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The amplitudes of the waves scattered by a rotating circular cylinder are calculated by the method of 
perturbation theory. The scattering intensities in the partial angular harmonics and the total intensity of the 
scattered field are determined. It is shown that in the approximation considered, the total intensity of the 
scattered waves is independent of the rotation frequency of the cylinder. The change of the scattering 
indicatrix due to the rotation (an optical analog of the Magnus effect) is considered qualitatively. 

PACS numbers: 03.S0.Jj 

It was noted inU,a] that an electromagnetic wave inci
dent on a rotating cylinder of low conductivity may be 
amplified upon reflection; the conditions for occurrence 
of such amplification were considered, and quantitative 
estimates were given of the intensity of the amplified 
waves. In the present note this question is considered 
in greater detail for one of the two possible polarizations 
of the incident field. The calculation is carried out by 
perturbation theory. 

We consider a right circular cylinder of radius a, 
consisting of a medium with dielectric permittivity e and 
magnetic permeability JJ., and having conductivity (j (in 
the rest system). Let the cylinder rotate about the z 
axis with angular velocity n. Furthermore, let there be 
incident on the cylinder from outside an electromagnetic 
wave whose wave vector is perpendicular to the axis of the 
cylinder. For simplicitlywe shall suppose that the electric 
field of the wave is parallel to the axis of the cylinder. 
We shall calculate the amplitudes of the scattered waves. 

We introduce a cylindrical coordinate system whose 
z axis coincides with the cylinder axis. In this system, 
the vector potential of the inCident wave may be written 
in the form [3] 

11. ... + .... '1\ 

A,(O'=ei'·'-·"=e- i•, 1: ~ [H,,(I' (kr)+Hn (' (kr) le in•• (1) 

Here k and r are two-dimensional vectors in a plane 
perpendicular to the z axis; their coordinates, in a polar 
coordinate system in this plane, may be written in the 
form k = (k = (J)/c, cp = 0) and r = (r, cp), where the angle 
cp is measured from the direction of the vector k; H~l,2) 
is a Hankel function with argument kr. 

To determine the field inside the rotating dielectriC, 
we use the equation for the z component A. of the vector 
potential A in the electrodynamics of moving media [4]: 

{ 1 a' £11-1 ( a)' 4nol1 ( a )} (2) .1.-----;----1' uV+- --,-1' u\+--;:- A,=O. 
c' at' c' at c' ut 

where u is the vector velocity of transport of the ele
ments of the rotating medium, V is the three-dimensional 
gradient vector (~=V2), and Y= (1_U2/C2)-lf2. Equation 
(2) differs from the corresponding equation given in[4] in 
that it takes account of the conductivity of the medium. 
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It is obvious that in our system of coordinates, u has 
only the component utp =rO. Then uv = na/acp. Here
after we shall consider the case of nonrelativistic rota
tion of the medium, u,. «c, and shall set Y= 1. This is 
correct if the condition ani c« 1 is satisfied. 

We shall suppose that the time dependence of the vec
tor potential A. is the same as for the incident wave A!O) 
in (1). Then in Eq. (2) a/at = (- iw). As a result, Eq. 
(2) takes the form 

( W') { x (a )' . 4nol1 (a )} .1+7 A,(r,<p)= ~ Qaq;--tw +-c-' - Qd;f-iW A,(r,<p), 

(3) 

where 'K = e JJ. - 1. We shall treat the right member of 
Eq. (3) as a perturbation and shall accordingly seek a 
solution in the form 

A,=A,'O'+A!" +A~" + ... + A~;' + ... , (4) 

where A~O) is defined by formula (1), and where the sub
sequence terms of the expansion are determined by the 
system of equations 

(~+;:)A!;'={;' (Q:<p _iW)'+4:~I1(Q{j{j<p _tW)}A,U-Il, 

(5) 

where j = 1, 2,.... The conditions for validity of such 
an expansion will be determined below. 

By means of (5) and (1), we obtain for the first ap
proximation A~u the equation 

a' 1 {j 1 {j' W' (I, 

{ ( ar' + ~a;. + --;;- a<p') + 7 }A, (r, <p) =/o(r, <p) 

where 
x ,4ncrl1 . 

~n = --,;- (I1Q-W)' +-,-I(nQ-w) . 
c- c-

(6) 

(7) 

As is well known (see, for example, [5]), the solution of 
Eq. (6) can be expressed in terms of the right member 

lo(r, cp) as 
. a 211: 

A,"'(r,<p)= - ~ f r' dr'f d<p' H~" (: !r-rl )/,(r), (8) 
° 0 
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where the two-dimensional vectors r and r' are defined 
by the values of the coordinates (r, qJ) and (r', qJ') re
spectively. The integral extends over the region oc
cupied by the rotating body. It is easily seen thatfo(r, 
qJ) vanishes outside this region. 

If we now substitute in (8) the expression for fo(r, qJ) 
from (6) and use the addition theorem for Hankel func
tions, (3) 

{I, ( W ') m~~ (I' (ffi ) ( ffi ). . Ho -1r-r I = ~ Hm --r 1m --;:-r' elm{~-.) 
C c', .' 

(9) 

the integration in (8) gives 

(10) 

Bn= jJ.' ( ; r')r'dr'. 
o 

By use of this solution for A!l), it is not difficult, by 
means of (5), to obtain in similar fashion an expression 
for the next approximation: 

(11) 

By this method it is possible to calculate an approxima
tion of arbitrary order; then the series (4) is easily 
summed: 

(12) 

The condition for convergence of the perturbation-theory 
series may now be written in the form of an inequality: 

(13) 

As is seen from the definition of ~" (see (7», the in
equality (13) can be satisfied if the value of ej.L is suffi
ciently close to unity and the conductivity (j of the medi
um close to zero. In this case we shall restrict our
selves to the first three terms of the series (4): 

1 n_+oo 

= 2' Line'" {[ 1-:1iLl.B.-'/,:t'Ll.'B. (B. +iD.) jH!1) (kr) +H~') (kr)}. 

(14) 
where k=w/c. In the sum over n, the coefficient be
fore the function H~1)(kr) gives the amplitude of the 
diverging wave, the coefficient before H~I)(kr) the ampli
tude of the converging wave. The energy currents in the 
converging and diverging waves are proportional to the 
squares of the moduli of the corresponding coefficients. 
If the rotating body is absent, then~" = 0, and the ampli
tudes before H~ll and H!2) are equal, while the expres
sion (14) reduces to the expression (1) for the incident 
wave. 

We surround the rotating cylinder with a coaxial 
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cylindrical surface of radius r> a. The flow of energy 
of the electromagnetic field across an element of sur
face at frequency w may be written in the form 

dS.=c Re(E,.H;.)rdq>dz. 

From formula (14) for A. we have 

n_+_ 

E, .• = L, i ; [a.H~I) (kr)+b.Hn("(kr) lei .• , 
n __ .... 

where 

an=lf2tn[ 1-lliLl.B.-'/21l'Lln'Bn(Bn+iDn) ], bn='/2i", 

H:(t." (x)=dH~t.,) Idx. 

(14') 

(15) 

(16) 

If we substitute the expressions (15) and (16) in formula 
(14') for dS., and carry out the integration over dqJ, we 
get the flow of energy W., at frequency w across a cy
lindrical surface of unit height: 

(17) 

where 

W •.• =4w( la.I'-1 bnl'). (18) 

By use of the expressions (16) for the coefficients aft and 
b", we find, restricting ourselves to terms of not over 
the second order in the expansion parameter ~ (see 
formula (13», 

(19) 

where 

811-1 41iOIl 
an=--c,-(nQ-ffi)', ~.=~(nQ-w), (20) 

and the quantities B" and D" are determined by formulas 
(10) and (11). 

The quantity W",., has the following physical meaning. 
We consider that part of the total field for which the de
pendence on the azimuthal angle qJ is determined by the 
factor e'"'' (that is, the azimuthal harmonic of number 
n). For this component of the total field, the difference 
between the flow of energy away from the body and the 
flow of energy on to the body is exactly determined by 
the value of W", .. (19). Obviously if W",.,> 0, then one 
may say that upon reflection from the rotating body 
there occurs an amplification of the harmonic of number 
n; but if W",., < 0, then what occurs is absorption of this 
harmonic of the field by the rotating body. 

In the expression (19) for W"'." the terms in paren
theses 1TCl" D" and 1T{:3" B" come from the second approxi
mation (11). By virtue of the condition (13), we shall 
hereafter disregard these terms. Then we obtain for 
W",., the expression 

81l'ffioll s" (W ) Wn'.=-c-'- (nQ-w) In' -;;r rdr. (21) 
o 
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Formula (21) corresponds to the case that was considered 
inU ,II). It is evident that the sign of W is determined .. ," 
by the sign of the difference (nO- w). When nO<w, the 
rotating body absorbs energy from the nth harmonic, 
whereas when nO> w it amplifies this harmonic. The 
expression (21), in contrast to the results of refer
ences, U,2) where the proportionality between Wand .. ," 
(nO- w) was pointed out, gives also the value of the 
coefficient of proportionality and thereby enables us to 
estimate not only the sign but also the absolute value 
of the amplification. We note that the quantity W ..... 
has the dimensions of energy per unit length of the cyl
inder and per unit frequency interval. We add further
more that we have supposed the amplitude of the inCident 
wave to be Ao = 1. Otherwise the value of W .. , .. is propor
tional to IAol!. 

After substituting the expression (21) in (17), one can 
carry out the summation over all the harmonics of the 
radiation. By use of the formulas [3) 

n-+oo n_+oo .E J.'(x) =1, .E nJn'(x) =0, (22) 

we get 

n=+_ .E 4n'a'w'ClI1 
W.= W n ,III=- 2 • 

C 
(23) 

"--"" 

In the derivation of formula (23) we have assumed that 
the value of the conductivity (J' is independent of the fre
quency w (no dispersion). 

The expression (23) shows that although in certain 
harmonics (nO - w> 0) amplification occurs upon reflec
tion from the rotating body, nevertheless, on the whole, 
the energy of the inCident plane wave is absorbed by this 
body (in the absence of dispersion). 

This result can be understood by consideration of 
formula (21). As is evident from this formula, Wo,., 
<0. Furthermore, W" • .,+ W ..... .,<O; thus the addition of 
the two harmonics with numbers nand - n leads to can
cellation of the term that is proportional to the velocity 
of rotation 0 and that can lead to amplification. 

It is interesting to estimate the dependence of the val
ue of W .. ,., (21) on the harmonic number n. On calculat
ing the integral that occurs in (21), we get 

The expression (24) can be Simplified for two limiting 
cases. In the first case we suppose that the harmonic 
number n is sufficiently large (n - 00) and that the argu
ment of the Bessel function satisfies the inequality waf 
c<n. In the second case, that the radius of the rotating 
cylinder is less than the wavelength of the radiation in 
free space (wa/ c« 1). In both cases the asymptotic 
expression for W ..... has the same form and can be writ
ten as follows: 

_ 4n'a'WClI1 ( wa ) ,. ( 1 )' 1 w",.- , (nQ-w) - - -. 
C" 2c III Il+J 

(25) 
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From the expression (25) it follows that the series (23) 
converges very rapidly, and that its calculation requires 
only a small number of terms with numbers n=O, :1:1, 
:1:2, .... 

In conclUSion, we shall discuss the role of dispersion 
in the scattering of electromagnetic waves by a rotating 
body. We have so far assumed that the permittivity E 

and magnetic permeability Jl of the body are independent 
of frequency. We shall now consider what effect al
lowance for dispersion has on the results obtained. We 
shall consider the Simplest form of dispersion, 

£=1 + 00,' 
(00.'-00') -trw' [1=1, 

(26) 

where w. is the natural frequency of the atom in the 
classical oscillator model, r is the damping of this 
oscillator, and Wo is the plasma frequency of the medi
um. The expressions (26) are valid in the rest system 
of the rotating cylinder. From formulas ~26) it follows 
that 

x=Ree-1 

Cl=~Ime 
4:n 

00.' (00.'-00') 

(00,'-00') '+w'r' ' 
rroj)2m2 

4n[ (00.'-00')'+1"00') . 

(27) 

In substituting these values in the expressions for the 
nth harmonic of the scattered field, which is proportional 
to the factor exp{i(ncp - wi)}, one must replace the fre
quency w in formulas (27) by the Doppler shifted fre
quency w' = (w = nO). Then the values of a" and f3n in 
(20) take the form 

(nQ-w)' wo'[w.'-(w-nQ)') 

C' [w,'-(w-nQ)')'+'r'(w-nQ)' 

1 rwo'(nQ-w)' 
~. = C' [00.'- (w-nQ)'I'+r'(w-nQ)' 

(28) 

It is now also necessary to use these expressions in cal
culating the intensity of the scattered radiation. As is 
seen from (28), at high harmonics (n- oo ) the value of 
f3 .. decreases in inverse proportion to the harmonic 
number n, while the value of an approaches a constant 
limit independent of the number n. For comparison 
we note that in the absence of disperSion, as is seen 
from (20), both these quantities increase with increase 
of the harmonic number n: f3n linearly, an quadratically. 
Thus allowance for dispersion decreases the intenSity 
of the scattered radiation at high harmonics (see, for 
example, formula (19». We note further that allowance 
for dispersion decreases the intensity near the amplifi
cation threshold (w = nO). 

Scattering of light on a rotating body leads to still an
other interesting effect-a change of the scattering in
dicatrix.1) SpeCifically, the maximum of the intensity 
of the scattered radiation deviates from the direction 
of the incident wave in the direction of rotation of the 
body (that is, the direction in which the scattered energy 
is greatest makes a positive angle with the direction of 
the incident light if the body is rotating in the positive 
direction, and a negative angle if the direction of rota-
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tion is negative). Simple calculations show that the 
angle of deflection is proportional to the cylinder radius 
a and to the angular velocity of rotation O. The reason 
for this deflection is the effect of entrainment of light by 
a moving medium: if the direction of propagation of the 
wave coincides with the direction of motion of the medi
um, then the phase velocity of the wave is 

ell' e fl +U (1-1/ e fl), 

but if the velocities of the wave and of the medium are 
opposite, then the phase velocity is 

ell' efl-u( 1-1/efl). 

In our case, U is in order of magnitude equal to aO. 
An estimate with allowance for these relations leads to 
the following expression for the angle 9 between the 
maximum of the scattering indicatrix and the initial 
direction of propagation of the wave: 

U -( 1) aQ -( 1) 8""-l'efl 1-- =-l'efl 1--- . 
c qt c ql 

(29) 

From this result it follows that the field exerts on the 
rotating cylinder a force numerically equal to the change 
of the quantity of motion of the light per unit time in the 

scattering process. The direction of this force is op
posite to the vector change of momentum of the wave 
during the scattering. This phenomenon may be re
garded as an analog of the well-known Magnus effect in 
the mechanics of continuous media. 

The effect considered occurs in the absence of absorp
tion (conductivity). Allowance for conductivity presum
ably leads to a weakening of this effect. 
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The ponderomotive force of a high-frequency electromagnetic 
field in a dispersive medium 
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A general expression is obtained for the ponderomotive force of a high·frequency field with slowly varying 
amplitude in a transparent dispersive fluid and. in particular, in a plasma. For electromagnetic waves in 
an isotropic plasma, and also for irrotational oscillations, this expression coincides with that obtained 
earlier. In the general case, however, our expression contains time derivatives of the field amplitude; 
these may play a significant role, for example, in a magnetically active plasma. 

PACS numbers: S2.40.Db 

1. Since the formulation of the general problem of 
finding the time-average stress tensor and ponderomo
tive force acting on a dispersive medium in a high-fre
quency field ([1], §61), this problem has been the sub
ject of a large number of papers. We cite first of all 
studies[2-51 in which this force was obtained for an iso
tropic collisionless plasma: 

(1) 

Here f is the ponderomotive force acting on unit volume, 
wp = (41Tne2/m)1/2 is the plasma frequency, and E is the 
amplitude of the high-frequency (hf) field: 
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(2) 

A general phenomenological approach to the determina
tion of the ponderomotive force of a hf field in a disper
sive transparent medium was proposed by Pitaevskil. [61 
The expression obtained in[61, however, was limited by 
several conditions that will be discussed. below. The 
one most important for us here is the assumption that 
the hf field is stationary (amplitude constant in time). 
In[7, 81, on the basis of quasimicroscopic considerations, 
an expression was obtained for the ponderomotive force 
of a hf field in a magnetically active plasma. Here 
again the effects of nonstationarity of the hf field ampli
tudes were disregarded. {For a more detailed discus-
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