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I) A short exposition of the results for this case is contained in 
the work of Pitaevskir and the author. [3) We note that a dif­
ferent normalization of the flow velocities is used in this 
case. 
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An analysis is given of the influence of polarization plasma effects on the frequency of inelastic atomic 
transitions induced by the combined electron and ion fields. The inelastic collision frequency W is 
expressed in terms of the Born matrix element and the longitudinal component of the plasma permittivity 
at the frequency Wo = t:. E / h of the atomic transition (t:. E is the transition energy). For low-density 
plasma. the frequency W is equal to N< VCTOI >' where CTo l is the cross section for the excitation of the 
particular transition. averaged over the velocity distribution function of the exciting charged particles in 
the plasma. and N is the density of the particles. The dependence of collision frequency on plasma 
temperature and density is investigated in detail for optically allowed transitions with a small resonance 
defect W00 It is shown that polarization effects play an important role at temperatures for which the main 
contribution to the inelastic collision frequency is due to electron-atom collisions. Whilst inelastic 
transitions in the plasma are largely due to interactions with ions. polarization effects are not appreciable, 
even at high densities that are close to those of a solid body. Conditions are formulated for the validity of 
first-order perturbation theory as applied to the frequency of inelastic transitions with a small resonance 
defect. 

PACS numbers: 52.20.Hv 

The polarization properties of plasma modify the char­
acter of interactions between charged particles. The 
spectroscopic consequences of this effect have been dis­
cussed in connection with the emission of forbidden 
spec tral lines [1] and the theory of broadening of spec tral 
lines in plasma. [2] By polarization properties, we un­
derstand two physically clear effects, namely, the 
screening of Coulomb forces and the interaction between 
charged particles and plasma oscillations. It is obvious 
that both these effects should have an important influence 
on the rate of relaxation of excited states in dense plas­
ma. The present paper is concerned with this question. 
By dense plasma, we shall understand plasma in which 
the Langmuir frequency exceeds the frequency of the 
atomic transition. This condition is realized, for ex­
ample, for transitions between highly excited atomic 
states and for a number of transitions between the en­
ergy levels of multiply-charged ions in dense laser 
plasma. 

1. FORMULATION OF THE PROBLEM 

In low-density plasma, the frequency of inelastic 
transitions between atomic levels 0 and 1 due to col-
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lisions with electrons is given by 

v=N(va .. )= S va,,(v)F(v)dv, (1) 

where F(v) is the electron velocity distribution func­
tion, 0"01 is the cross section for the excitation of the 0-1 
transition, and N is the electron density. 

In dense plasma, the interaction between an atom and 
electrons can no longer be looked upon as the result of 
successive independent collisions. An incident electron 
interacts with the ambient electrons and ions, and in­
duces a dipole moment in the plasma. This means that 
the resultant field acting on the atom is made up of fields 
produced by the electron and by the dipole moment in­
duced by it in the plasma. 

Let us therefore consider a more general formula­
tion of the problem. Suppose that the atom is located 
in a random field V(r, t) due to all the charged particles 
in the plasma. In first-order perturbation theory, the 
probability of a transition from state 0 to state 1 at time 
t is then given by the expression1) 
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.' , 
la(t) I' = I S e" ·VIO (t')e i •• '· dt' I 1-0, (2) 

VIO(t) =<11 V (r, t) 10)= J q.r " (r) VCr, t) q.r. (r)dr, (3) 

where Wo is the 0-1 transition energy and ir(r) are the 
atomic wave functions (see[3]). 

Substituting (3) in (2), and averaging over all the pos­
sible realizations of the random field V(r, t), we obtain 

.. e:!TI 

<\a(t)I')= Sdw JdqIA(q)I'V'(q,(;), 1-0, (4) 
_~ «;)-00.)'+1' 

where A(q) is the Born transition matrix element: 

(5) 

and V2(q, w) is the spectral density of potential fluctua­
tions: 

<VCr, t) VCr', 1'»= J dq dw exp{iq (r-r') -too (t-t'}} V'(q, 00). (6) 

The frequency of inelastic 0-1 transitions, i. e., the 
transition probability per unit time, is obtained by dif­
ferentiating (4) with respect to t: 

W=lim ~t la(t) 1'=2n S IA (q) I'V'(q, w.)dq. 

'1'-0 

(7) 

We note that the expreSSion given by (7) can also be 
obtained by simplifying the kernels of the general kinetic 
equations for partially ionized plasma (see[4], Chap. 14). 
In particular, similar expressions were obtained in [2] 

for the nondiagonal pole-type potential l;(r) = A/R2. 

Before we consider polarization effects, let us show 
that, in the case of low-density plasma, the expression 
given by (7) is equal to the frequency of inelastic col­
lisions given by (1). In fact, in low-density plasma, 
V2(q, w) is the spectral density of fluctuations in the 
electric potential of an ideal electron gas (see, for ex­
ample, [5], p. 541): 

2N S V'(q,w)=- F(v) II (w-qv)dv. 
llq' 

(8) 

Substituting (8) in (7), we obtain 

W=N Sv[! S:~ IA(q) I'll (w.-qv) ]F(v)dv. (9) 

It is shown in [6] that the expression in brackets in (9) is 
the quasiclassical Born apprOximation to the excitation 
cross section for the 0-1 transition. 2) Thus, the ex­
pressions given by (1) and (7) yield the same result in 
the case of low-density plasma, i. e., in the absence of 
plasma effects. Only the form of these expressions is 
different: while in (1) the frequency of the inelastic 
transition is given in the form of a cross section aver­
aged over the Maxwellian electron distribution, in (7) 
it is presented in the form of an integral over the wave 
vectors of the spectral density of fluctuations in the 
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plasma potential at frequency wo. 

In dense plasma, when Debye screening and the inter­
action of the atom with plasma waves must be taken into 
account, the expression given by (8) must be divided by 
If (q, w) I a, where f. (q, w) is the longitudinal permittivity 
of the plasma. In particular, in plasma with the Max­
wellian electron velocity distribution, we have [5] (p. 531): 

V'(q,w)= ~2~ 'I le(~,qVT/(;)I-'exp(- 2«;)' )')' 
rc /2Q Vr l qVr 

(10) 

i~ Y n ( 1) e(~,x)=1-~t1l(x)+- -exp -- , 
x ·2 2x' (11) 

where 

T is the electron temperature, wL = (4rrNea/m)1/2 is the 
Langmuir frequency, and <I>(x) is the plasma dispersion 
function: 

t1l(x)=f 1+3z'-:l-15z'+ ... , 
\ z-'+z-'+ ... 

z<1, 
z>1. 

(12) 

Substituting (10) in (7), and summing I A(q) 12 over the 
magnetic Mo and Ml quantum numbers of the atom, we 
obtain the following expression for the frequency of in­
elastic collisions, which takes plasma polarization in­
to account: 

-NS·dq ( (;)1) W=81'2n- 3CP(q)Ie(~,qvT/(;),)I-'exp ---'- , 
Vr, q 2(qvr)' 

(13) 

cp(q)= 2[,1+1 L, IA.,.M,(q) 1'= 2[~+1 L, I <M,lexp(iqr) 1M.> I'. (14) 
ArO,JII I M(I,M, 

In the case of low-density plasma (}3 = w~ /w~« 1), we 
have e(}3, qVT/O)'" 1, and the formula given by (13) yields 
the result given by (1). However, even in this case, 
the form in which (13) is written is more convenient be­
cause it enables us to eliminate the integration of the 
cross section over the velocities, which must usually be 
carried out numerically. 

Thus, allowance for polarization effects reduces to 
the appearance of the factor 1e(}3, qVT /wo) 1-2 in front of 
the atomic formfactor cp(q). The problem of inelastic 
electron-atom collisions is then analogous to the scat­
tering of light by fluctuations in electron density in plas­
ma (see, for example, [5]) and the problem of elastic 
collisions between charged particles (this follows from 
the Lennard- Balescu equation [8]). 

2. EXCITATION BY ELECTRONS 

We now consider the role of polarization effects by 
examining the example of inelastic optically allowed 
atomic transitions with low excitation energy wo. It is 
precisely these transitions that are particularly interest­
ing from the point of view of applications because they 
are the main reason for the broadening of spectral lines 
and determine the lifetime of metastable states in plas­
ma. It was shown previously in .91 that the Born matrix 
element for such transitions could be written in the form 
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cp(q) =').'Ro'q'K,'(qRo) , (15) 

where Kl is the Macdonald function, A = U/2WO)1/2, and 
f is the oscillator strength of the 0-1 transition. The 
quantity Ro has a simple physical interpretation. The 
matrix element (15) corresponds to a nondiagonal di­
pole-type interaction potential between the atom and 
an electron: 

S r< ').R 
~(R)= Po(r)P,(r) r>' r'dr= (R'+Ro'),/.' (16) 

where P(r) is the radial atomic function, and r < and r) 
are, respectively, the smaller and larger of the two 
quantities rand R. 

Thus, Ro represents the radius of the interaction in­
ducing the inelastic transition. In the case of transitions 
without a change in the quantum number n, and when hy­
drogen-like wave functions are employed, the charac­
teristic radius is Ro=n2. In general, however, Ro must 
be expressed in terms of integrals of the atomic radial 
wave functions Po(r) and P1(r). Substituting (15) in (13), 
and assuming that e(q, w) = 1, we obtain the following ex­
pression for the frequency of inelastic transitions in low­
density plasma: 

Bl'2n').'Ro' w (WO') Bl'2n').' 
W=N - S qK,'(qRo)exp ---- dq=N I(a), 

Vr 0 2(qvr)' w"Ro 
(17) 

Vr 
a=--. 

woRo 
(18) 

The formula given by (17) leads to good agreement with 
the results of calculations based on numerical wave 
functions, [9] and we shall therefore confine our atten­
tion to the matrix element 'cp(q) given by (15). 

According to (13) and (15), the expression for the rate 
of inelastic collisions in the general case is of the form [10] 

Bl'2n').' 
W=N--/(a, ~), 

woRo (19) 

t(a,~) = R:' S q dqK,'(qRo) Ie (~, q:: ) 1-' exp ( - 2~o~r)' ) . (20) 
o 

The function f (a, (:3) represents the dependence of the 
frequency of inelastic transitions on the plasma tempera­
ture and density. 

In low-density plasma ((:3 = 0, f: = 1) and when a» 1, 
the integrand in (20) is localized in the region WO/VT 
< q< l/Ro, the lower boundary of which is determined 
by long-wave fluctuations and the upper boundary by the 
atomic formfactor cp(q) in (13), which is proportional to 
K~(qRo). When a« 1, the spectral density of fluctua­
tions in the region q-1/Ro is exponentially small, and 
the transition frequency W decreases exponentially with 
decreasing temperature. 

We must now investigate the role of plasma effects 
and begin by considering the case of moderately dense 
plasma such that (:3:5 1. Since the permittivity is dif­
ferent from unity only for qVT/WO~ 1, the influence of 
plasma effects for a» 1 should be quite small. In fact, 
calculations yield (see Appendix) 
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Bl'2n,-' [ 1 ] 
W(a,~)=N-- In2a---C-C(~) , 

w,R,a 2 
a;:;l>i, (21) 

where C = 0.577 is Euler's constant and C((:3) is defined 
in the Appendix. Hence, it is clear that, at sufficiently 
low excitation energy, the dependence of the frequency 
of inelastic transitions on temperature is still logarith­
mic, just as in low-density plasma. Polarization ef­
fects merely modify the value of the constant C((:3) in this 
case. 

When a« 1, the main contribution to the integral in 
(20) is provided by the narrow region of transferred 
momenta in the neighborhood of qo'" a-2/3/21/2Ro, in 
which the permittivity may differ appreciably from unity. 
In particular, when 

the spectral density of fluctuations has a sharp peak 
connected with Langmuir oscillations. Hence, when 
a« 1, one would expect that polarization effects would 
exert a substantial influence on the situation. Unfor­
tunately, it has not been possible to express Was a 
function of temperature and density in an analytic form. 
We reproduce the result only for the special case when 

a<2[ (1-p)/3~P<1, 

for which the main contribution to the integral in (20) is 
provided by short-wave oscillations: 

Bl'2n').' ( n' )'1. (3 ) W=N--- -'- a-'I'(l-p)-'exp ---_- . 
w"R, 3·2'1. (al'2),/. 

(22) 

This differs from the corresponding expression in [9] by 
the presence of the screening factor 1 e 1-2, where 

is the plasma permittivity at the frequency of the atomic 
transition. 

Finally, when (:3 = 1 (w~ = w~), we have 

Bl'2n ,-' 2'1. ( n ) 'I. _. ( 3) W=N---- - a I'exp ----=-- . 
w"R, 3 3 {al'2)'/' 

(23) 

Comparison of (23) with (22) shows that, when the elec­
tron Langmuir frequency is in exact resonance with the 
frequency Wo of the atomic transition, there is a qualita­
tive change in the dependence of the frequency of in­
elastic collisions on the parameter a, i. e., the elec­
tron temperature. 

We have not so far taken into account the ion part of 
the plasma permittivity. When (:3$1, the presence of 
ions has an important effect on the spectral density of 
fluctuations in the region 

where M is the ion mass. However, this region pro­
vides a negligible contribution to the integral in (20) ex­
cept for the case of very low temperatures [a< (m/M)3/2], 
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FIG. 1. Dependence of the 
function f(0!. 13) in (20) on the 
parameters O! = VT/ (woRo) and 
13 =wj,lwij. 

when the excitation rate is exponentially small. The in­
fluence of ion-acoustic and ion- Langmuir oscillations 
must, in general, be taken into account for {3> M/m 
when the frequency of the corresponding oscillations is 
close to the frequency of the atomic transition. For real 
tr~nsitions, such values of {3 correspond to the density 
of a solid body (N) 2x 1023 cm.:! for liwo-O. 3 eV), and 
we shall not consider them here. 

To summarize the results of this section, we may say 
that, when {3-1, the region in which polarization effects 
have an appreciable influence is determined by the in­
equality a$l, Le., the Langmuir plasma frequency 
should be comparable with the frequency of the atomic 
transition (WL - wo) and the Debye length should be smaller 
than the characteristic range of the interaction, L e. , 
rD~Ro, where rD = (T/41TNe8)1{Z. 

3. RESULTS OF CALCULATIONS. DISCUSSION 

The rates of excitation of optically allowed transitions 
can be obtained from (19) and from the figure which gives 
the results of numerical calculations of the function I (a, 
(3) based on (20). This can be done for arbitrary plasma 
temperature and density. In the most interesting re­
gion, where a::: 1, the influence of polarization effects 
leads to a reduction in the excitation rate. When a 
< 1, the function W({3) becomes nonmonotonic: as the 
density increases, the quantity W(j3) at first increases 
and them, for (3;;. 1, it rapidly decreases and is given 
by W({3)-{3-2[see (22)]. 

Let us now consider the validity of the first-order per­
turbation theory used in the derivation of (7) for the fre­
quency of inelastic collisions. The condition for the 
validity of the Born approximation in calculations of 
cross sections for inelastic transitions is3 ) 

ACllo A 1 --« , 
v' Rov 

(24) 

where v is the relative velocity of the colliding particles. 

It is quite clear that a Similar criterion for the col­
lision frequency should contain the electron density be­
cause the mean field acting on the atom decreases with 
increasing mean distance between the particles. This 
criterion can readily be obtained from the condition 

(25) 

where T is the correlation time for the potential V10(t) 
in (2). 
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Substituting T - Ro /VT in (25), which corresponds to 
the potential given by (16), we obtain the condition for 
the validity of the Born approximation in the following 
form: 

(26) 

Finally, let us briefly consider the influence of po­
larization on inelastic atomic transitions due to col­
lisions with ions. In this case, the main contribution 
to the frequency of inelastic collisions is provided by 
the region of wave vectors q? WO/VTI (where vTj = ";TIM). 
At the same time, Debye screening ensures that the 
permittivity differs from unity only for q'!::WO/VT so that 
polarization effects are unimportallt in this case. 

The authors are indebted to B. Ya. Zel'dovich, Yu. 
L. Klimontovich, V. V. Pus tovalov , 1. 1. Sobel'man, 
V. N. Tsytovich, and E. A. Yukov for useful suggestions. 

APPENDIX 

We must now consider the properties of the integral 
I(a, (3) in (20): 

1~dt[t (t)]' . (1) f(O;·~)=--;S t ---;;K, -;; le(~.t)I--exp -2'f . (A. 1) 
o 

Since 

1 d {X' } - [xK, (x) ]'= -- - [K.(x)K,(x)-K,'(x)] 
x dx 2 

and integrating by parts, we obtain 

(A. 2) 

If we expand the expression in the braces into a series 
for t/a« 1, and retain only the nonvanishing terms, we 
obtain 

;JKo( :)K.( ~)-K"( :)] ""In~ - ~ -ln2+C, (A.3) 

where C is the Euler constant. Substituting (A.3) in 
(A.2), and using (11), we obtain 

f(o;.~)= : [ln20;-+-c-C(~)], 0;-+0, (A. 4) 

C(~)= j[([1-~«D(Y)l'+ ~::exp(- ~,)r'exp(- 2:,)Lln YdY. 

(A. 5) 

In particular, in the case of low-density plasma ({3 = 0), 
we have 

C(O) = (C-In 2)/2. 

When a« 1, we can use the asymptotic properties of 
the MaCDonald function for large values of the argu­
ment. The integrand in (A. 1) will then contain the fac-
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tor exp{ - 2tl Ct - 1/2t2 } so that we use the saddle pOint 
method which yields 

t(a.,~) = 3,~;".a.-·1' IE [~, ( ; ) '''] ,-' exp ( - (a.l'~)~ ). (A. 6) 

Using (11) and (12), we have 

(A. 7) 

so that the final expression for Ct« 1 becomes 

(A.S) 

IWe are using the atomic system of units. 
2 'This result could be foreseen because the plasma field 

V(r, t) in (2) is assumed to be classical, which, in collision 
language, corresponds to the description of the relative mo­
tion of colliding particles in terms of classical trajectories. 
Strictly speaking, this approach is valid for cross sections 
only when 1iwo < E, where E is the energy of the relative mo­
tion of the colliding particles. However, a slight modifica-

tion enables us to extend this approach to the region where 
1iwo- E, at least for optically allowed transitions. Ifl 

3'The presence of the factor AWolv2 on the left of (24) is specif­
ic precisely for transitions with small resonance defect woo (91 
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Collision less emission of radiation by an inhomogeneous 
plasma 
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Collisionless radiation by an inhomogeneous plasma, due to the finite motion of charges in the field of 
external forces and collective interaction forces, is studied. The radiation intensity is inversely proportional 
to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the 
radiation from a vacuum spark and other relativistic beams compressed to a small size by collective 
interaction forces. The intensity of the collisionless radiation is calculated with account taken of the Fermi 
statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, 
reaches a maximum at the frequency of the finite motion of the emitters, and then decreases. Measurement 
of the collisionless radiation by a plasma compressed to a small size by the pinch effect is a natural way of 
diagnosing the plasma. 

PACS numbers: 52.25.Ps 

1. INTRODUCTION 

A widely used method of plasma diagnostics is the de­
termination of its parameters from the experimentally 
measured radiation. The electrons and ions of the plas­
ma are under the influence of external forces and of the 
collective-interaction forces. These forces accelerate 
the charges and cause them to radiate. 

If the plasma is a gas, i. e., if the time between col­
lisions of the particles is large in comparison with the 
duration of the collision, then the charges are subjected 
for the greater part of the time to smooth acceleration 
under the influence of the forces of the external field and 
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of the average collective interaction. In the case of 
short-range collisions, the charges are appreciably ac­
celerated within short time intervals (on the order of 
the duration of the COllision). The radiation produced 
by a gaseous fully ionized plasma is of two types, the 
radiation accompanying the short-range pair collisions, 
and the radiation due to the external forces and the av­
erage collective-interaction forces. The latter type has 
no bearing on the particle collisions and can be naturally 
called collisionless. 

If the plasma is uniform and is not situated in an ex­
ternal field, then there is no collisionless radiation. 
The radiation connected with the Coulomb collisions of 
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