
Spectra and excitation methods of turbulence in a 
compressible fluid 

S. S. Moiseev. A. V. Tur. and V. V. YanovskiT 

Physico-technical Institute, Ukrainian Academy of Sciences 
(Submitted December 18. 1975; resubmitted April 29. 1976) 
Zh. Eksp. Teor. Fiz. 71, 1062-1073 (September 1976) 

We develop a random force method and apply it to the turbulence of a compressible fluid. We show that 
the in variance of the equation for the characteristic functional under the scale transformation group enables 
us to determine the turbulence spectrum in the inertial range both for incompressible and for compressible 
fluids. We evaluate in the inertial range the spectra of the two-point semi-invariants of arbitrary order. like 
the energy spectrum. 

PACS numbers: 45.30.Cf, 45.40.-g 

INTRODUCTION 

It is well known that the problem of the statistical de
scription of turbulence can be formulated in terms of a 
characteristic functional (Hopf, [1J NovikovUl). Novikov 
obtained the appropriate equation with energy pumping 
by an external force for an incompressible fluid, and we 
obtain it in the present paper for a compressible fluid. 
For a small-amplit~de potential external force, acoustic 
turbulence is excited in a compressible fluid and this 
has been considered in papers by Zakharov and Sag
deev, [3J and by Kadomtsev and Petviashvili. [41 In the 
present paper we consider the case where the external 
force has large amplitude potential and rotational com
ponents. 

It is well known (see, e. g., Monin and Yaglom[51) that 
an application of perturbation theory to the equations of 
statistical hydrodynamics leads to difficulties connected 
with the large magnitude of the coupling constant. In a 
compressible fluid the situation is made complicated by 
the presence of, in general, several strongly coupled 
fields. Further progress has been connected with the 
presence of similarity properties for turbulent pulsa
tions which are, apparently, characteristic for a wide 
class of strongly interacting systems (Kuz'min and Pata
shinskil[81). We show in the present paper that the 
Cauchy problem for the characteristic functionals of in
compressible and compressible fluids with energy pump
ing by large amplitude external force has a group of in
variants which leads to a similarity theorem for them. 
This fact combined with the assumption that there exists 
an equilibrium section in the spectrum (inertial range) 
allows us to find the spectral characteristics of turbu
lence in both incompressible and compressible fluids. 
For an incompressible fluid one obtains in that way the 
Kolmogorov law[7.8J and in a compressible fluid the 
spectrum 

(co is the sound velocity, e the average rate of energy 
diSSipation, and y = cJcu the adiabatic index). In the 
limit of an incompressible fluid (y - 00) the spectrum 
obtained changes to E(k)a:'E2/ 3k-s/ 3• 

The action of the similarity group on the character
istic functional of a compressible fluid leads to an ef-
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fective renormalization of the parameters determining 
turbulence in the inertial range. As a result of this the 
statistical characteristics turn out to depend on the re
normalized "energy influx velocity" e* = ~/ (,,-u'E, 

• T)' «(i)v. i)v. 2 i)v, )') e =- -+---6;.- +f«divv)'>, 
2 i)x. ox; 3 ox, 

where 1/* and ~* are the renormalized viscosity coeffi
cients, rr = c~(7-1)77 and ~* = C~(7-1)~. Apart from the 
turbulence energy spectra we find in the equilibrium 
range the spectral characteristics of the two-point semi
invariants of arbitrary order. We must emphasize that 
the approach developed in this paper may find applica
tions also in other physical problems with a strong in
teraction. 

§1. CHARACTERISTIC FUNCTIONAL OF A 
COMPRESSIBLE FLUID 

We consider the spectral characteristics in a region 
of k-space where we can neglect the dissipative coeffi
cients and, hence, the change of the entropy with time. 
(The entropy s of the unperturbed state of the fluid is con
stant.) For that reason we must expect that when find
ing the first approximation which does not contain dissi.., 
pative factors one can use, as was done by Chandrasek
har, (9) a model equation of state 

(1.1) 

(co is the sound velocity for P=Po). Moreover, for in
stance in the case of acoustic turbulence, the change in 
entropy turns out to be a third-order quantity (see the 
book by Landau and Lifshitzt10l) and when considering 
quadratic effects we may assume that s = const. When 
using the model relation (1.1) the main set of equations 
is simplified and contains the Navier-Stokes equation 
and the continuity equation. It is convenient to write it 
in the following variables: v, P = A~/ <7-1> p, 

1/(1-0 ov 1 /l, /l. c, 
-+(vV)v=-- VP'+-~v+-V(Vv)+---F; 
at p p p P (1.2) 

i)p/iJt+ V (pv) =0. 

Here 
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[ T)] '/(1-1, [ ,+1/, T)] '/(1-1) (F) 0 1l1== - Co ,Jla= -- Co t = , 
p. po 

F = f/ Po is a random force which excites turbulence and 
realizes the energy functions of the coarse-grained mo
tions. :rn a statistical description of turbulence v and p 
must be assumed to be random fields. We shall describe 
the statistical properties of the fluid and the random 
force by a characteristic functional <1>: 

+- -
III = ( expi f {(VY)+(l\Y,)+ j (FYt)dt}dx'). (1.3) 

-- 0 

y(x), Yp(x), and y,(x, t) are arbitrary fields which de
crease sufficiently fast at infinity. The averaging in 
(1.3) is over the probability for the distribution of the 
random force. (We assume that the force is "switched 
on'" at time t= 0.) Apart from <I> we introduce yet an
other spatial functional qJ which describes the statistical 
properties of only the fluid: 

Ijl{[Y(X)J. [y,(x)J; t}=IllI'I""" (1.4) 

Using (1.2) we can easily obtain the evolution equation 
for <1>. For the sake of simplicity we consider the case 
where 'Y takes on discrete values: 'Y = 1,2, 3, •••• We 
shall show in what follows that the results remain valid 
also for continuous values 'Y ;;.1. (In view of the fact that 
'Y does not lead to physical singularities this fact is 
rather obvious.) Differentiating (1.3) with respect to 
the time and taking into account the equations of motion 
we get for <I> a linear equation in the variational deriva
tives: 

(1.5) 

where i is a linear operator: 

+-
LIll-t J y(x) {DVD-(i)I-TD.-IVD,l+"",D,~D 

+-

+,...,D,-'V (VD)} III dx'+i f y,(x) VD,DIll dx'. (1.6) 

Here D and D p are variational differentiation operators 
with respect to the variables y(x), Yp(x): 

II 
Df=---. 

IIYf dx' dt 

To simplify the notation of the equation for <I> we have 
introduced the operator D;l: 

1 +~ ~ 

D, -'Ill= ( ip (x, t) exp if { (vy) + (py,) + f (Fyfldt }dx' ) . 
__ 0 

We can dispense with it if we use the dynamic equations 
in the form of the continuity equations for the momentum 
and mass densities. Below we shall be interested in 
stationary distributions of v and p which arise in a fluid 
when oscillations are exicted in it by means of a random 
force, while the fluid is assumed to be at rest at t= 0: 
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v I ,_,=0, s=const. p I ,~o=const. 

We consider the case of homogeneous and isotropic 
turbulence. Apparently in such a turbulence the param
eters of the initial unperturbed state do not affect the 
statistical properties of the fine-grained pulsations. 
The combined characteristic functional of a compres
sible fluid and the force accomplishes a too detailed sta
tistical description of a system. 

As in the present paper we shall be interested only in 
the turbulence spectra it will be necessary for us to 
know the characteristic functional of one fluid. The 
equation for qJ follows from (1.5): 

aljl/at=LIjl+I. (1.7) 

Here I is the source describing the action of the external 
force on the fluid: 

+~ +-

1= -c;m-"l y(x)D,-'( F exp i f {(vy) + (l\y,)} dx') dx'. (1.8) 

A closed description of the statistical properties of the 
fluid in terms of the functional qJ is possible only in the 
case when the source can be expressed in terms of qJ. 

§2. EXCITATION OF TURBULENCE BY A RANDOM 
FORCE 

We have already mentioned that a stationary turbu
lence regime is maintained in the model considered due 
to the work done by the external force. We average the 
continuity equation for the energy of the fluid in an ex
ternal force: 

d ( v' v' do 
--::- P? + PE)=-diV{PV(?+ w)} +v,~+ v,f" ot .• _ ox. 

(2.1) 

where 

P PdP 
E - J .. dp+e., w = J - + Wo, 

o. P Po P 

( av, av. 2 av,) av, 
o,.=T) -+---6,.- +66 .. -. 

ax. ax, 3 ax, ox, 

In a stationary homogeneous case we get 

T) «( av, av. 2 av, )') «( (iv, )') (v",,) =- -+---6,.- +, -. - ""e, 
2 ax. ax, 3 ax, Ox, 

(2.2) 

'£ is the average rate of energy dissipation of a compress
ible fluid. We determine the restrictions which arise 
on the statistical properties of an external perturbation 
in connection with the presence of the condition (2.2). 
We write (2.2) in the form 

(2.3) 

For the evaluation of the mean value which occurs 
here we use the method expounded inc.]. In that case 
the velocity is expressed identically by the relation as 
follows: 
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i 
S ov(x,'t) 

v(x,t)=v(x,t-6)+ ---dT, 
1_6 aT 

We consider the mean value 

(p. q) is here a scalar product: 

+-

(p.q)- S p(x)q(x)dz'. 

6;;.0. (2.4) 

The averaging in (2. 5) is over the random force under 
the condition that the value of the exponent exp i(y 
• v(t - li» is fixed. We can easily go over from the aver
age (2.5) to the average occurring in (2.3). To do this 
we must multiply (2.5) by expi(y. v(t-li)), average over 
the possible values of this exponent, and take the limit 
as li - O. One sees easily that in Eq. (2. 3) we get only 
a contribution from the first term in the expansion (2.5): 

As a result (2.2) takes the form 

• 
lim S K,,(O, ,)d,-E; 
e_o 0 

(2.6) 

here 

( ov,(x" 't,) ) 
Kfl(r, ,)= j;(x, t) aT, 

r=x,-x, ,=t-'t,. 

Expressions (2.6) shows that the correlator KfJ must 
contain a li-function in the time KIJ - li(~), i. e., KIJ is 
given by the formula 

BIJ is the spatial part of the correlation tensor. The 
condition that the energy of the fluid be a stationary 
leads thus to the following restriction on the pair cor
relator BiJ of the force and the fluid: 

'/J3;;(O) =e. (2.7) 

The condition (2. 7) is valid both for an external force of 
the form f(x, t) and also for a force which may "adjust 
itself" to the state of the fluid, being a functional f(x, t; 
[v 1, [p n. It would appear that a force of the form f(x, t) 
is more natural, as in the case of an incompressible 
fluid. However, we shall show below that such a force 
in a compressible fluid leads to a non-local energy pump
ing which may lead to an appreciable perturbation of the 
statistical properties of the fluid. Since the role of the 
force can be reduced to energy pumping it is natural to 
consider such forces which are completely determined 
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by condition (2.7) and lead to a local influx of energy in
to the fluid near small k. The Simplest case of such a 
force, which allows a description of the state of the 
fluid in terms of the functional cp, is 

f(x, t, [p])=p(x, t)g(x, t), 

where g(x, t) has a Gaussian probability distribution law 
and is li-correlated in the time 

<g,(x. t)g,(x" t,»=B.,(x,-x)6(t-t,). 

Using the Furutsa-Novikov formula [2) 

<R[g]g(s» = S <g(s)g(s'»( 6:~~~~') ds' (2.8) 

(R[g1 is a functional of g and 5' a complete set of inde
pendent variables) and the formula 

which follows from the Navier-Stokes equation we get 

<p>B,,(O) =£. 

H the turbulence is isotropic the tensor BIJ can be ex
pressed solely in terms of the longitudinal BLL and trans
verse BNN correlation functions: 

From (2.8) we get 

(2.9) 

Formula (2.9) shows that one can write the longitudinal 
and transverse functions in the form 

(2.10) 

Here l/JLL and l/JNN are dimensionless functions while 

"'LL(O) =",NN(O) =1, 

LL and LN are the corresponding characteristic length 
scales. 

We shall in what follows consider the case where the 
scales LL and LN are of the same order. We introduce 
an over-all length scale for the turbulence: 

L=min (LL' LN)' (2.11) 

In the limit as L - 00 

(2.12) 

H g is Gaussian the condition that the energy density in 
the fluid is stationary allows us thus to determine the 
form of the pair correlation tensor Bu. USing Eq. (2.8) 
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we get an equation for the functional cp in closed form 
with a source of the form 

1 +-
J{<p}=-? H y,(x) YJ(x,)Bij(x-x,) dx' dx,' <p, - -~ 

(2.13) 

the term I{cp} in (1.7) can be interpreted as being re
sponsible for "diffusion in velocity space." In the limit
ing case as L - 00 the diffusion coefficient is constant 
D- e, which corresponds to the energy pumping in k
space being local. 

We now use for the energy pumping a Gaussian force 
f(x, t) with a correlator 

<j.(x, t)!J(x" t,»=Bdx-x.)6(t-t.). 

In that case (2.2) leads to the condition 

+B«(O) ( + )=2. 

For the longitudinal and transverse correlation functions 
we get 

The fact that the force is Gaussian and 0 -correlated 
again enables us to close the equation for the character
istic functional of the fluid. 

Applying Eq. (2.8) we get 

4/n-1) +_ 

J {<p} =;.- S S B'J(x-x,)y(x)y(x,)D.-'D.,-'<p dx' dx,'. (2.14) 
po _~ 

The Gaussian nature of the random accelerations and of 
the external force leads to the diffusion approximation, 
but (2.14) show that in the last case the diffusion coeffi
cient is not constant as L - 00 

(2.15) 

In agreement with (2.15) the e~ergy influx into any tur
bulence scale turns out to depend on the density correla
tions at those scales and this leads to a non-local energy 
pumping. The "diffusion in velocity space" due to the 
energy pumping can most simply be interpreted in the 
case of small density pulsations, if 6p/p« 1. In that 
case density perturbations propagate in the form of saw
tooth waves. As to order of magnitude we get from 
(2.15) for the diffusion coefficient 

D- const (1+( ~~»). 
po Po 

(2.16) 

Equation (2.16) shows that the diffusion coefficient is 
larger wherever the denSity pulsations are more strong
ly correlated. Since sawtooth waves are regions of 
strong correlations between harmonics, energy pumping 
in the crest proceeds faster than in the region where the 
correlations are small. Since the external force is not 
a small perturbation and has zero time correlations, in 
the process of the relaxation of the turbulence to the sta-
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tionary state the correlations in sawtooth waves are 
destroyed. This method of excitation is more complex 
and will be considered in what follows. 

§3, SPECTRAL CHARACTERISTICS OF THE 
TURBULENCE 

The characteristic functional for the excitation of 
turbulence by random Gaussian accelerations satisfies 
Eq. (1.7) with the source (2.13) and an initial condition 
corresponding to a state of rest of the fluid at t= 0, 
pi t.o=(p} = PO: 

+-

<pl,_.=exp iflo S y.(x)dx'. (3.1) 

In an incompressible fluid we would have instead of (3.1) 
simply 

(3.2) 

To find the spectral characteristics of the turbulence the 
invariance properties of the Cauchy problem for the 
functional cp are essential. We consider the following 
group of transformations: 

a.x=x', 
a-(JH'y(x) =1' (x'), 

a,t-rot-t't 
a-J'(Y-"-'y.(x) -yo' (x'), 

aLL=LL', aLN=LN', 
ctS.-t+2"(T-t)~.=~.' (~·=C:/(T-U e), 

(!, f3 are arbitrary parameters (0 < (! < 00, f3 < 00). 

(3.3) 

Equation (1.7) with the source (2.13) and the initial 
condition (3. 1) are invariant under the transformation 
(3.3). Hence follows the relationll 

<p([y(x)]; [y.(x)]; 1-\" 1-\" e', fl', LL, LN , t) 
=<p( [y' (x')]; [yo' (x') ]; 1-\,', 1-\,', e", p,', L/, LN', t'). (3.4) 

We note that in this case the invariance property (3.4) 
is not a form of the similarity hypothesis but is an exact 
relation. In the case of an incompressible fluid the 
characteristic functional satisfies a generalized Hopf 
equation[l] 

(3.5) 

where Bu is the spatial part of the correlation tensor 
of the Gaussian external force. Equation (3.5) and the 
initial condition (3.2) are invariant under the group 

o:x=x', a'-'t=t', o:-"+"y(x) =y' (x'), 
(3.6) 

where L is the external scale length of the turbulence 
and e the average rate of energy diSSipation in the in
compressible fluid. It follows from the above-mentioned 
invariance that 

<p ([y(x) ], v, e, L, t) =<p( [y' (x') ], v', e', L', t'). (3.7) 
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Equations (3.7) and (3.4) enable us to determine the 
spectral characteristics of the turbulence in the inertial 
range. 

We consider firstly the turbulence spectrum in an in
compressible fluid: 

1 +-
E(k)=- (211)' IS I r ..... {D.D/ql} 1,_. dr' dS(k) , 

U,!-II _'"0 

(3.8) 

dS(k) is an element of area of the surface of the sphere 
Ik 1= k, while h= k/lk I. Using Eq. (3.7) we go over in 
(3.8) to a functional depending on the dashed variables. 
Putting a ;: k and changing in (3.8) to an integration over 
kr, using the fact that the integration limits are infinite, 
we get 

(3.9) 

In the stationary case SE/St=O. From the fact that (3 is 
arbitrary it follows that SE/S(3= O. As a result we get 
the equation 

8f Of 
£'8E"+3s.~=2f, 

£.=k·Hv, s2=k'~-'~, 

the solution of which we can write in the form 

(fl is a dimensionless function). As a result the spec
tral density turns out to be the following: 

E(k) =~'/'k-'/'f(kL, kl), 

where 1 = v3/ 4e-1/ 4 is the Kolmogorov scale length. As
suming that the inertial range exists, i. e., that we can 
have an asymptotic expansion off(kL, kl) with 

kl<1, (kL)-'<1, 

we get to a first approximation the Kolmogorov-Obukhov 
law 

(3.10) 

We note that the requirement that the turbulence is 
isotropic is not necessary for obtaining the spectrum 
(3.10). Similarly the similarity theory (3.4) can be ap
plied to evaluate the spectral characteristics of developed 
turbulence in a compressible fluid when there is an 
equilibrium range in the spectrum. We start with the 
spectrum of the kinetic energy of the turbulence. We 
consider the correlator 

K=<p (x)y(x)v(x,) >. 

Its spectral denSity, integrated over the angles, equals 

1 +~ 

E(k)=--, II I e-;>b'K(r)dr'dS(k), r=x,-x. 
(211) ;kH-x 

In that case 
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< PV') _ 1 -"(T-')K(O) 2"'" -TP'c, , K(O)= J E(k)dk, . 
i. e., E(k) differs only by a factor from the spectral 
density of the kinetic energy of the fluid. We express 
E(k) in terms of cp: 

i +-
E(k)= (2,,)' H I r ..... {D.,DD} I, ••••• dr' dS(k). 

Ikf_l __ 

Using (3.4) as when we obtained the spectrum of an in
compressible fluid, we get 

E(k, t) =f(k'-Jt, k'H+ZJ/(,-tll!h kt+J+2J/('-')I!., k'J-·+'J/(,-tl~. 

kJ/(,-tl ll., kLL , kLN) k-·-'J·/(,-·). 

It is natural to assume that for suffiCiently fine
grained pulsations there exists a range of statistical 
equilibrium in which the probability distribution for tur
bulent pulsations is independent of the viscosity and the 
initial characteristics of the flow. The above-mentioned 
assumption means that in the stationary case the spectral 
density for the fine-grained pulsations from the equilib
rium range has the form 

E(k) 
f. (k'J->+2M(T-')e) 

k1+2t>TI(:-t) 

as SE/S(3=O, 

i. e., the spectrum has in that range the form 

(3.11) 

In the limit of an incompressible fluid (')I - 00) the spec
trum (3.11) changes to the Kolmogorov-Obukhov law. 
We note that for arbitrary ')I the spectra E(k) lie in a 
rather narrow range between k-2 and k-s/ 3• 

In analogy with the spectrum of the kinetic energy we 
can obtain also other spectral characteristics of the tur
bulence. For instance, the spectrum of the pressure 
pulsations 

-
<P(x)P(x'»-<P>' = I EP(k)dk 

• 

has in the equilibrium range the form 

(3.12) 

or the expression for the correlator, equivalent to 
(3.12): 

It is clear that the corresponding proportionality con
stants are functions of ')I. We give also the expression 
for the density correlator and the vorticity correlator 
in the equilibrium range: 
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The longitudinal and transverse vorticity correlation 
functions BtL and B';N have the form 

ELL l1li-BNNCI) """c:/(3T-I)e2(T-t)/(3T-lir-~T/(3T-I). 

One can also easily get the general form for the two
point semi-invariants of arbitrary order when one as
sumes that they equal neither zero nor infinity, S'l'"'''' 
x (x - Xl) = S'l ... I", (v'l'" V,,,, Pl'" Pn): 

. Si, ... im (r) = (-i) m+·po nc~"!(T-') D" . .. Dim Do, ... DOn In q> I Y-.o -0' 

The semi-invariant corresponds to the spectral tensor 

which in the equilibrium range equals 

Sil ••• i m (k) =const· pouCo
Z(m-b&)/(IT-l) e(mT-m+2nl/{3T-11 

xlkl-(T(m+OJ-mHn-'II('T-IlS"""m (h), (3.13) 

S'l' .. i", (h) is the angular part of the spectral tensor. 
Equations (3. 13) show that in the equilibrium range the 
statistical characteristics of the turbulence are func
tions of k and f:*, i. e., they are determined by the total 
"energy flux" 

Tj' (&vi av. 2 av,)' e'=- --+---6 .. - +r(divv)'. 
2 ax. ax, 3 ax, 

where TJ* and ~* are the effective viscosity coefficients. 

We consider the problem of the neglect of the damping 
in the equilibrium range. When the dissipative coeffi
cients 1], ~, and x are present one can form three quan
titites with the dimensions of length: 

I, 
(Tj/p.) "T-')fiTe• tiT I [ (6+' !,Tj) Ip.l ('T-llliTe ,''' 

E(T+I)/~l t 2 e(T+l)j~T 

(3.14) 
(x/p e ) (3T-'J/"e'" 1 _ 0 P 0 

3 - tI(T+O/.:.r 

In the limit of an incompressible fluid, the length scales 
(3.14) go over into the Kolmogorov ones: 

(p~ ) '\ -''', ( X) ,/, 
- e.-'f,. 

\ p(lC p 

Here x is the thermal conductivity coefficient, and c p 

the specific heat at constant pressure. From the "re
normalized" dissipative coefficients /-11' /-12 and the "re
normalized" dissipation rate f:* we can form character-
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istic quantities with the dimensions of velocity and den
sity: 

as ,),-00 

V,- (ve) '''. p,-po; 

the Reynolds number, formed from the quantities vv, 

lv, Pv, /-I, 

i. e., pulsations with characteristic v, - vV , P, - PII, I-Iv 
are effectively damped. This means that the neglect of 
dissipative factors is legitimate for pulsations with 

V>v,.. p>p,. (3.15) 

As 

condition (3.15) is equivalent to 

k<~ ~ ~. 
I, [, [, 
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