
tor exp{ - 2tl Ct - 1/2t2 } so that we use the saddle pOint 
method which yields 

t(a.,~) = 3,~;".a.-·1' IE [~, ( ; ) '''] ,-' exp ( - (a.l'~)~ ). (A. 6) 

Using (11) and (12), we have 

(A. 7) 

so that the final expression for Ct« 1 becomes 

(A.S) 

IWe are using the atomic system of units. 
2 'This result could be foreseen because the plasma field 

V(r, t) in (2) is assumed to be classical, which, in collision 
language, corresponds to the description of the relative mo­
tion of colliding particles in terms of classical trajectories. 
Strictly speaking, this approach is valid for cross sections 
only when 1iwo < E, where E is the energy of the relative mo­
tion of the colliding particles. However, a slight modifica-

tion enables us to extend this approach to the region where 
1iwo- E, at least for optically allowed transitions. Ifl 

3'The presence of the factor AWolv2 on the left of (24) is specif­
ic precisely for transitions with small resonance defect woo (91 
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Collisionless radiation by an inhomogeneous plasma, due to the finite motion of charges in the field of 
external forces and collective interaction forces, is studied. The radiation intensity is inversely proportional 
to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the 
radiation from a vacuum spark and other relativistic beams compressed to a small size by collective 
interaction forces. The intensity of the collisionless radiation is calculated with account taken of the Fermi 
statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, 
reaches a maximum at the frequency of the finite motion of the emitters, and then decreases. Measurement 
of the collisionless radiation by a plasma compressed to a small size by the pinch effect is a natural way of 
diagnosing the plasma. 

PACS numbers: 52.25.Ps 

1. INTRODUCTION 

A widely used method of plasma diagnostics is the de­
termination of its parameters from the experimentally 
measured radiation. The electrons and ions of the plas­
ma are under the influence of external forces and of the 
collective-interaction forces. These forces accelerate 
the charges and cause them to radiate. 

If the plasma is a gas, i. e., if the time between col­
lisions of the particles is large in comparison with the 
duration of the collision, then the charges are subjected 
for the greater part of the time to smooth acceleration 
under the influence of the forces of the external field and 
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of the average collective interaction. In the case of 
short-range collisions, the charges are appreciably ac­
celerated within short time intervals (on the order of 
the duration of the COllision). The radiation produced 
by a gaseous fully ionized plasma is of two types, the 
radiation accompanying the short-range pair collisions, 
and the radiation due to the external forces and the av­
erage collective-interaction forces. The latter type has 
no bearing on the particle collisions and can be naturally 
called collisionless. 

If the plasma is uniform and is not situated in an ex­
ternal field, then there is no collisionless radiation. 
The radiation connected with the Coulomb collisions of 
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the charges plays the principal role in a low-tempera­
ture plasma, when the average collective-interaction 
forces, and also the external fields, alter the charge 
velocity little during the time between the collisions. 

With increasing plasma temperature, the efficiency 
of the Coulomb collisions decreases sharply. To com­
pare the collisionless radiation with the bremsstrahlung 
in the case of collisions with ions, it suffices to esti­
mate the accelerations experienced by the charges in 
the two cases. The difference between the radiation in­
tensities lies precisely in the expressions for the elec­
tron acceleration. In a hot plasma, when the mean free 
path l is comparable with the characteristic scale of the 
inhomogeneity r, the charge accelerations due to the in­
homogeneity of the plasma exceed the accelerations due 
to the pair collisions. Collisionless radiation becomes 
predominant already at l2 r, inasmuch as in Coulomb 
collisions the relative change of the velocity is small. 

The need for taking into account collisionless radia­
tion at sufficiently large currents, in connection with 
the growth of the forces of the collision interaction, was 
indicated by Budker. [1] However, collisionless radia­
tion of an inhomogeneous plasma has not received its 
due attention in the literature. The only exception is 
synchrotron radiation or the radiation of the charges in 
an external magnetic field. 

At a fixed energy, the acceleration of a charge is in­
versely proportional to the dimension of the region of 
the finite motion. The intensity of the collisionless ra­
diation, which is proportional to the square of the ac­
celeration, increases rapidly with decreasing inhomo­
geneity scale. Thus, the intensity of collisionless radi­
ation per unit length of a beam of relativistic electrons 
with a nonrelativistic energy spread is proportional to 
e2W 2N./c3 • Here W-vT/r is the acceleration of the 
electron, v T is its thermal velocity, Ne is the number 
of electrons per unit length of beam, and r is the radius 
of the beam. Since ecNe/r2 -j is the current density, 
we obtain an estimate for the radiation intensity: dJ / dz 
-j(VT/c)4 erg/cm-sec (j is in A/cm2). 

Large values of the current density - lOll A/ cm2 are 
reached in vacuum sparks (micropinches) observed in 
strong-current diodes. [2-5] A micropinch is accompa­
nied by a flash of radiation both in the x-ray and in the 
submillimeter region of the spectrum. The mechanism 
of this radiation has not yet been established. It ap­
pears that the main contribution to the microwave flash 
is made by the collisionless radiation connected with 
the finite character of the transverse motion of the 
charges in the spark. Submillimeter radiation was ob­
served only at fixed frequencies, [3,4] and no absolute 
values of the intensity are cited at all. However, the 
dependences of the total and spectral intensities of the 
radiation on the time can be reconstructed with the aid 
of the evolution of the compression and the decay of the 
spark. Photographs in the x-ray region yielded only 
the micropinch radius averaged over the flash time 
(- 8 Il). [5] 

Recently Sukhorukov and the present author[6] have 
shown that among the predominant equilibrium station-
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ary configurations of a relativistic beam in vacuum are 
those of a beam compressed to very small dimensions 
by the collective-interaction forces. Measurement of 
collisionless radiation of relativistic beams compressed 
as a result of the pinch effect contains information on 
the collective interaction and serves as a natural method 
of their diagnostics. The present paper is devoted to 
the calculation of the intensity of collisionless radiation 
out of an inhomogeneous plasma, and also to an analysis 
of the spectral composition of the irradiation. The gen­
eral formulas for the total (Sec. 2) and spectral (Sec. 4) 
intensities are used to calculate the radiation of a sta­
tionary relativistic electron beam. 

2. INTENSITY OF COLLISION LESS RADIATION 

We assume that the plasma is in a stationary state, 
and that the average force acting on the charges and 
leading to inhomogeneity of their concentration are po­
tential. In this case we disregard a plasma situated in 
an external magnetic field, the synchronous radiation of 
which has been well investigated. Let furthermore the 
electron density n. in the plasma and the characteristic 
dimension r of the region occupied by them be small, 
so that the radiation of each charge takes place within 
the confines of the plasma without noticable absorption 
by other charges. The corresponding condition takes 
the form 

6~r, (2.1) 

where Ii is the depth of penetration of the field into the 
plasma. Let the characteristic frequency w of the ra­
diation be small in comparison with the temperature: 

I!ro<:T. (2.2) 

Conditions (2.1) and (2.2) make it possible to calculate 
the radiation intensity by using the classical expres­
sions for the field produced by the moving charges. To 
be able to employ the formulas for relativistic beams, 
it is expedient to use the expressions for the radiation 
intensity of rapidly moving beams (m, Sec. 73). The 
intensity of the irradiation of an individual charge of 
sort O! (O! takes on the values e and i for the electrons 
and ions, respectively), moving along a trajectory 
r =r(t), i. e., the energy irradiated per unit time into a 
solid-angle element dO in a given direction n is equal to 

dI.=~{2(nW)(~W) + W' 
4:rrc' (l-~n)' (l-~n)' 

(1-~') (nW)' }dO. 
(l-~n)' 

(2.3) 

Here (3=v/c. v is the velocity, W is the acceleration of 
the charge moving along a trajectory at the retarded in­
stant of time 

t'=t-Rlc, (2.4) 

t is the observation time, and R is the radius vector 
drawn from the point on the trajectory in which the ra­
diation took place to the observation point. Knowing the 
radiation intensity (2.3) of the individual charge, we can 
obtain the total intensity by summing over all the 
charges. 
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FIG. 1. Region of finite motion in the radial direction. ri' 
and r; are the classical turning points of a particle of energy 
E and angular momentum M. Em = Em(M) is the minimum 
value of the energy at a fixed value of M. 

It is convenient to classify the moving charges with 
the aid of quantities that are constant along the trajec­
tory, i. e., the integrals of motion, the number of which 
for one particle is 6. Let Ch ••• , Cs be such integrals 
of the motion, the transition from which to the variables 
rand. p (coordinates and momenta) constituting a canoni­
cal transformation. According to the Liouville theorem 
the phase volume is not altered by the canonical trans­
formations ([81, Sec. 46). Therefore dr = d 3r d 3p 
= dCl • •• dC6 • By definition, the distribution functions 
fa of the number of particles of sort Il in a volume ele­
ment dr of phase space is equal to fa • 2dr / (21T1i)3. Tak­
ing into consideration the possibility of electron degen­
eracy, it must be recognized that the probability of the 
radiation is proportional also to the number of free 
places in the final state, which is equal to 1 -fa under 
the condition (2.2). For the intensity of the radiation 
by charges of sort Il from the element dr of the phase 
volume of the plasma into the element dO of solid angle 
in a given direction n we obtain ultimately 

where dIa is the intensity of the radiation of the indi­
vidual charge of sort Il and is given by (2.3). 

3. RADIATION INTENSITY OF A CYLINDRICALLY 
SYMMETRICAL PLASMA 

We apply the general formula (2.5) for the intensity 
of collisionless radiation to a cylindrically symmet~ical 
plasma of a relativistic beam. The average electron 
velocity is directed along the beam axis (the z axis). 
Let the energy scatter of the particles be nonrelativistic 

(3.1) 

Here T a is the temperature of the charges of sort Il in 
their co-moving reference frame. We consider the be­
havior of the beam during times that are large in com­
parison with the times of te and ti of establishment of 
electron-electron and ion-ion equilibrium, but small 
in comparison with the time of relaxation tei of the elec­
trons with the ions. The state of the beam during these 
times can be regarded as stationary. 

Since z, cP, and the time are all cyclic variables, the 
generalized momenta conjugate to them (pz-the pro­
jection of the momentum, M=rp",-the angular momen­
tum about the z axis, and the total energy) are integrals 
of the motion. The motion of a charge in a cylindrically 
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symmetrical field with a relativistic average velocity Vo 

along the z axis with a small velocity scatter in the 
transverse direction is described in the laboratory 
frame by the formulas 

'drM'dr 
t=to+ S-(-) , (jl=(jl,+-. -. S-'-(-)' 

Vr r ma. r Vr r 
1'1· 1'1" 

p. 
z=z, + -. -. (t-to). 

m. 

v,(r)={ : •• [E-V.(r)] r, 
M' 

V.(r)=U.(r)+ 2m •• "" 

(3.2) 

where m: =m a (l- i3~tl/Z is the effective mass, vr(r) is 
the radial velocity, Ua(r) is the effective potential en­
ergy of the simultaneous motion in the radial direction, 
Ua(r) is the potential of the force acting on the charges 
of sort Il, and E is the energy of motion in a frame per­
pendicular to the beam axis. The values of the coor­
dinates r =r t,z at which the radial velocity vanishes de­
termine the boundaries of the region of finite motion of 
the charges (with specified E, M, and 13 0 ) in the radial 
direction. At a fixed value of the angular momentum M 
the region of the finite motion exists for energies E > Em, 
where Em = Em(M) is the minimum value of the effective 
potential U a (r) (Fig. 1). 

Since the forces acting on the charges in a relativistic 
beam are perpendicular to its axis, the first term in the 
curly brackets in (2.3) can be omitted. We choose as 
three (out of the six) integrals of motion Cl =Pz' Cz =M, 
C3 =E. The remaining three integrals of motion are 
conveniently chosen in the form of additive constants zo, 
CPo, and to, which are connected with the leeway in the 

. choice of the origin of the cyclic variables dC4 =dzo =dz, 
dCs =dcpo, dC6 =dto. We denote by e the angle between 
the emission direction and the beam axis. Taking (3.1) 
into account, we obtain for the emission (in per unit 
length of beam and per unit solid angle) the following 
expression: 

(1-~,') (nW)' }. 
(1-~,cos8)' 

(3.3) 

The acceleration W in (3.3) depends on CPo and to in 
the combinations cp -CPo and t' -to, where t' is the re­
tarded instant of time (2.4), T = if; dr/vr(r) is the period 
of the finite motion. The dependence on cp - CPo is con­
tained only in the term (n· W)Z = WZ sinze COSZ(cp - CPo). 
Therefore the integration with respect to CPo is trivial. 
The summation of charges having different values of to 
can be carried out by integrating with respect to the co­
ordinates r' at which they are located at the instant t'. 
In other words, we can use the first formula of (3.2) to 
change from integration with respect to to to integration 
with respect to r/: 

T 'd ' S dt'W>(t'-t,)=~w>(r,)_(r '). 
v, r , 
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The integration with respect to r' is carried out over 
the entire region of the finite motion (both "forward" 
and "backward"), so that the prime can be omitted. 

Thus, the irradiation intensity does not depend on the 
time and is given by 

dl e' 2 +w +w W dr 
dZd~=2c'F(ilo,e)(2nh)' Sdp,S dMSdEf.(1-f.)~ v,(r) W'(r). 

_<XI -<XI Em 

(3.4) 
The angular distribution of the radiation is given by the 
factor 

F(~ .. e) 
(1-~ocosa)' 

(1-~.')sin· e 
2 (t-(I. cos e)' 

(3.5) 

and as /3 0 - 1 it has a strongly pronounced directivity 
along the beam, which is typical of the emission of fast 
particles. The total radiation of the length of the beam 
is obtained by integrating over the solid angle. The cor­
responding interval is equal to 

2n jF(~o,e)Sin ede=~T' (1 +2~ •• )_ {Bn/3, ~.<1, 
• 3 5 56nT'/15, T>1, 

where Y = (1 - J3~tl/2 is a relativistic factor. 

In the state of equilibrium the distribution functionj", 
does not depend on the angular momentum M if the beam 
as a whole does not rotate. For nonrelativistic tem­
peratures (3.1) and for relativistic velocities, j", takes 
the form[61 

where TJ,=T",/y, TII=T",Y. The constant 1/!0=1/!",(0) de­
termines the degree of degeneracy on the beam axis. 

Noting that W2 = (TJm:)2(dl/!",/dr)2, after interchang­
ing the order of integration and calculating the integrals 
with respect to M and Pe we have 

~=~F(R e) 2 4nTJ,'(2m"TII )"'Sw" "(r)rdrSwx"'f (1-f)d 
dzdO 2c' ~o, (2nh) , m.''''· •• x. 

, 0 

After integrating with respect to r by parts (f",(1 - j",) 
= - aj",/al/!",) we can easily see that the intensity of the 
radiation contains the same integral as the volume den­
sity of the charges[61: 

n.(r) 
Bnm,·TJ.(2m,·T II )·I· S

W
" d 

(2nh)' 0 x 'f. x. 

The intensity of the collisionless radiation of particles 
of sort from a unit length of the beam is expressed thus 
in the form of a single integral 

I T 2. -~=_e_(_.) ..!..-F(~.,e) S (rIj1.')'n.(r) dr. 
dzdO 2c' m. T' • 

(3.7) 

Formula (3.7), which was derived with allowance for 
the Fermi statistics of the radiators, is at the same 
time convenient also in the case of a Boltzmann dis­
tribution. If the deviations from classical statistics 
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are insignificant, then we must put in (3.7) n",(r) 
=n",o exp{-I/!",(r)}. Further calculations call for knowl­
edge of the actual form of I/!",(r). 

We consider by way of example the radiation of a 
beam in which the electrons and ions have a Bennett 
distribution[91 (see alsO[61): 

where N", is the number of charges of sort a per unit 
length of the beam and ro is the radius of the beam and 
can be arbitrary because of the scale invariance of the 
theory. After substitution in (3.7) we have 

The current of the ultrarelativistic beam is equal to 
10 =eNec, and we arrive at the conclusion that at the 
given values of the parameters T "" y, and ro the inten­
sity of collisionless radiation of electrons in the case of 
Boltzmann statistics is proportional to the beam current. 
At a given current and electron temperature the intensity 
of the collisionless radiation is inversely proportional 
to the square of the beam radius. 

It was shown earlier[61 that if the energy of the collec­
tive compression of the beam is not offset by the energy 
of the thermal scatter, then there exist only stationary 
states of beams that are compressed to such small di­
menSions, that the equations of classical statistics of 
ideal gases no longer holds. The Bennett distribution 
(3.8) is the particular example in which the beam pa­
rameters are specially chosen in such a way that a bal­
ance exists between the collective compression and the 
thermal spreading. In the absence of balance, the sta­
tionary structure of the compressed beam is determined 
by non-ideality effects if Te <Ea =27. 2 eV, or by elec­
tron degeneracy at T. > Ea. In the former case the sta­
tionary states of the relativistic beam have not been 
calculated. Not knowing the structure of the band, at 
Te < Ea it is impossible to draw any exact quantitative 
conclusions with respect to its collisionless radiation. 
On the other hand, if the electron temperature is not 
low, Te» E a, then the structure of the beam is deter­
mined by the energy balance of the collective compres­
sion and the energy of the Fermi exchange interaction 
of the electrons. In the limiting case of strong degen­
eracy, under the condition II/!ol »1, 1/!0<0, T j » TJ" the 
structure of the band was obtained analytically: 

1t,If. 

I\j)ol"'(r)' SdZ. \j)'=-6- -;:; , ",.=",.+2K, -;-(1-e-'), (3.9) 
o 

where a is the Bohr radius. The distribution of the 
electron density is given by the integral 

(3.10) 

and takes in the region of strong degeneracy the form 
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T· 2 
n,(r)=-4 : '-3 11jl.(r)I''', 11jl.(r) 1>1, 1jl.<O. 

ne ro 

The degree of the degeneracy of the electrons is char­
acterized by the value of the parameter z/!o = z/!e(O), which 
is connected with the particle numbers and with the 
temperatures by the relation 

(3.11) 

where C = 0.577 ... is the Euler constant. The relation 
(3.10) makes it possible to find the upper limit of the 
current density of the relativistic beam, which in prin­
ciple cannot be exceeded because of degeneracy, and 
also its dependence on the total current and temperature 
of the electrons. The value of the current density on 
the beam axis in the case of strong degeneracy is equal 
to 

. 2"' .. (T, ) ", eE T~' A 
/,=en.(O)c=-ll1jl,I'" - _,_a =3.1·10"1111:,1'" (~) [_]. 

3ll' E. a'e E. cm2 

According to (3.11), 1 z/!o 1 is proportional to the loga­
rithm of Ne , and consequently also to the logarithm of 
the total beam current. The maximum current density 
is' proportional to the logarithm of the total current 
raised to the power t. 

Substituting (3.9) and (3.10) in (3.7) and integrating 
over the solid angle, we obtain the intensity of the col­
lisionless emission of the electrons: 

dl. 

dz 
112 e'vTT'K,1 1j:,1 "'1' =18.1O-"K v T 'I,', I'" 3 [W/cml. (3.12) 
45:1 (lie)' . t T • '1" 1 

Here Te is in degrees, VT = (2Te/me)1/2 is in cm/sec, and 
the remaining parameters are dimensionless. If we as­
sume Te = 106 K and VT = 6· lOS cm/ sec, then Me/ dz = 1. 6 
• Kll z/!o 13/2 ')13 [kW /cm]. The high radiation intensity in 
the stationary state denotes that the radiation can mani­
fest itself during the final stage of the beam compres­
sion by the collective-interaction forces. Just like the 
current denSity, the intensity of collisionless radiation 
is proportional to the logarithm of the total current 
raised to the t power. Thus, from the deviation from 
linearity of the radiation intensity in the beam current 
(at fixed Te and ')I) we can ascertain whether the elec­
trons are degenerate in a relativistic beam compressed 
by collective-interaction forces. 

Substituting z/!j from (3.9) in (3.7) and putting 13 0 =0, 
we obtain the intensity of the emission of the beam ions: 

(3.13) 

Owing to the large mass of the ions, the intensity of 
their collisionless radiation is small. For a motion in 
a quadratic potential, however, the period of the finite 
oscillations does not depend on the energy or the mo­
mentum. As a result, the energy radiated by the ions 
lies in a narrow spectral interval about the frequency of 
their collisions. The width of this interval is deter­
mined by the collisions and by the Doppler effect (see 
Sec. 5 below). 

550 SOy. Phys. JETP, Vol. 44, No.3, September 1976 

4. SPECTRAL RESOLUTION OF COLLISION LESS 
RADIATION 

The experimental measurements of the radiation make 
it possible to determine not only the total intensity but 
also its spectral composition, which contains additional 
information concerning the plasma. The spectral com­
position of the radiation of an individual charge can be 
easily determined if the motion of the charge (which is 
assumed to be finite with respect to part of the degrees 
of freedom) admit of separation of the variables in the 
Hamilton-Jacobi method(tsl, Sec. 50). To solve the 
problem it is convenient to carry out a canonical trans-. 
formation to the action variables and the angle variables. 

For charges moving in a cylindrically symmetrical 
field, the motion along the coordinates r and cp is finite, 
while the motion along the coordinate z is infinite. The 
action variables are the quantities 

1 1 I. 

I, = -2 rh p, dr, I. = -J M dq;=M, 
nj 2n, 

and the angle variables are 

, dr 
w,=w,,+w, J -( ) , 

"'_ Vr r 

'dr I.' dr 
(4.1) 

w.=w .. +cp+w. J -( ) --. J -,--( ) . 
• Vr r ma.. r Vr r ", ", 

The fundamental frequencies wr and w" of the radial and 
azimuthal motions are 

w,=211/ rh~, w.= w,L1cp , 
j v,(r) 2n 

L1cp=~rh~ 
(4.2) 

m.'j r'v,(r) , 

where Acp is the change of the coordinate cp during the 
period of the radial motion. 

The acceleration W of the charge, being a unique 
function of its state, can be expanded with respect to 
the angle variables (4. 1) in a double Fourier series 

+00 

W(w" w.)= I: W,mexp[i(lw,+mw.»), 
i,m __ c:o 

1 • • 
w'm= (2n)' J dw,exp(-ilw,) J dw.exp(-imw.)W(w"w.). (4.3) 

_11: _a 

By virtue of the azimuthal symmetry we have 

1 4 
W.=--U.' coscp, W.=--U: sincp. 

rna.- ma.-

Expressing in (4.3) wtp in terms of cp with the aid of 
(4.1), we see that the integral with respect to cp is dif­
ferent from zero only for m =± 1. Introducing the nota­
tion 

I" r(Ie T ) dr 
<p(w,)=-. J ~( ) , mf%, ,- Vr r (4.4) 
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1 =0, ± 1, ..• , m = ±, we obtain the following expressions 
for the spectral components of the acceleration: 

Comparing (4.1) and (3.2), we verify that the angle 
variables are linear functions of the time: 

w,=w,.+oo, (t-t.) , w.=w .. +cp.+oo.(t-t.). (4.5) 

The spectral resolution of the acceleration 

+~ 

W(t)- .E W,mBxp{ilw,,+im(w .. +!f.)}exp{i(loo,+moo.) (t-t.)} (4.6) l-__ 

takes the form of a sum of harmonic oscillations with 
frequencies lwr ± w." while W is an almost periodic 
function if the frequencies are not commensurate. 

To determine the spectral resolution of the collision­
less radiation, we substitute (4.6) in (3.3). It is con­
venient to change from integration with respect to qJo 

and to to integration with respect to wra and w.,o with the 
aid of relations (4.5). In the double sums over 1, l' and 
m, m' there remain only terms with 1 = - l' and m = - m', 
and we obtain 

(4.7) 
We call attention to the fact that formula (3.3) con­

tains Wat the retarded instant of time (2.4). In the 
wave zone we have 

R(t') =R,-r(t')n""R,-uo cos 0 (t' -t,) . 

Therefore 

t' =t,+ (t-R.le)I (1-~ cos 0). 

The time dependence of the waves corresponding to 
the individual terms of the sum (4.7) is of the form 
exp{i(lwr+mw.,)t'}, corresponding at the instant of ob­
servation to exp{it(lwr +mw.,)/(l- i3cose)}. Thus, each 
term of the sum (4.7) yields a monochromatic-oscilla­
tion radiation intensity with frequency 

OO'm=(loo,+moo.)/(1-~ cos 0). (4.8) 

The radiation intensity in a unit frequency interval 

+~ +~ +~ IW I" 
x J dp, J dM J dE t. (l-t.)--;;--1l (oo-OO'm) 

-... -00 11:1'4 

(4.9) 

takes the form of a sum of intensities of monochromatic 
oscillations emitted by individual charges. The fre­
quency of each oscillation depends on the energy, angu­
lar momentum, and number of the harmonic. Since the 
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energy and the angular momentum are continuously dis­
tributed parameters, the collisionless radiation of an 
inhomogeneous plasma has a continuous spectrum. 

5, SPATIAL OSCILLATOR, ION EMISSION 
SPECTRUM 

If the origin r = 0 for the potential is not a singular 
point, then the first terms of the expansion Ua(r) near 
zero are given by 

U. (r) =U.+'/,m.'oo,'r'+ ..•. (5.1) 

The fundamental frequencies of the oscillations in the 
field (5.1) do not depend on the energy E and the angular 
momentum M of the particles: 

The Fourier component (4.4) differs from zero only at 
1 =0: 

000 (E-Uo) 'I. {i Moo. } W.",=-- -- exp 'l=-arccos~ . 2 m.' 2 E-U. 

For the potential (5. 1) we have E", = Uo + Wo I M I, and for­
mula (4.9) becomes 

dJ.(oo) ne' ) 2 +S· S~ ( )' (1 f )Il(' ) ---=--F(p.,0 -- dp, dE E-U. f. -. 00-000", 
dzdOdoo 2m.'c' (2ltli)'_~ u. 

The dependence of WOo on the velocity of the motion of 
the radiator (the Doppler effect) leads to a finite width 
of the spectral emission lines. To calculate the Doppler 
form of the line it is necessary to take into account ex­
actly the energy scatter. On the other hand, the total 
radiation intensity contained in the line can be obtained 
by taking the li function outside the integral signs. For 
the spectral intensity of the collisionless emission of 
the ions of a relativistic beam we obtain (cf. (3.13» 

If the temperature scatter is small, so that the Dopp­
ler broadening is smaller than the collision frequency, 
then the line width is determined by the collisions. Al­
lowance for the collision leads to replacement of the li 
function by the quantity 1I/1T[ (w - wo.)2 + ~], which deter­
mines the broadening. 

6. COLLISION LESS-RADIATION SPECTRUM OF A 
BEAM ELECTRON 

Let re be the characteristic radius of the region oc­
cupied by the electrons. The maximum of the intensity 
of the collisionless radiation takes place, naturally, at 
the frequencies 

where we = IIT/re is the characteristic frequency of the 
finite motion and the co-moving reference frame, and 
liT = (2Te/me)1/2 is the thermal velocity of the electrons. 
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The structure of a beam compressed by the collective 
interaction in the case of strong degeneracy (3.9) is 
such that in practically the entire region occupied by the 
electrons, r - r e» r i' the potential of the forces acting 
on the electrons depends logarithmically on r: 

U,(r) =U,+2K,T 2-1n (I.r) , I.'=ec/r.', r»r;. (6.1) 

For the potential (6.1), the limiting value of the mo­
mentum M*(E)-a function inverse to Em(A-l)-is 

1 ,(E-U, 1") J1f·=.W(E)= -;-(2K,T lorn.') /. exp -?-- - ry . 
I. _K,Tl. _ 

In place of E, M, and r it is convenient to introduce the 
dimensionless variables 

E-U, M "Ar (8-1) 
8= K,TJ.' /4 = M=""' s=-;exp --2- . (6.2) 

Changing over in (4.2) to the variables (6.2), we find 
that in the case of motion in a logarithmic potential, the 
fundamental frequencies decrease exponentially with in­
creasing energy: 

(6.3) 

Here 51 and 52 are the turning points in the dimension­
less variables and are determined from the equation 
In (e/ l.h 2 ) _5.2 =0. 

The Fourier component of the acceleration (4.4) takes 
the form 

K '" W _ I C1),Vr S ( ) 
Im--~ 1 .. /4, 

" ds lei ) -'I, [ ( C1) ) ] S,m(fl)=S-lln-.--- cos l+m--.!. w,-m<p(w,) , 
S \ f.1vS2 S2 (a)r 

" 

and the angle variable lVT and the phase cp as functions 
of 5 do not depend on the energy 

Assuming P~ - Po = (2m!T II ) 1/2'T and changing over to in­
tegration with respect to /J. in the region /J. > 0, we re­
duce the spectral intensity of the radiation to the form 

dJ.(C1) = 4e' K,'T.'vr F(~, 8)_2_ 
dz dO dC1) c' '(' '(21th)' 

+m +m mid IS ( ) I' X.E S d-rS deJ : - ~:(~) t,(1-t.)6(C1)- CIl l m ). (6.4) 
1 __ "" _00 to 0 

m_± 

The frequency wZm in terms of the variables (6.2) is 
equal to 

(6.5) 

The first factor in (6.5) gives the change of the fre-
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quency due to the Doppler effect ([61, Sec. 48). The dis­
tribution function enters in (6.4) in the form of the fac­
tor 

t.(1-t.) =exp ('fJo+K,e+-r') [Hexp('fJ,+K,8+-r') 1-', (6.6) 

which under the conditions 1f!o < 0 and I 1f!o I » 1 decreases 
rapidly in the region € > I 1f!o I /K1• Therefore I:: - I 1f!o I /K1 
is the characteristic energy scale of the electrons, and 
re = exp(l 1f!o I /2K1 - t)/AKt /2 is the characteristic radius 
of the region occupied by them. 

Low-frequency branch of the spectrum 

At low frequencies I wi « wmax the main contribution 
is made by electrons with high energy .» I 1f!o I /Kt. for 
which (6.6) corresponds to a classical Boltzmann sta­
tistics: le(l-le)=exp(l1f!ol -K1e-'T 2). Calculating in 
(6.4) the integrals with respect to 'T and e, we obtain 

Here B is a constant on the order of unity and K1 
=e2N/Tl _ 

Thus, the spectral intensity of the collisionless radia­
tion in the low-frequency region depends on the fre­
quency in power-law fashion. This result is connected 
only with the logarithmic behavior of the potential Ue (r) 
at large distances and is therefore valid for arbitrary 
relativistic beams (and not only those compressed to de­
generacy), the electrons of which are prevented from 
spreading by the forces of the collective interaction with 
the ions. 

Region of high frequencies 

The main contribution to the high-frequency part of 
the spectrum is made by electrons with low energy, the 
overwhelming part of which are in the degenerate state. 
Therefore Ie (1 -Ie) reduces to a 0 function. The inte­
gration with respect to 'T and E is carried out in (6.4) 
with the aid of 0 functions. As a result we get 

The main contribution to the sum over l is made by the 
higher harmonics Ill» 1; the maximum number of 
harmonics L is determined by the positiveness of i:zm(/J., 
w). To calculate the integral with respect to /J. we can 
use the asymptotic expression of Szm(/J.) at large l. 

In the calculation of the asymptotic form (4.4) at III 
» 1 it is convenient (at l <0) to integrate with respect to 
wT along the contour shown in Fig. 2 in the complex wT 

plane. In view of the periodicity of Ue(wT ), the integrals 
along the vertical lines cancel each other and do not 
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o 

FIG. 2. Integration contour in 
complex wr plane at 1 < O. 

change the value of W1m • At 1> 0 the integration contour 
should be symmetrical in the lower half-plane. At III 
»1, the main contribution to the integral is made by the 
integrand singularity closest to the real axis. For a 
logarithmic potential this is a simple pole at the point 
wr =w: on the imaginary axis corresponding to the ori­
gin r =0. By shifting the integration contour into the 
region 11m wr I > I tv: I, we separate the first term of the 
asymptotic expression of W1m at III » 1 in the form of a 
residue at the point tvr = tv:. Neglecting the dependence 
of !;lm(j.L, w) on m at Ill» 1, we obtain 

o :t's,' 231111 .. 1 e _'J, 

~ IS,ml-=-exp{--J (-:;--1n-) ds 
~ 4 0,(,,) s- ,,'s' 
m_± 0 

+2 j'~s [( 1-s'1n ":S') -'''-1]}, 111>1. (6.8) 
, 

The main contribution to the integral with respect to j.L 

in (6.7) is made at Ill» 1 by small j.L. Calculating the 
integrals in (6.8) at j.L« 1, we have 

Integrating with respect to j.L and replaCing the summa­
tion over 1 by integration, we obtain with logarithmic 
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accuracy the following expression for the spectral in­
tensity of the collisionless radiation in the high-fre­
quency region: 

(6.9) 

This formula is valid for frequencies wm.,.« W 

«wm.,.(r./rj)' The intensity decreases with increasing 
frequency so slowly that this region accounts for the 
bulk of the total energy of the radiation. After integrat­
ing over the frequencies we obtain 

~ _ 2 e'K,T.'lJr 'I, 
dzdO - 3:t' (c1iy)' 11/:,1 F(~"e), 

dIe 112 e'lJrT.'K,II/:,IV' 
a;= 45:t (lie)' l' (1)1). 

The last formula coincides with the expression for the 
total intensity of the collisionless radiation (3.12). 

The author thanks Academician I. M. Lifshitz and 
Professor L. P. Pitaevskil for a useful discussion. 
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