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The problem is considered of the decay of the initial density and velocity discontinuity in a plasma with 
cold ions and hot electrons. It is shown that the equations of two-stream hydrodynamics should be used to 
describe the evolution of such a discontinuity. The region of initial values of the plasma parameters, 
u _ - u + and N j N + is found in which the self-similar solutions obtained are applicable. The stability of 
the resultant solutions is investigated. 

PACS numbers: 52.25.Fi 

1. INTRODUCTION 

In recent years, great attention has been paid in plas­
ma physics to the description of collisionless shock 
waves-nonlinear waves that arise in a collisionless 
plasma and transform the plasma from one stationary 
state to another. The analog of such a problem in gas 
dynamics is the Riemann problem Ul-the determination 
of the asymptotic (as t- co) motion of the gas, in which 
the gas on the right halfspace (x > 0) is maintained (up to 
the initial moment) at a pressure p+, and has a velocity 
u+; in the left half space (x < 0) these quantities have the 
values p_ and u., respectively, 

The solution of the Riemann problem for a plasma in 
the case in which T. - Tj is given in the work of Gure­
vich et al. [2] with the use of the kinetic equation, with a 
self-consistent field for the ion distribution function. In 
the case in which the ions are cold (Tj « T.) their ve­
locity distribution function degenerates into a 0 function, 
and in the description of the motion of the ions, a transi­
tion from the kinetic equation to equations of the hydro­
dynamic type becomes possible. These equations in the 
dimensionless variables u'" = v",(T./Mr 1/2 , cp = el/J/T., 
~ =x(M/T.)-1I2, have the form 

all. iJu. acp 
-at + "'a;-= --a;-' . . (la) 
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N=N.+N" ct=1,2. 

(lb) 

(lc) 

Here Nt> N2, V1' V2 are the concentrations and veloci­
ties of the two ion fluxes, l/J is the electric field poten­
tial, M is the mass of the ion, T. is the temperature of 
the electrons, The system (1) is written under the as­
sumption that all the variables depend only on the single 
coordinate and the time t. 

The introduction of the index O! corresponds to the fact 
that, in the absence of collisions, ions can be found at 
each point in space, arriving both from the right and 
from the left; "two-layer hydrodynamics" is required 
for the solution of such a system of particles. Equa­
tions (la) express the conservation of momentum of each 
of the components of the ionic part of the plasma, and 
Eqs. (lb) express the conservation of the 'number of 
particles of these components. 

The system (1) should be satisfied by the Poisson re­
lation 

d'lI' ---=4ne(N,-N.), 
dx' 

(2) 

where l/J, NlJ N. are functions of the coordinate and the 
time. 
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If we consider processes that are sufficiently slow in 
comparison with the time of establishment of the elec­
tron distribution, then the electron density distribution 
is determined by the potential of the self-consistent elec­
tric field at each point at the given instant of time: 

N.(6, t) =N.[CP(6, t)]. (3) 

It is now assumed that the characteristic sizes of the 
concentration inhomogeneities are much greater than the 
Debye radius, i. e., assuming the condition of quasi­
neutrality, we obtain the equation 

N=N.(cp). 

We shall use this equation in what follows for the clo­
sure of the system (1) in place of Eq. (2). 

The boundary conditions to the obtained system (1), 
(4) in the case of the setup of the problem shown should 
be put in the following form: 

Nt (" t) -+-N_, U t (6, t) -+-u_, N, (6, t)-+-O for ,-+--00, 
(5) 

N,(~, t)-+-N+, u,(~, t) -+-u+, Nt (s, t)-+-O for ~ -+-+00, 

E-~ ..... O a, for 1~1_00. 

These equations mean that, sufficiently far from the 
source, the plasma is characterized by the unperturbed 
stationary values of the concentration velocity, which 
existed there at the initial moment and the electric field 
is absent in these regions. 

This paper is devoted to a detailed study of the system 
(1), (4) with the boundary conditions (5). The corre­
sponding motion of the plasma will be considered in two 
cases: 1) isothermal state of the electron gasl) (here 
N.(q;)",Noe'P and 2) with account of the possible adiabatic 
capture of the electrons by the electric field of the pro­
duced wave. 

The stability of the resultant two-flow solution will 
also be studied. 

2. DECAY OF THE INITIAL DISCONTINUITY IN TH-E 
CASE OF A BOLTZMANN DISTRIBUTION OF THE 
ELECTRONS 

1. Converging plasma flows. Considering the system 
(1), (4), (5), we first note that it does not have two-ve­
locity stationary continuous solutions. However, by 
noting that a parameter of the length dimension is lack­
ing, we can seek self-similar two-stream continuous 
solutions. (The self-similar variable is T'" Uf.) The 
method of construction of such solutions is given below. 

After the introduction of the self-similar variable, the 
set (1), (4) takes the form 

du. drp 
(u.-')--;h = -~' 

dN. du. 
(u.-.)-+N.-=O, 

d. d. 

N=Nt+N,. 0:=1,2, 
N(.)=N,e· 

(6a) 

(6b) 

(6c) 
(6d) 

for a Boltzmann distribution of the electrons. The sys-
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tem (6) has solutions differing from a constant value only 
upon satisfaction of the condition 

~+_N_'_=N 
(ut -.)' (u,-.)' . 

(7) 

The set of equations (6) and the identity (7) were first 
described by Alexeff ef al. [4J and an approximate solu­
tion was found for the system (6) for the case N2« Ni 

and Ui» 1. 

From (lc) and (7), we find Ni and N 2, expressed in 
terms of the flow velocities 

N ( )=N() (u t-.)'(l-(u,-.)'), 
t • • (ut-.)'-(u,-.)" 

N ( )- N( ) (u,-.)'(1-(ut-')') 
, • -- • (ut-.)'-(u,-.),· 

(8) 

The condition of non-negative character of Ni and N2 
here means that two-stream solutions exist only when 
the velocities of these flows satisfy one of the following 
systems of inequalities 

(u,-.) ';;;'1. 

(u,-.)'~1, 

(u,-.)'~1, 

(u,-.)';;;'1. 

(9a) 
(9b) 

The force acting on the ion from the electric field can 
also be expressed in terms of one of the flow velocities 

F(.)=~=~ dN 
d. N d. 

-2 ( N.JN + N,IN ) / [1 3 ( N.lN +" N.IN )] 
- (u,-.)' (U2-')' - (u,.-.) , (u,-.) , 

2 (u,-.) (u,-.) [(u,-.) ,+ (u,-.) (u,-.)+(u.-.)'-1] 
(10) 

The remarks that we have made allow us, by intro­
ducing the new variables w","'u", - T, to reduce the solu­
tion of the system (6) to a solution of the single differ­
ential equation 

.!!!2 = (w,+w,) (wt2w"-3(w,Z+~2Z-1) } +2w,(Wt'+WtW,+"w.'-l) . (11) 
dw, (w,+w,) (w,'w,'-3(w,'+w,'-1)}+2w,(w,'+w,w,+"w.'-1) 

The dependence of T and N", on W2 can be expressed in 
terms of quadratures by the solution (11). The investi­
gation of the integral curves of the Eq. (11) is conve­
niently carried out with the use of the phase plane (Wi> W2)' 

In view of the symmetry of the equations relative to the 
exchange of variables W2= wi> it is sufficient to consider 
only the halfplane Wi;;' w2• The conditions (9) show that 
the integral curves of interest to us should be loc3.ted 
inside the band 

wl~1, Iwzl~1, 

Iw,I~1, W2~-1. 

(12a) 
(12b) 

The curves on the indicated phase plane, on which the 
ratio N i /N2 '" [w~(l- w~)]![w~(l- wnl = const, are shown 
in Fig. 1. It is seen from these curves that for the 
satisfaction of the boundary conditions (5), the integral 
curves should begin either on the line W2 = 0 or on the 
lines Wi = ± 1, and end either on the line Wi = 0 or on the 
lines W2 = ± 1. If we also require that the change in the 
value of the electric potential in the transition through 
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2 J ~ 5 

2.0 

1fIfo..:;;..-:::r::---.JO 1.0 

1. Lines of constant ratios of the densities in two flows 
of ions N/N2 =const, f =N j /N2> ;'v1 is the value of the maximum 
(in k) increment of growth of the perturbation 

Curve I 
~7 O.t 0.3 0.5 0,1 0,9 0.98 

0.336 0.350 0.3510 0.350 0.336 0.327 

the region of two-flow current is finite, there is left 
only one possibility: the beginning of the integral curves 
on the line w2 = 0 and the end on the line W1 = 0 within the 
limits of the bands shown in (12). 

Several such integral curves are shown in Fig. 2. The 
arrows indicate the direction along the curve in the case 
of increase in T. All these curves pass through the 
point (W1 = 1, W2= -1), which is a sitigular point of the 
knot type for Eq. (11). At this point, the value of N 1/N2 

for each curve is determined by the angle of entrance of 
the integrated curve (dw/ dW2) I W1=1. W2=-l" All the inte­
grated curves necessarily intersect the line w~ + W1W2 
+~= 1, shown as dashed in Fig. 2. The quantity F(T) 
goes to zero on this line, which corresponds to the ex­
tremum N( T). 

The solutions of the system (6) corresponding to this 
integral curve are shown in Fig. 3. Qualitatively, they 
have the following character. At T less than some T_, 
there are only particles N1 with constant density N= N1 
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FIG. 2. Integrated curves 
of Eq. (11) on the phase 
plane. 
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FIG. 3. Distribution of 
the total density and veloc­
ity of two flows of ions in 
the region of their mutual 
penetration for smooth 
solutions of the set of 
equations (6). 

=N_ and velocity U1 =u_. In the region T_< T< T., there is 
two-velocity motion, in which U2= Tat T= T_ and U1 = Tat 
T = T.. The dependence of Non T in this region is de­
scribed by a curve with a single maximum. At the point 
T = T., N1 = 0 and at T> T. there are only particles N2 with 
constant velocity U2=u. and density N=N2=N •• The 
graphs of the functions N(T), U1(T), U2(T) are shown for 
several values of u_ - u. and NjN •• 

The solutions thus found are determined by the speci­
fication of a single arbitrary constant, as an example of 
which we can choose the value T_. This selection corre­
sponds to a choice of the value W1 on the line W2 = 0 on the 
phase plane (here and below, we disregard the inessen­
tial arbitrariness connected with the possibility of mul­
tiplication of N1 and N2 by an arbitrary constant, and with 
the possibility of an arbitary choice of the origin for 
measuring the velocities). This means that the values of 
NjN. and u_ - u. in solutions of the considered type are 
not independent, but are connected by some relation. In 
other words, the values of NjN. and u_ - u. for these 
solutions should lie on some curve (the solid line in Fig. 
4). However, Since, physically, the jumps in the ve­
locity and density can be given independently, more gen­
eral solutions should exist which depend on two arbitrary 
constants. 

For construction of such solutions, it is essential that 
the equality (7), considered as an equation for T in the 
case of given values of u'" and N"" always has two roots, 
which satisfy the condition U1 > T > u2' Therefore, by 
choosing any point T, in the two-velocity region of solu­
tions, it is possible to assume that, in the case T> T l' 
N", and u'" have constant values, equal to their values at 
T= T1• Such a plateau in the solution should extend to the 
value T = T 2' which is the second root of the equality (7) 
atN",=N",(T1)andu",=u",(T1). Further, atT>T2, all the 

FIG. 4. Region of possible val­
ues of the discontinuities of the 
velocity and density. 
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FIG, 5, Distribution of the total density and velocities of two 
streams of ions in the region of their mutual penetration for 
solutions of the set of Eqs, (6), including the plateau. 

quantities begin to change according to the two-velocity 
solution, 

In the consideration of the picture of the phase den­
sity, the introduction of a plateau corresponds to the 
transition from the point (wt, wt), achieved in the mo­
tion along the integral curve at 7 = 7lf to the point (wr 
- A, wt - A) on another integral curve with the same 
value of N1/N2 as at the point (wr ,wt). In this transi­
tion, the quantity A is determined as a root of the equa­
tion 

/:;.'-2/:;.'(w, '+10,') +/:;. (w,"+w."+4w,'w,'-1) 

2wi ·w.- -. -. .. ----(w, +w. +w, w, -1)-0, 
w,'+w,' 

(13) 

which satisfies the condition 0 < A < wt, Motion along the 
new integral curve begins with the value 7 = 72 = 71 + A. 

We note that in order that the described transition be 
pOSSible, 71 must lie to the left of the maximum density 
N for the two-velocity solution. Therefore, in solutions 
with a plateau, the maximum value of N is achieved on 
the plateau itself. We note that at the points 71 and 7 2, 

the solution has a weak discontinuity-at these points, 
the continuity of the first derivatives of NO!. and UO!. is dis­
rupted. Several solutions with a plateau are shown in 
Fig. 5. 

In view of the arbitrariness of 71> the solution with the 
plateau is characterized by two essential arbitrary con­
stants (71 and 7.), which must be so chosen that NjN. 
and u. - u. are equal to the specified initial conditions at 
the discontinuity. However, it is easy to show that the 
possible values of NjN. and u. - u. corresponding plane 
lie above the curve obtained for the smooth solutions. 
Thus the described hydrodynamic method of decay of the 
initial discontinuity can exist only for a jump, the initial 
conditions on which lie in the obliquely shaded regions 
on Fig. 4, In particular, it is impossible to construct 
a solution of the demonstrated form in which both regions 
of the plasma would be quiescent relative to one another 
at the initial moment, The positiveness of u. - u. for the 
obtained solutions means that both regions of the plasma 
move toward one another, 

2. Diverging plasma flows. If u. - u. was negative at 
the initial instant, i. e., both regions diverged, then the 
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ions located to the left and to the right, cannot be in one 
region of the halfspace, and two-stream motion dO~S not 
arise, In this case, for the description of the motton of 
the system, we must use the equations of single-velocity 
hydrodynamics, In place of the system (6) and the con­
dition (7), we how have, respectively, the system 

du dc:p 
(u-,)-= --, 

d, d, 

dN du 
(u-,)-+N-=O, N(,)=.'V,e·") 

d, d, 
(14) 

and the condition 

(u-,)'=1. 

The system (14), (15) has two forms of solutions: 

u=T+i, N=N,e-', 
u=T-i, N=N,e'. 

(16a) 
(16b) 

The solution of the problem with boundary conditions 
of the form (5) can belong to one of two types, described 
below: 

u=u_, N=N_, ,<To, 
u=T+i, N=N,e-', '-<'<'., (17a) 

u=u+, N=N., '>'.' 
u=u_, N=N_, ,<T_, 

u=T-1, N=N,e', T_<'<'+, (17b) 
u=u+, N=N., "1">, •. 

Solutions of type (17a) and (17b) include two weak dis­
continuities and arise if the given initial conditions on 
the jump satisfy the equations 

(18a) 

(18b) 

respectively. There are also solutions that are a splic­
ing of a solution of type (17b), a plateau, and a solution 
of the type (17a), having four weak discontinuities. Such 
solutions arise if the initial conditions at the jump fall 
into a region denoted by the vertically shaded area in 
Fig. 4, We note that precisely these regions correspond 
to jumps for which the Riemann solution in gasdynamics 
with isothermal sound velocity gives two diverging rare­
faction waves. 

3, DECAY OF THE INITIAL DISCONTINUITY WITH 
ADIABATIC COLLISIONLESS ELECTRON CAPTURE 

The solutions constructed above for the case of mov­
ing towards each other plasma regions are characterized 
by the presence of a region of positive spike in the elec­
tric potential. It is evident that such a region is a po­
tential well for electrons; the motion of the electrons 
trapped in such a well become finite, In the presence of 
trapping of particles and in the absence of collisions, 
they no longer have a Boltzmann distribution function, 
As was shown earlier, [5,6] the electron distribution func­
tions (in the case in which the potential well changes 
sufficiently slowly with time) is determined from the 
condition of the adiabaticity of the trapping of the elec­
trons by the field of the wave, and the distribution of 
concentration of electrons in the potential will have the 
form: 

A. P. Meshcherkin 539 



(19) 

where No is the concentration of electrons at cp = O. The 
first term in this formula corresponds to electrons that 
carry out infinite motion, and the second, to the trapped 
electrons. 

Obtaining from this the value of dcpld~, we have 

dcp dcp dN 1 dN N 1 dN 

di= dN. di= N'nl df= N'nl/i'df' 
(20) 

The use of this expression for the electric field in the 
set of equations (1) again allows us to obtain equations 
of the type of the equations of hydrodynamics, where the 
role of the gasdynamic pressure is played by the pres­
sure of the electron gas. It is seen from this compari­
son that c = wi Nlaf )1/2 has the meaning of the local sound 
velocity. For a Boltzmann distribution of the electrons 
c(N)= 1. (Or, in dimensional units, c= (Tg IM)1I2_the 
isothermal ion sound velocity. ) 

In the presence of captured particles, the temperature 
of the electron gas is no longer constant, but changes 
in the region cp > 0 according to the law 

and its pressure will be determined in this region by the 
expression 

(22) 

where Tgo and P.o are the temperature and pressure of 
the electron gas at cp = O. It is seen from the expressions 
(21), (22) that the state of the electron gas at 0 < cp « 1 
(as also for cp "" 0) can again be described by the isother­
mal equation of state, since at cp» 1 we can use the poly­
tropic equation of state with the polytropic exponent 
equal to 3. 

The solution of the set of equations (6) with account of 
(19) and (20) is carried out by a method similar to that 
developed in Sec. 2. 1. After transformation to the vari­
ables uOI = uOII c - T, we obtain the set of equations 

[(il ,+I1') {J.!,'J.!,'-3(J.!,'+i-\,'-1)}+2J.!,(I1.'+I1,I1,+J.!,'-1) 1+ ..... 

[ (J.!,+J.!,) {J.!,'i-\,'-3 (J.!t'+J.!,'-l) }+2J.!t (11,'+i-\,J.!,+I1,' 1) 1 + ..... 

..... +G(cp)I1,'I1'(J.!,'-1) , (23a) 

..... +G(cp) 11,11,'(J.!,'-l) 

2J.!,i-\,c'(cp) (11,'+i-\,I1,+J.!,'-i) 

2J.!, (J.!,'+11.J.!.+J.!,'-1) +(11:+11,) {i-\,'I1,'-3(11,'+I1,' 1)}+ ..... 

..... +G (cp) 11,11,'(11,'-1) (23b) 

G(cp) = {d(C'(CP»/dCP, 
0, 

cp>o, 

cp.;;;o, 
(24) 

with the additional condition cp = 0 at iJ.2 = O. The depen­
dence of T on iJ.2 is expressed in quadratures through the 
solution (23), and NOI are found from equations of the 
type (8), where iJ. 0I plays the role of U OI - T. 

The solutions thus obtained do not differ qualitatively 
from those described in Sec. 2. 1. The solutions with a 
plateau are constructed as described earlier. 

The region of values of NjN. and u. - u. achievable 
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for the given solutions at the jump is shown in Fig. 4 by 
the doubly-hatched area. The lower boundary of this re­
gion, shown by the dot-dash curve, approaches the solid 
line at I nWjN.) I »1; this solid curve represents the 
similar boundary for solutions with Boltzmann electrons. 
The reason for this approach is the fact that the jumps 
with I nWjN.) I »1 include only a small part of the re­
gion of the positive potential, in which there arises only 
capture of electrons and the difference, associated with 
the capture of the "trapped" solutions from the solutions 
with a Boltzmann electron distribution. 

4. STABILITY OF TWO-STREAM SOLUTIONS 

The motions of the plasma described above, that arise 
from the state with oppositely directed flows, can be 
regarded as the motion of a beam in the plasma, which 
can naturally lead to instability. The possibility of the 
formation of an ion-ion beam instability for the solutions 
constructed in Sees. 2. 1 and 3 is investigated below. 

In view of the fact that the arising disturbance can not 
propagate along the velocity of the flows, we must write 
down the system of equations of the plasma motion with 
account of other components of the velOCity. Such a 
generalization of the system (6) has the form 

au~ au~ a~, 1 aN 
-+u~-+v~-+c (N)--a =0, 

at as ay N s 
I)v~ av~ av~ 1 aN 
-+u~-a-+v~-a +c'(N)-N -I) =0, 

at S y y 
(25) 

I)N~ ( au~ aVo) aN.. aN .. 
-+N~ -+- +u~-+v~-a-=O' 

at a; ay a~ y 
N=N,+N" a.=1, 2. 

In the unperturbed motion, there were the self-similar 
solutions uOl=uaOl(~/t), VOl=O, NOI=NaOl(~,t), and the per­
turbations u~, v~, N~ were assumed to be dependent on 
two coordinates and the time. Assuming the perturba­
tion to be small (If'l «f) and the condition of quasiclas­
sical approximation I af' la ~ I »af/~ to be satisfied, we 
obtain, in first approximation, 

(26) 

We seek solutions (26) for the perturbations f' in the 
form 

f' (s, y, t) =/,' exp (i(ks+ry-CIlt) J. 

We obtain here 

u.,'i (ku.~-CIl) =-c' (N.) N,'ikIN., 
v~,'i(ku.~-CIl) =-c'(N.)N,'irIN., 

N~,i(ku.~-CIl) +N.~i(kuao'+rv~,') =0. 
(27) 

The system (27) is written down under the assumption 
that the perturbations preserve the quasineutrality of the 
plasma. To take into account possible departures from 
the quasineutrality, the substitution 
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FIG. 6. Leve1lines of the surface 1m y 
=const. The value of 1m y is shown on 
the curves. The outer unmarked curves 
are the boundaries of the regions of pos­
sible growth of the perturbation. 
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ik 
ik - -:-:-::--:-:-::-7""":~ i+a'(k'+r) , 

tr 
ir--.,.....,,-:-:-::..,.....,~ 

i+a' (k'+r') , (28) 

must be carried out in Eqs. (27), where a = (M/41TN.e2)1/2 

is the Debye radius. 

With account of the remarks that have been made, the 
characteristic equation for the system (27) will be the 
following: 

(ku •• -w) (ku.,-w) {(kuOl-w)'(ku.,-w)' 

c' (N.) (r+k') } 
- N.[ 1 +a'(k'+r') ] [N., (ku •• -w) '+N •• (ku.,-w)'] =0. (29) 

The instability of the motion, which is of interest to us, 
arises if there exists a root w* of Eq. (29) which has a 
positive imaginary part 0 = Imw* > 0; therefore, the 
analysis of the roots of Eq. (29) is equivalent to the 
analysis of the roots of the equation 

N • .1 N. + _:--N-,-._,I_N-:":. ~ . = cos' 0+ (ka)· ... D·. 
(u • .Ie-wlke)· (u.,le-rolke) , 

(30) 

The angle 8, which enters in Eq. (30), is the angle be­
tween the direction of propagation of the disturbance and 
the direction of the unperturbed veloCity of flow of the 
plasma, so that cos28 = k2/(yZ + k2). 

AI> was to be expected, the usual dispersion relation 
is obtained for the two-stream plasma, which consists 
of cold ions and hot electrons. However, the flux den­
sities are not independent, and are related in our solu­
tions with the relative velocity of their motion by equa­
tions of the type (8). This fact turns out to be very im­
portant. 

It is convenient to represent the results of the inves­
tigation on the phase plane JJ.t = Ut/ C - T, JJ.2 = U2/ C - T in­
troduced earlier. The imaginary parts of the roots w/k 
of Eq. (30) coincide with the imaginary parts of the roots 
of the equation for I' (I' differs from w/k only by the se­
lection of the reference system for the velocities) 

1'-2(11.+11,>1'+ {[ (11.+11,)'+211.11,]- ~21'Y' 

-211'112(~1'+11') [1-~, (:~::;,] 1+11"11,'( 1- ~,) =0. (31) 

It is easy to show that at values D~ 1, Eq. (31) has only 
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real roots. This means that under the condition cos28 
+ (ka)2 ~ 1, the constructed self-similar motion is stable. 
In particular, it is stable at any k relative to increase 
in the perturbations which are propagating along the x axis. 

At values D < 1, a pair of complex conjugate roots ap­
pear. The lines of the surface level Imy = const are 
shown in Fig. 6 for several values of D in this region. 
At a given value Ii = JJ.t - JJ.2 and relative concentrations 
Nt./N. and N2./N. the satisfaction of the condition 

D<D cr= (116) [(N.,/N.) '''+ (N,.IN.),"]"', 

is necessary for the appearance of the complex root, 
i. e., the perturbations are increasing with the wave 
vector k, which satisfies the inequality 

(32) 

The level lines of the surface Der(JJ.t> JJ.2) = const are 
shown in Fig. 7. 

The increment of the growth of the perturbation in the 
given point of the solution is a function of k and e. The 
maximum value of the increment is achieved at 8 = 1T /2 
and a value k* < ker' which satisfies the equation 

a 
Tk(k 1m 1 (k» =0. (33) 

It can be shown that this maximum value is a function 
only of the ratio Nt./N2• at the given point of the solu­
tion, The values of M = k* Imy(k*) calculated from (32), 
(33) are given on the curves of Fig. 1. It is seen that 
the greatest increment of growth of the perturbation on 
each solution is achieved at the point of equal densities 
of flows of the ions (Nt. = N2• = N./2) and amounts to M 
= 8-t/2 = O. 354, i. e., the increase in the perturbation by 
a factor e takes place within 2.8 periods of the plasma 
oscillations. 

It must be noted, however, that our consideration is 
entirely applicable only for angles that are not too close to 
1T/2, and the given value of M is only the upper boundary 

0.2 

p, 
4 

3.5 

3. FIG. 7. The boundaries of the regions 
of instability on the phase plane for dif­
ferent values of the parameter D2 (shown 
in the curves). The region of instability 
lies between the curves corresponding to 
the given D. (The l~wer curves with D2 

< 0.8 are close to the abscissa.) 
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of the maximum increments. 

The author is grateful to Academician P. L. Kapitza 
for interest in the work and to L. P. Pitaevskir for sug­
gesting the problem and valuable comments. 

I) A short exposition of the results for this case is contained in 
the work of Pitaevskir and the author. [3) We note that a dif­
ferent normalization of the flow velocities is used in this 
case. 
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Frequency of inelastic collisions in plasma 
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An analysis is given of the influence of polarization plasma effects on the frequency of inelastic atomic 
transitions induced by the combined electron and ion fields. The inelastic collision frequency W is 
expressed in terms of the Born matrix element and the longitudinal component of the plasma permittivity 
at the frequency Wo = t:. E / h of the atomic transition (t:. E is the transition energy). For low-density 
plasma. the frequency W is equal to N< VCTOI >' where CTo l is the cross section for the excitation of the 
particular transition. averaged over the velocity distribution function of the exciting charged particles in 
the plasma. and N is the density of the particles. The dependence of collision frequency on plasma 
temperature and density is investigated in detail for optically allowed transitions with a small resonance 
defect W00 It is shown that polarization effects play an important role at temperatures for which the main 
contribution to the inelastic collision frequency is due to electron-atom collisions. Whilst inelastic 
transitions in the plasma are largely due to interactions with ions. polarization effects are not appreciable, 
even at high densities that are close to those of a solid body. Conditions are formulated for the validity of 
first-order perturbation theory as applied to the frequency of inelastic transitions with a small resonance 
defect. 

PACS numbers: 52.20.Hv 

The polarization properties of plasma modify the char­
acter of interactions between charged particles. The 
spectroscopic consequences of this effect have been dis­
cussed in connection with the emission of forbidden 
spec tral lines [1] and the theory of broadening of spec tral 
lines in plasma. [2] By polarization properties, we un­
derstand two physically clear effects, namely, the 
screening of Coulomb forces and the interaction between 
charged particles and plasma oscillations. It is obvious 
that both these effects should have an important influence 
on the rate of relaxation of excited states in dense plas­
ma. The present paper is concerned with this question. 
By dense plasma, we shall understand plasma in which 
the Langmuir frequency exceeds the frequency of the 
atomic transition. This condition is realized, for ex­
ample, for transitions between highly excited atomic 
states and for a number of transitions between the en­
ergy levels of multiply-charged ions in dense laser 
plasma. 

1. FORMULATION OF THE PROBLEM 

In low-density plasma, the frequency of inelastic 
transitions between atomic levels 0 and 1 due to col-
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lisions with electrons is given by 

v=N(va .. )= S va,,(v)F(v)dv, (1) 

where F(v) is the electron velocity distribution func­
tion, 0"01 is the cross section for the excitation of the 0-1 
transition, and N is the electron density. 

In dense plasma, the interaction between an atom and 
electrons can no longer be looked upon as the result of 
successive independent collisions. An incident electron 
interacts with the ambient electrons and ions, and in­
duces a dipole moment in the plasma. This means that 
the resultant field acting on the atom is made up of fields 
produced by the electron and by the dipole moment in­
duced by it in the plasma. 

Let us therefore consider a more general formula­
tion of the problem. Suppose that the atom is located 
in a random field V(r, t) due to all the charged particles 
in the plasma. In first-order perturbation theory, the 
probability of a transition from state 0 to state 1 at time 
t is then given by the expression1) 
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