiently strong. A strong electron-pho
non interaction, giving rise to a large resistivity in the 
normal state, contributes to the formation of the non
resistive superconducting state. This analogy is veri
fied by the formal relation between the nonlinear Schro
dinger equation (19) and the Ginzburg-Landau equation[7] 
for a one-dimensional model with no magnetic fields or 
currents, well-known in the theory of superconductiv
ity ([8], Chap. VI). 

Thus, excitations of a molecular chain in the form of 
solitons are very stable with respect to retaining the 
shape, magnitude, and size of the region involved in the 
excitation. This fact has been used by one of US[4] to 
explain the high efficiency of the transfer of energy re
leased in the hydrolysis of ATP molecules in living or
ganisms along the a-helical protein molecule and to ex-

plain the contraction mechanism of transversely striated 
animal muscles at the molecular level. [8] 

1)The deformation of a molecular chain during intramolecular 
excitations (without taking their motion into account) was 
first treated by Rashba(21 (see also(31). 
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From a theory of the Larkin-Migdal type the spin-susceptibility tensor at zero temperature is calculated 
in the acoustic limit and in the collisionless regime. No restrictions are imposed on the effective 
interaction of the quasi-particles in the particle-hole channel. With regard to the effective interaction in 
the particle-particle channel it is assumed that only the 1 = 0 and 1 = I amplitudes can be close to each 
other. It is shown that the spin susceptibility always has two poles, corresponding to the frequencies of 
spin waves of different polarization. It is shown that the spin-wave frequencies depend on the Landau 
exchange amplitudes for 0 sis 3; the form of this dependence is found. If in the effective interaction in 
the particle-particle channel the 1 = I amplitUde is greater than the 1= 0 amplitude and these 
amplitudes are close to each other, the spin susceptibility also has a pole corresponding to excitations with 
a small gap (i.e., much smaller than the gap in the two-particle spectrum). 

PACS numbers: 67.S0.Fi 

The purpose of the present article is to consider the 
spin waves for systems with Balian-Werthamer[l] (BW)2) 
pairing without any restrictions imposed on the effective 
interaction of the quasi-particles in the particle-particle 
channel, but in the collisionless regime and at zero 
temperature. Interest in this topic has arisen again 
following the identification of the B phase of superfluid 
3He[3,4] with the BW state, as originally proposed by 
Anderson and Brinkman. [5] This identification gave rise 
to a number of objections, although the proposal of spin
singlet D-pairing[6] is also in disagreement with recent 
measurements [7, 8] of the spin susceptibility, and serious 
objections against spin-triplet F-pairing[9] have been put 
forward in a paper by Mermin. [10] Therefore, the BW 
state is, as yet, the best state for the description of the 
B phase of superfluid 3He. 
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Collective excitations of the BW state were first con
sidered by Vdovin[2] for weak coupling. We did not 
impose this restriction in our previous papers, [11,12] in 
which, for BW pairing, we developed theories analogous 
to those of Larkin and Migdal [13] and Larkin, [14] which 
had been proposed earlier for systems with isotropiC 
S-pairing. We[11] solved the vertex-function equations 
describing the scalar and vector vertices in the acoustic 
limit (I wi, kv« A, where wand k are the frequency and 
wave vector, v is the speed of the quasi-particles, and 
A is the energy gap). In addition, we showed[11] that 
all these vertex functions have a single pole at the zero
sound frequency, which coincides with the first-sound 
frequency obtained using the thermodynamic formulas 
for a Fermi liquid. [15] Our results have recently been 
generalized by Maki [16] to nonzero temperatures. On 
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the other hand, our article[ll] contains the erroneous 
statement that the spin vertex has no poles in the acous
tic limit, i. e., that propagation of spin waves is im
possible in a system with BW pairing. 

The results of Vdovin[2] for spin waves were gener
alized by Combescot U7] for systems with an effective 
quasi-particle interaction independent of angle. Our 
equations for the vertex functions U1 ] were also derived 
by Gongadze, Gurgenishvili and Kharadze118] with the tacit 
assumption that the spin-antisymmetric part of the ef
fective quasi-particle interaction in the particle-particle 
channel vanishes. These authors solved the equations 
for the spin vertices by assuming, like Combescot, that 
the effective interaction in the particle-hole channel has 
no angular dependence. Although the expressions ob
tained by them for the spin-wave frequencies coincide 
with Combescot's expressions, their solutions for the 
vertex functions are incorrect. This will become clear 
from our subsequent calculations, although the errone
ous character of the results of the paper by Gongadze, 
Gurgenishvili and Kharadze U8] can be easily understood. 
The equations obtained by them are a system of inhomo
geneous linear equations with a degenerate matrix ker
nel. Such a system is equivalent to a system of inho
mogeneous linear algebraic equations. Nevertheless, 
according to the results of their paper, [18] the solution 
of this system describing the response to an external 
magnetic field is not unique, which is physically absurd. 

According to Leggett and Rice, [19] Leggett[20] and 
Corruccini et al., [21] the l= 1 spin-exchange Landau 
amplitude is a very small quantity. This is the chief 
physical argument for neglecting all the Landau exchange 
amplitudes except that for 1 = O. Nevertheless, experi
mental [6] and theoretical [22] estimates show that the state 
of affairs is greatly different from that indicated above. 
Moreover, the Landau amplitudes for 3He should satisfy 
a sum rule. On the other hand, only a general solution 
of the problem can give us the possibility of checking 
whether the stability conditions [23] ensure the existence 
of poles of the response functions (i. e., the existence 
of corresponding elementary excitations). This is par
ticularly interesting since spin waves have not yet been 
discovered in the B phase of superfluid 3He . 

In our paperUl ] and in the paper by Larkin and Mig
dal, [13] the effective interaction of the quasi-particles 
in the particle-hole channel, which coincides with the 
effective interaction of quasi-particles for a normal 
system, had a completely general form. On the other 
hand, the effective interaction in the particle-particle 
channel was restricted entirely to the pairing channel, 
i.e., to l=O in[13] and to l=l in Ul]. We remark that, 
according to these papers, this interaction can be repre
sented by two functions I~ (p. pi) (£ = ± 1) such that 

~ 

1,1 (pp') = L, (2l+1)/,P, (pp') (1) 
'_0 

with summation over even 1 for e = 1 and over odd 1 for 
€ = - 1. For the dimensionless interaction, the Legendre 
amplitudes I, of this interaction are equal to [In(2~/rl)J-l, 
where ~ denotes the energy cutoff and the rl are certain 
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non-negative constants (cf. [13]). In formula (1), p de
notes the unit vector parallel to the vector p. In the 
pairing channel, i. e., 1 = 0 for S-pairing and 1 = 1 for 
BW pairing, r, =~; in the following we shall denote 1 for 
the pairing channel by lo. Using the equations for the 
vertex functions m,13], it is easy to verify that if 

min lIn (Mr,) /, l=l=lo, 

is of order unity 01' greater, the harmonics with l"* lo 
can be neglected in the acoustic limit. On the other 
hand, if 

and the harmonic satisfying this inequality occurs in the 
equations for the vertex functions, the known solu
tions U1•13] cease to be valid if the inequality 

Iwj,kv¢:~[miniin (Mr,) I)"'. l=l=lo 

is not fulfilled. 

We note that it is only in the equations for the spin 
vertices of systems with BW pairing that both functions 
I~(£ = ± 1) appear simultaneously (cf. [11]). Moreover, 
in the equation for the spin vertex of a system with S
pairing, In(2~/~) and/:1(p .p/) enter simultaneously. 
Therefore, for the scalar and vector vertices of sys
tems with BCS and BW pairing, Legendre amplitudes 
with minimum difference ~l = 2 are encountered. Above 
a certain l, the amplitudes I, should fall off as a result 
of the action of the centrifugal force. U3] Hence, it would 
be surprising if the condition Iln(~/r,) I «1 were ful
filledforl=2, 4, 6, ... (for BCSpairing) or for l=3, 5, 
7, ... (for BW pairing). On the other hand, the condi
tion Iln(~/ro) I « 1 seems very natural, since the ten
dency for I, to decrease with increase of 1 acts here 
against the tendency for I, to be a maximum in the pair
ing channel. Therefore, it is interesting to solve the 
equations for the spin vertices of systems with BW pair
ing by assuming that Iln(~/rl) I can be much smaller 
than unity only for 1 = O. If the inequality Iln(~/ro) I « 1 
is not fulfilled, we obtain the solution of the equations 
with an excess of accuracy, and this can be avoided by 
taking a simple limit in the expression for the solution. 

1. DISCUSSION OF THE BASIC EQUATIONS 

We shall not derive anew the equations for the spin 
vertices and expressions for the spin susceptibility ob
tained by us earlier[l1] by means of methods developed 
by Larkin and Migdal. [13] The derivation of the equiva
lent equations for the spin vertices and of the expres
sion for the spin susceptibility by the methods worked 
out by Larkin[14] can be found in the Appendix. 

We shall choose the usual phase for the BW ~-matrix, 
i. e., A = CT • PiaY ~. (Here a hat over a character de
notes a spin matriX, except in the case of bold-face 
characters, when it denotes the unit vector parallel to 
the vector under the hat.) With this choice of A the 
anomalous vertices Tl and T2 (i. e., with two incoming 
and two outgoing particle lines) can be expressed by the 
formula 
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~,= (tHo) iO', T,=io'6-i.), 

where T is a matrix with zero trace. The equations for 
the normal vertex jlJ and the vertices 7 IJ and ~IJ will have 
the form (cf. [11]) 

la(P) = la'" + <B(pp'){Lja(P') + o (ap') la (- p')(ap') 

- M [:r~ (p'), ail')- - 2MAa (p') ap'} )p" (2) 
Ta (p) = <f~l (pp') {IN + In (2£/11») Ta (p') - 0 (ap') Ta (p') (ap') 

+ Jl.I[Ja(p'), ap'J-})p" (3) 
Aa (p) = <fl~(PP'){lN +0 + In (261I1)J Aa(P'l+ M[Ja (p'), ap,)+})p.. (4) 

Here B(p. p') denotes the spin-exchange part of the di
mensionless effective interaction in the particle-hole 
channel, ( ... )p' denotes averaging over the solid angles 
associated with the vector p', and (f is the pseudovector 
of the Pauli matrices. 

In the accoustic limit it is sufficient to put 

O=-L='/" 2M=-CIl-kv', N=-'/,+CIl'-(kv')', 

where v' = vp', and wand kv are measured in units of 
2A; the definitions of these functions are given in the 
papers by Larkin and Migdal [13,14] (cf. also U1 ]). We 
have chosen the vertex functions here in such a way that 
the J:1 which in a system without pairing are the ver
tices J 4 , are equal to ulJ when I wi» kv. For such ver
tex functions, the paramagnetic-susceptibility tensor is 
given by the formula 

lCab =-l/'fJ.BlVSp <oa{Li. + O(ap)J:(ap) - M [ib, ap]_ - 2MAbap})P' 

(5) 

where J..LB is the Bohr magneton, II is the density of states 
at the Fermi surface, and the trace is taken over the 
spin indices. The kernel B will be determined here by 
its Legendre amplitudes (i. e., by the Landau ampli
tudes). In order to avoid over-complicated denomina
tors, these have a form such that 

B(p.p')= 1:. (2IH)b,P, (pP') . (6) 
1-. 

We note that the new br are equal to br / (21 + 1) in our old 
notation[l1] and Zl/4(21+ 1) in Leggett's notation. [24] 

In the following we shall restrict ourselves to 

I~, (Pp') = 3pp' [In (2s/11Jr', I,· (pp') = [In (2slrJrl, 

i. e., we shall neglect all the other Legendre ampli
tudes of the interaction in this channel. We note here 
that all the earlier concrete calculations were carried 
out under stronger restrictions. On the other hand, we 
shall not impose any restrictions on B(p.p'). 

As follows from (2) and (3), JIJ and T IJ are the a-com
ponents of a pseudo-vector and vector with vanishing 
traces. As a result of our restriction on the quantity 
1~1' the matrix 1'lJshould be a linear function of the vec
tor p, i. e., 1'4 = TlJbe u&PC , where the third-rank pseudo
tensor T"be depends only on wand k. We note that sum
mation over repeated vector indices is implied through
out. We can also write J4 =Jab (Jb' where Jab is a tensor 
depending on p, k and w. The most general form of 
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such a tensor can be written as 

(7) 

where the functions A, •.. ,E depend only on p. k;: w, k 
and w. The most general p-independent third-rank 
pseudotensor can be represented in the form 

(8) 

where elJbe is the Levi-Civita pseudotensor. As a result 
of the identity 

(9) 

the pseudotensor T "be actually depends on only three 
combinations of the variables R, X, Y and Z, and hence 
we can put Y = 0 with no loss of generality. 

To prove the identity (9) we note that the two sides of 
(9) have the same tensor character, and, in a coordinate 
frame with the z-axis parallel to the vector it, (9) takes 
the form 

el1bc=63a83bc+6sbea3c+63e8ab3. (10) 

This relation can be verified directly. We note that 
(10) is equivalent to (9); our proof is thus completed. 

Substituting J 4 and 74 in the form indicated above into 
(3), we find 

<PI {U [RBabc + (X - R) EdbJ)<a]Pc + UZBabdA-dw - 20ZPbWBacdPckd})P 

= - 2 <i1tM [ABadbPd + DBcdbFaPdkc + Eedbk.kcPd])P' (11) 

where U= N + 0 and w = it . p. We note that the region of 
applicability of Eq. (11) is not restricted to the acoustic 
limit and that the variables R, X and Z do not depend 

A 

on p. 

With our assumption concerning the quantity Ii, ~4 
is equal to ~k", where ~ does not depend on p. Substi
tuting ~4 in this form into (4), we obtain 

Min (Mr) -<U).) =2(Mk) •• p,) •. (12) 

The paramagnetic-susceptibility tensor (5) is expressed 
in terms of J4II , X, R, Z and ~ and has the form 

x •• = iJ.B'V ( (0-L)I,.-20p.pJ,.,-2Jf[R (6 •• - p.p,) 
+(X-R)k.(k.-p.w)+Zu,(wb •• -k.P,)-AP.k,».. (13) 

Taking the symmetry properties into consideration 
and using formula (7), we can rewrite (13) in the form 

X.'=X.L (6.b-k.k,) +x"k.k:; 

X.L =iJ.B'v<A (-L+Ow') -'/,B(O+L) (l-w') (14) 
-Dw(O+L-Ow') -M[R(Hw')+2Zw') >., 

x,,=iJ.B'v«A+Dw+E) (0-L-20w') -(Bw'+Cw) (O+L) (15) 
-2M[X(1-w')-Aw» •. 

2. TRANSFORMATION AND SOLUTION OF THE 
EQUATIONS IN THE ACOUSTIC LIMIT 

In the acoustic limit, 0» I UI, whence it follows, 
from Eq. (11), that lXI, IRI »Z. Therefore, the term 
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proportional to UZ in (11) and the terms proportional to 
Z in (13) and (15) must be neglected, together with the 
terms of order Z in ;a when it is substituted into (2). 
This equation, written in terms of Jab and R, X and ~, 
has, in the acoustic limit, the form 

1 •• =/I .. -(B(oo!-kV') [R( /I,.-P.'Pb ') +(x -R) 
(16) 

x k,(k:-p.'w')-'}.k,p.') > •. - (B[' I, (1 + P)/,b-Pp.' loop.']> •. 

with B dependent on p . p', and Jab dependent on p' i~side 
the brackets ( ... ) or p outside them; the operator F 
converts p' to - p' . 

Applying the relations 

(B> •. =b., (Bp.'> •. =b,P., (Bp.'p/>.·='/, ( b.-b,) /I,.+b,p,p •• 

(Bp.' P.'P/> •. ='/, (b,-b,) (P,/i,b + p,/i,,+p,/ib<) +b,p.p.p, 
(17) 

(cf. (6», we can represent the second term of the right
hand side as 

~ -/l,.R['/,oo(2b,+b,) +'/,kv(4b,+b,) w )+p.p.R( oob,+kvb,w) 
+k,p.['/,xkv( b,-b,) +(X-R) (oob,w+kvb,w') +'}.( oob,+kvb,w) ] 

-k.k.{['/,oo(2b.+b,) +'/,kv(3b,+2b,) I (X-R) 
-'f,'}.kv( b.-b,) }+'/,p.k.Rkv( b,-b,). (18) 

Comparing (16) and (18) with (7), we can see that the 
following terms, at least, should appear in the solution 
of Eq. (16): 1) the terms of A, Band E with 1 = 0, 1; 
2) the terms of C with l=O, 1, 2; 3) the l=O term of D; 
here, 1 is the order of the Legendre polynomial F,(w) in 
the functions A, ... ,E. Taking account of how the terms 
Jell transform into each other under the multiplication 
PbJat:Pt: in (16), we can see that the terms 1)-3) will also 
be sufficient for the solution of Eq. (16). 

We shall determine the amplitudes of 

me') 

F(w)= E Fnw·, (19) 

where F is one of the functions A, .•. ,E. Substituting 
(7) into (16), we remark that we have enough formulas 
(17) to calculate all the integrals appearing there. 
Hence, equating all the linearly independent terms to 
each other (sicl), we find directly 

A.=[ 1-Roo(S-1) IS-', B.=b,( HooR)S-', 
C,=b,[ HroR+'}.kv( Hb,) IS-I, 

E.=-oo(X-R} (1-S-') +'/,'}.kv(b.-b,)S-', 

where 

SRl 1+'/,b.+'/,b,. 

In addition, 

(20) 

(21) 

C,+b,G=b,(X-R)kv, C,-G[ H'/, ( b,-b,) I ='/, (X-R) kv(3b,-l:2b,) , 

where G=E1 + C2 , and 

A ,+'/,( b,-b,)F =-'/,Rkv(4b,+b.) , B,+b,F=b,Rkv, 

A,+B,-F[ 1+'/,(b,-b,) I =-'/,Rkv(b,-b,), 

where F=A1 + h1 + Do. We also have 
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(22) 

(23) 

C.='/.( b,-b,) (Xkv-F-G) +'}.rob, (1+b,) _I. 

Solving the systems of equations (22) and (23) and 
substituting the results into (24), we find 

A,=-'/.Rkv(b.'+4b,b,+4b,+b,)P-', B,=Rkvb,(1+b,)P-'. 
C.='/.Xkv (b,-b,)P-'+'}.rob, (1 +b,) _I, 

C.=(X-R)kvb.( 1 +b,)P-', D='/,Rkv( 1+b,) (b,-b,)P-', 
E,=- (X-R)kv['!.( b,-b,) +b,( 1+b,) ]P-', 

where 

P=l+'/,b,+'/,b,. 

We return again to Eq. (11) in the acoustic limit. 
Taking into account that 

we can find 

(ro'-'/,k'v') [Re •• ,+ (X -R) k.k~e'b,1 +'/,Zkbk.e •• , 
+ ii, (2k'v'R+Z) k,k.e, .. =- (roA.+'I,kvA,) ea', 

-[roE.+'/.kv(D+E,) lk.k.edb,+'/,kv(D-2A,) (k.e.bd. 

(24) 

(25) 

(26) 

(28) 

According to the assumption made by Gongadze, 
Gurgenishvili and Kharadze [18] concerning the form of 
the anomalous vertex functions, X should be equal to R, 
and Z= O. It is perfectly obvious that with this assump
tion Eq. (28) is not satisfied. 

If in (28) we express kbk"fadt: using (9), we obtain 
three equations for the variables R, X and Z. An equiv
alent method is to choose it along the third axis and de
fine an order 1, 2, 3 for the indices a, b, c. Hence we 
obtain 

(ro'-'/,k'v')X=-ro(A.+E.) -'/.kv(A,+D+E,); 
(oo'-'/.k'v')R-'/,Z=-roA.-'/,kvA,+'/,kvD, 

(ro'-'/,k'v')R+'/,Z=-roA.-'/,kvA,. 

From the formulas (30) we have the equation 

(ro'-'/,k'v')R=-roA.-'/,kvA,+'/ .. kvD. 

(29) 

(30) 

(31) 

Substituting Ao, A1 and D, given by formulas (20) and 
(25), into (31), we obtain 

R=-ro[ro'-'/,k'v'(1+'/,b.+'/,b,) (1+b,) (1+'/,b, 
+'/,b,) (1+'/,b,+'/,b,)-']-'. 

Analogously, we obtain from (29) 

'/,'}.rokv( b.-b,) + X( ro'-v,'k') =-00, 

where 

v,'=-'f,v' (1 +'f,b.+'f,b,) (1 +b,)( 1 +b.) (1+'/,b,+'/,b,) -to 

(32) 

(33) 

(34) 

The right-hand side of (34) is positive by virtue of the 
Fermi-liquid stability conditions. [23] 

We turn now to the analysis of Eq. (12) in the acoustic 
limit. Substituting JtIb from (7) into it, we obtain 
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MIn (ll/r) +'/,k'v'-w'] =-'/,kv (Ao+Bo+C,+Eo) 
-'/,w(A,+B,+3Co+C,+E,+D) , (35) 

Having expressed An"" ,En by (20) and (25), we can 
rewrite Eq. (35) in the form 

}.(a+k'v,'-w') -'I,xkv( b,-b,) (1 +b,) S-' 
=-'/,kv(1+b,) (1+b,)S-', 

where 

a-(1+b,) In (!l/r) , 
v,'''''/,v'(1+bo) (1+b,) (1+b,) (1+'I,b,+'/,b,)-'. 

Solving the system of equations (33), (36), we find 

X=w[ (w'-u,) (w'-u,) ]-'[a+'/,k'v'(1+b,) (1+b,)-w'], 
}.='/,kv(1+b,) [(w'-u,) (w'-u,) ]-'[w'-'/,k'v'(1 

+b,) (1+b,) (1+b,) (1+'/,b,+'/,b,) -'], 

where 

u,.,='/, (a+k'vo'±sign al'Q) , 

with 

vo'''''v,'+v,'+v,', v,'''''''/"v'( b,-b,)' (1 +'/,b,+'/,b,) -', 

Q= (a+k'v,') '-4ak'v, '-4v,'v,'k'>0. 

(36) 

(37) 
(38) 

(39) 

(40) 

(41) 

It can be proved that U1 and ua are increasing functions 
of the variable k2 (ua ~ 0), and for k2 <<- I a I we have U2 

'" k2V~. In addition, the sign of U1 coincides with the sign 
of a. Here, therefore, we always have an acoustic 
mode. If a> 0, i. e., if the effective interaction in the 
pairing channel predominates over the interaction in 
the l=O channel, an optical mode also appears. Since 
for k2« I a I we have U1'" a + k2(v~ + v~), it corresponds to 
excitations with a gap 2.1(1 + b1)lf2[ln(a/r)]112« 2.1. If 
a< 0, the optical mode becomes a diffusion mode. We 
remark that, in all our previous formulas, w and kv 
are measured in units of 2.1. We must therefore sub
stitute w/2a and kv/2a in place of wand kv, in order 
to remove this stipulation. If Iw/2al, (kv/2a)« laI 1/ 2, 

then 

X=-w[w'-k'v,']-', }'=o. (42) 

The solution has precisely this form if the inequality 
I In (a/r) I « 1 is not fulfilled. We note that formulas 
(20) and (25), together with (32) and (38), now serve as 
a compact form for writing the solutions for the spin 
vertex. 

3. DISCUSSION OF THE SOLUTIONS AND 
CONCLUDING REMARKS 

First we shall find the expression for the spin sus
ceptibility. Substituting the solutions into (13), we have 

)('b=)(.,[6'b+(6,.-k.kb)wR+k,k~wX-'/,k.kbkv}'(1+b,)], (43) 
)( .. =211."11/3 (1+'/,bo+'/,b,); 

the static quantity X., was obtained in our paper U1 ] for 
M=O (cf. (2)-(4)). We have 

limR = limX=-w-' and lim}.=O for w*O 
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and, therefore, 

lim )(,.=0 for w*O. 
'_0 

This result is fully comprehensible in the acoustic limit; 
if the inequality I In (a/r) I « 1 is violated, then, in a 
uniform field that is periodiC in time, the quantity Xab 

should be equal in order of magnitude to (w/2a)2 for 
I w I «2.1, and this is in excess of the acoustic-limit 
accuracy. We may add that even the presence of excita
tions with a gap much smaller than 2.1 does not have the 
result that Xab(k=O, w) contains terms of order wa/a, 
which are contained within the limits of our accuracy. 
This property has an analog in the theory of the normal 
Fermi liquid. It is well known that 

limS(k,w)=O for w+O, 
'~o 

where S is any correlation function of conserved quanti
ties. Moreover, with the usual accuracy, the theories 
considered by us neglect the quantity (w/jJ.)2, where jJ. 

is the chemical potential of the system. 

On the other hand, 

lim X = limR = 0, lim}. = - kv(1+b.)/[12ll' In (!l/r) (1+'/,b,+'/,b.) 

+(kv)'(1+bo) (1+b,)] 

whence 

lim )('b = )(., {6'b+k,kb (kv)' (J+b,) '[2M' In (!l/r) (1 +'/,b.+'/,b,) 
.~o 

+2(kv)'(J+bo) (tH,) ]-'}. (44) 

If the inequality Iln(a/r) I « 1 is Violated, the second 
term in the curly brackets must be neglected and we ob
tain X.f 6a&. This property has a simple physical mean
ing, since the static limit corresponds to a static field 
that is slightly nonuniform, e. g., as a consequence of 
the finite size of the sample. If, however, I In (a/r) I 
« 1, to get Xsf 6a& it is not suffiCient to take only the one 
limit w.-O. This means that, if lal «1, to obtain the 
static limit it is not suffiCient that the field vary weakly 
over a distance equal to the coherence length; the field 
should also vary weakly over a distance -nv/2a I a1 1/ 2 , 

According to (43), the pole of R corresponds to the 
transverse spin waves and the poles of X and X to the 
longitudinal spin waves. It is obvious that the transverse 
waves are doubly degenerate while the longitudinal 
waves are nondegenerate (cf. [17]). All factors contain
ing amplitudes b1 in R and X (for I wi, kv« 2.1 I (! 1112 in 
the latter case) can be represented in the form 

m n-m 
- (1+b,)+-- (1+b,,), 
n n 

where 0.,;; m .,;;n, and l, l' are respectively equal to 0, 2 
or 1,3. Since the stability conditions for the Landau 
spin amplitudes defined as in this paper have the form 
1 + b1> 0, [23] all these factors are positive, From this 
we obtain that, if the stability conditions are fulfilled, 
(43) always contains two poles for I wi, kv« 2.1 I a 11/2. 

J. Czerwonko 579 



In addition, the stability conditions then also guarantee 
that the transverse excitations set in at energies above 
those of the longitudinal excitations at the same values 
of k, L e., that the transverse excitations are faster 
than the longitudinal ones. We note that, for I wi, kv 
« 2~ I all /2, the Landau amplitudes bo and b2 appear in 
(43) in only the same combination as in the static sus
ceptibility. 

Our calculations possess a property characteristic of 
all theories based on a sufficiently general phenomeno
logical approach. This can be defined as a prinCiple of 
maximum freedom of the physical system. We shall 
elucidate this principle using the example of the spin 
susceptibility of 3He . The static susceptibility of the 
normal system determines bo, while that of the B phase 
also determines b2 • [11] In addition, observation of the 
longitudinal and transverse waves for I wi, kv« 2~ I a 11/ 2 
gives us b1 and b3 • From this point of view, here there 
is no cross-check on the theory; the independent mea
surements Of[19-21) can be regarded as an exception con
firming the general rule. 

In all our calculations we have neglected both tem
perature effects and the spin-nonconservation effects 
associated with the dipole-dipole interaction. The first 
of these can be taken into account by the methods de
veloped by Leggett, [25] and the second lead to serious 
difficulties in a similar formulation of the theory 
(cf. t26]). 

It must be noted that collective excitations with a gap 
for a superfiuid (superconducting) Fermi liquid have 
been considered in the literature (see, e. g. , [27] and[Z]), 
but collective excitations with a gap much smaller than 
2~ have not been considered. The appearance of these 
excitations is a characteristic feature of the Larkin
Migdal approach, [13] if the 1 = lo amplitude and an 1 = l' 
'" 10 amplitude of the effective interaction in the particle
particle channel are close to each other. 

The author is very grateful to A. I. Larkin and L. P. 
Pitaevskii for useful dis~ssions and to A. J. Leg
gett for sending the review article[24] before publica
tion. 

APPENDIX 

We shall transform the equation for the spin vertices 
and spin susceptibility in such a way that only the in
tegration over the Fermi surface becomes important, in 
analogy with the transformation performed by Larkin. [14] 
We note that only the transformation of the equation for 
the normal vertex will be of interest for us. Applying 
the procedure from Larkin's paper[U] to this equation, 
we find 

(45) 

where J: denotes the spin vertex, taken in the k-limit, 
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!for the normal system, and g(p .p'} is the spin-exchange 
part of the dimensionless quasi-particle scattering am
plitude; gl = btl (1 + b1), S = L + 1. The equations for ~II 
and T" will coincide with the corresponding equations of 
our paper. [11] According to the work of Kondratenko[26] 
(cl. also [29]) , if the spin vertex is chosen such that J: 
= ulJ ' then 

':=cr.(1-g,) =cr,/(Hb,). 

We turn now to the transformation of the spin suscep
tibility. According to our paper, [11] the latter can be 
written in the form 

( I'B) Z S d'p , , , , " x·· = - ~ (2n)'iSP{'.'[G'.G-FD,.-D+F-G~t"D+F+FD~2bG]}, 

(46) 

where j~ = zUIJ (as a result of which, J: at the Fermi 
surface is equal to UII)' Z denotes the discontinuity in the 
occupation numbers at the Fermi surface for a normal 
system, D=E./~=("Piif', and the normal (G) and anom
alous (F) Green functions standing before and after the 
vertex are taken with the variables P+ k/2, e + w/2 and 
p- k/2, e - w/2, respectively; d4p =d 3pde and J-(p) 
=JT(_p). 

Carrying out in (45) the transformations originally 
proposed by Larkin, [U] using Eq. (44) and expressing 
71&, T2& in terms of T b and ~, we find that 

lea. = x!. - l/.I'~V sp (I! {SI. + O(ap)/.(ap) - M (ft. ap) 

- 2MA.a"pl;p, 
where 

• ( I'B) Z S d'p , , 
l(ab = - ~ (2n)'i Sp['.'(GG)·':], 

with 

(GG)' = lim lim lim GG. 
It_o __ 0 ~_o 

(47) 

(48) 

Taking into account the results of the work of Kon
dratertko[Z8] (see also[29]), we find that x!b is the static 
susceptibility of the normal system, Le., /jllbJ.L~v/(1 
+ bo). Moreover, J: in the second term of formula (47), 
i. e., J: at the Fermi surface, is equal to u,,/(1 + bo). 
It is clear that formula (47) is equivalent to (13) and can 
also be written in the form (14), (15). We note that, in 
the Appendix, according to (46) x"b and v correspond to 
quantities calculated per unit volume. 

Note added in proof (August 3, 1976). If we take into 
account the non-negativity of the static autocorrelation 
functions, which follows from their spectral representa
tion, it is not difficult to prove that a> 0 always. There
fore, when the 1 = 0 and 1 = 1 amplitudes of the effective 
interaction in the particle-particle channel are close 
to each other, a pole with a small gap is always pre
sent. 
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