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A description of the shapes of the Raman-scattering spectra of linear molecules in inert solvents is 
obtained in mathematically closed form by employing the Keilson-Storer kernel in the integro-differential 
equations of the theory of pressure broadening. In the case of strong collisions an analytic solution is 
obtained that describes the transformation of the contour with increasing density. It is shown that in the 
high-density limit the rotational structure of the spectrum undergoes a collapse during which the intensity 
is shifted from the sidebands of the O-Q-S triplet to the central band, whose width decreases with 
further growth of density. The narrowing of this band is shown to be a spectral manifestation of the 
Hubbard relation TeTJ = I 16k T (TJ and Te are the rotational and orientational relaxation times), a relation 
reliably confirmed by magnetic resonance experiments. 

PACS numbers: 32.20.Dr, 31.70.Hq 

1. INTRODUCTION 

Raman-scattering (RS) spectra in rarefied gases and 
liquids differ greatly in shape and in extent. The re
served rotational structure, or at least the less pro
nounced triplet of O-Q-S branches, which is charac
teristic of gases of moderate denSity, is transformed 
in liquids into a single diffuse line, which is much nar
rower than the width of the rotational band in the gas at 
comparable temperature. [t-4] Consequently, with in
creasing density, the structure is not simply smeared 
out, but is also averaged (collapsed); this gives rise to 
an over-all narrowing of the spectrum, similar to that 
observed in NMR and ESR spectra of dense gases and 
liquids. [5-7] How this takes place, however, has not 
been investigated so far either theoretically or experi
mentally. It is only clear that the rotational angular 
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momentum J (in units of Ii) is preserved for a long time 
in a gas, so that all the frequencies w - 2J II - 2(;) - (kT I 
I)lt2, are represented in the spectrum, whereas in the 
liquid the axis of the molecule does not rotate, but exe
cutes diffuse motion, [8] and the slower this motion the 
narrower the spectrum (I is the moment of inertia of 
the molecule). 

Yet it is very important to understand what it is that 
converts free rotation into Brownian rotation. Do the 
cohesion forces fix the molecule axis and permit it only 
rarely to become reoriented, [9-11] or does the reason 
lie simply in the collisions, which become more fre
quent with increasing density, and the motion between 
which is not as free as before. If the rotational diffu
sion is a consequence of random wandering of the mole
cule axis, which is forced to overcome energy barriers 
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during each rotation, [12,13J then the liquid is in this re
spect perfectly similar to a solid medium, but if its 
axis is fixed exclusively as a result of frequent changes 
of the direction of rotation, then the liquid and the gas 
can and must be described in the same manner, and the 
transformation of the spectra can be traced in continu
ous fashion. This, in particular, is the purpose of the 
present work. 

It should be noted that despite the extensive use of the 
rigid-body (hopping) model of orientational diffusion, re
cently obtained direct experimental evidence favors the 
free-rotation mechanism of reorientation of linear and 
spherical molecules in simple liquids. In exceptional 
cases, such as in solutions of HCl or N2 in liquid SF6 , 

even a rotational structure identical to its gas analog 
has been resolved. [14,15J On the other hand, the pres
ence of resolved and unresolved 0 and S bands, as in 
compressed CF4, [16J offers evidence that the rotation is 
not fully suppressed and has not yet acquired a diffusion 
character. An idea of what takes place in denser media 
can be obtained from certain representations of NMR 
investigations of the relaxation times T J of the rota
tional angular momentum and Te of the molecule orienta
tion. They show that for heavy spherical molecules in 
the liquid phase, these times are connected by the Hub
bard relation[17-20J 

(1.1) 

which can be explained only from the point of view of 
the free-rotational model of orientational diffusion (in 
the hopping variant Te = T J exp {W /kT}, where W is the 
potential barrier that limits the frequency of the hops). 
Finally, assuming Tt to be the number of binary colli
sions that interrupt the free rotation, it is possible to 
calculate their cross section and to verify that in SF6, 
for example, it turns out to be an almost linear function 
of the temperature, which experiences no changes what
ever when the gas condenses into a liquid. [21] All this 
gives grounds for considering the behavior of simple 
molecules both in a gas and in a liquid, within the 
framework of the general formalism of impact theory, 
a quasiclassical variant of which was first proposed by 
Gordon. [22,23J By resorting to this theory[24,25J it was 
possible to account numerically for the experimentally 
established Te(T J) dependence, starting with rarefied 
media, where Te - T J> and ending with a liquid, where 
the Hubbard relation (1.1) is valid. Following this ex
ample, we have improved the quasi-classical impact 
theory of Raman-scattering spectra, first recasting it 
in a mathematically closed form. This has uncovered 
a possibility of analytically solving the problem of col
lision broadening of a spectrum, at least when the latter 
can be regarded as strong. It has thus been established 
that the collapse of the rotational structure is the spec
tral equivalent of the Te(TJ ) dependence, and the narrow
ing of the spectrum upon condensation of a gas, just as 
the Hubbard relation, can be attributed to the non-adia
batic character of the collisions that cause the transi
tions between the rotational sublevels without loss of 
phase coherence. 
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2. THEORY OF RAMAN-SCATTERING SPECTRUM 
SHAPE 

In comparison with NMR, investigations of the relaxa
tion time, the spectroscopy of Raman scattering offers 
much greater possibilities. When parallel and perpen
dicular experimental geometries are combined, it 
makes it possible to determine in pure form the entire 
orientational-relaxation spectrum 

G(Ol)= ~ Re SK(t)exP{-iOl[t+il2kT]}dt=F(0l)exP{0l/2kT}, 

o (2.1) 
while the reorientation time 

'r.= J K(t)dt=nG(O) 

• 
merely represents the intensity of the spectrum, nor
malized to unity, etc. Investigating its behavior, it is 
difficult to trace the fine points of the phenomenon, 
whereas the presence or absence of sideband compo
nents (0 and S branches) makes it possible to ascertain 
directly whether the rotation is still preserved or 
whether it has turned into orientational diffusion of the 
Debye type. The orientational correlation function 

3 
K(t)= 2'Sp{a .. (t)a,.(O)} (2.2) 

is defined in terms of the anisotropic part of the polar
izability tensor 

a",(t) =n,(t)n.(t) -'/315 .. , (2.3) 

in which nj are the Cartesian components of the unit 
vector n that is directed along the molecule axis. The 
latter is assumed, for the sake of argument, to be here 
linear. The combinations of the components 

(2.4) 

which is transformed under spatial rotations as the cor
responding spherical harmonics of second rank, change 
(2.2) into the scalar product 

K(t)= L (-1) q dq (t)d_ q (O). (2.5) 
F-' 

The bar, which denotes in (2.2) averaging over the col
lisions, i. e_, over all possible realizations of the ran
dom process of the variation of Cl'ik(t), now pertains to 
d.(t) (from now on we leave out the averaging sign). 

Proceeding as in[26J, we can derive by the general 
method of summation of realizations[27J a closed inte
gral-differential equation that describes the behavior of 
d. averaged over all the collisions and free rotations, 
with the exception of the latter, in which the angular 
momentum is an argument of the dependence of the 
sought function d. (t, J)_ 

A. I. Burshteln and S. I. Temkin 493 



a il 1 
-d.(t, J)=-qd.(t, J)--[d,(t, 1) 
,)t I 'to 

-L fda f de f dTj2l>:.,(e-; ;a; 1] + ; ) fd,. (t, J')fT(J', J, e. a, Tj)dJ']' 
q' 0 0 

(2.6) 
where To is the free path time and q =0 or ± 2.1) As to 
the angular momentum, in contrast to d. there is a pure
ly discontinuous Markov variable, which is conserved 
during the time of free rotation and is altered only by 
the collisions. The probability that in the course of 
time the angular momentum will change from Jo to J 
and will be inclined by an angle cp from its initial direc
tion is determined by Feller's equation[271 

a 1 
- <II (I, '1', 10, t) =- - <II (I, '1', I" t) at 'to 

+~ SfT(J',l,e,q>-q>',Tj)<Il(J',q>',lo,t)dJ' dq>' ded1], (2.7) 
'to 

the kernel of which is the same distribution function 
fT(J',J, 9, a, 1/), by which the result of the impact is 
specified in (2.6). The integration of the angles and 
momenta over this distribution has the meaning of av
eraging over the collision impact parameters, the only 
result of which in classical language is a rotation, de
termined by three Euler angles (9, a, 1/), of the plane of 
rotation and of the axis of the molecule, and also a 
change in the rotation frequency from J' II to J II. The 
transformation of the components to d. in the case of 
rotations of the rotational and dipole moments is speci
fied by the Wigner functions q)~ •• , which are defined 
in[281, and the change of the angular momentum J is as
sumed to be continuous. The last circumstance limits 
region of applicability of the theory to spectra with un
resolved rotational structure of the bands. In conjunc
tion with the usual impact conditions, this establishes 
the following time hierarchy: 

(2.8) 

in which Teoll is the average duration of the collisions 
that change the rotational state of the module. The ini
tial conditions for (2.6) 

d,(O, I) =d,(O)q>B(l) (2.9) 

are defined in terms of the equilibrium distribution of 
the molecules over the rotational moments 

q>B(/)=2~/exp (-~/'), ~=1/2IkT, (2.10) 

and finally, the average contained in (2.6) is given by 

d,(t) = S d,(t,J)dl. (2.11) 
, 

Bearing this in mind, we can greatly simplify the calcu
lation of the spectrum, expressing it in terms of the 
Fourier transforms of the partial components 

-
d,(w,J)= S exp(-iwt)d,(t,J)dt. 

o 
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As a result we get 

1 -
G(w)=-;:;-Re L (-1)' S d,(w,l)d_,(O)dJexp(w/2kT). (2.12) 

, 

Thus, the matter reduces to a solution of the Fourier
transformed Eq. (2.6) with the initial condition (2.9). 

Proceeding to the analysis of (2.6), we must first 
take into account the difference between the adiabatic 
and the non-adiabatic collisions. Non-adiabatic broad
ening is experienced only by the central part of the 
spectrum with components J:S IT ~~ll (or respectively 
w;$ 2T ~~ll)' and its periphery' broadens adiabatically. 
On the other hand, the difference lies in the fact that 
the adiabatic collisions only rotate the axis of the mole
cule and the vector of the angular momentum, without 
changing the value of the latter (m -diffusion), owing to 
which all the components broaden independently of one 
another /26] whereas the non-adiabatic collisions, be
sides producing disorientation, change also the value of 
the angular momentum (J -diffusion), i. e., they induce 
transitions between rotational terms, through which 
the spectral exchange is effected. Of particular impor
tance is the fact that besides the frequencies, the non
adiabatic collisions exchange also the components d. 
with different q, thus effecting a coupling between the 
0, Q, and S branches of the spectrum (Fig. 1). This 
phenomenon, which plays a decisive role in the collapse 
of the rotational structure, was first pointed out by 
Gordon. [22] Gordon has assumed, however, that this 
phenomenon has an adiabatic nature and consequently 
should accompany not only J diffusion but also m diffu
sion. Actually, the O-Q-S exchange is a typical inter
ference effect of non-adiabatic origin, [29,30] and as shown 
recently[26] vanishes on going into the adiabatic approach 
both in the classical and in the quantum formalism. 
However, if the collisions are short enough, then the 
non-adiabatically broadened part of the spectrum ex
tends far beyond the middle frequencies and it can be 
assumed that J-diffusion, meaning also O-Q-S ex
change, extends over the entire spectrum. 

To make the problem mathematically closed, we con
sider a collision model wherein the change of the plane 
and frequency of the rotation take place independently of 
the reorientation of the molecule axis, so that 

fT(I',l, e, '1'-'1", Tj) =/(1', 1) f (e, 1]). (2.13) 

This makes it possible to establish the possible form of 
the distribution functionf(J', J) = f(J' , cp', J, cp) by start
ing from the fact that must satisfy the detailed balanc
ing principle or the "stationarity condition" 

! 1\ 
1\ 
I \ 

~~1TlQp.~wJ+I~ .-._._._0 
FIG. l. Spectral exchange between the components of the ro
tational structure of the anisotropic Raman spectrum of linear 
molecules (the adiabatic-broadening region is shaded); 
-'-O-Q -S exchange; -J -J exchange. 

A. I. Burshteln and S. I. Temkin 494 



(2.14) 

which ensures constancy of the equilibrium distribution 
of the molecule with respect to the angular momenta 
qJ B(J). A condition of exactly this type guarantees con
servation of the Maxwellian distribution with respect to 
the velocities in the collision process. On the basis 
of precedent, which was considered by Keilson and 
Storer, [311 it is natural to adapt the general form j(J' , J) 
= j(J -yJ'). This is perfectly sufficient, knowing qJ B(J), 
to determine uniquely from the integral equation (2.14) 
the actual form of its kernel. [32J In our case it turns 
out to be 

1(1-,(1')=/(1' J, rx)=~) exp{-~ [J'+1'I"-2yI'J cosrx]}, 
n(1-,( 1-'( 

(2.15) 
where, as usual, 0 '" I' '" 1. When I' = 0, the collisions 
are so strong that after each of them the angular mo
mentum can assume an arbitrary value with an equilib
rium qJ B(J). On the other hand if the collisions are 
weak, then 1 - 1'« 1, and the angular momentum J after 
the collision differs inSignificantly from the value J' 
that precedes the collision. 

3. ROTATIONAL RELAXATION 

An equation describing the relaxation of the angular 
momentum is Simplified with the aid of the obtained dis
tributions and takes the form 

a 1 1 J -a ell (1, I., t)=- -ell (1, I., t)+- ell (1',1., t)f(l-yl')dl'. 
t ~ ~ 

(3.1) 

Multiplying it by J and integrating, we obtain after sim
ple transformations 

a 1-'( 
-<1>=--<1> at 't.' 

(3.2) 

where (J) = f J.p(J, J o, t)dJ is the mean value of the angu
lar-momentum vector, and is equal to J o at t =0. Just 
as in the Langevin approach which was used by Hub
bard, [17,18J this mean value relaxes exponentially to zero 
with a friction coefficient (1 - Y)/To due to the collisions. 
Since it is the collisions that play the role of a random 
Langevin force, at the same time an increase takes 
place in the scatter of the angular momenta about the 
mean value, a scatter that changes their initial distribu
tion .p(J, J o, 0) = lJ(J - J o) into an equilibrium distribution 
.p (J, J o, 00 ) = qJ B (J). The rate of relaxation of the angular 
momentum 

(3.3) 

depends on the effectiveness of the collisions. 

In the case of weak collisions (1'- 1), by means of a 
standard expansion[27J in the small parameter (1 - 1'), 
the Feller Eq. (3.1) is reduced to a Fokker-Planck 
equation 

{) at ell=2ulell+ul(lV ,) ell+DL1ell. (3.4) 

Here D = (1 - y)/2Tof3 is the coefficient of the diffusion 
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made up of numerous but small jumps J(/1J - (1 - y)J), 
which occur in the colliSions, and u = l/IT.1 is the mo
bility in J-space and satisfies the relation u =D/kT 
which is customary in random-walk problems. The 
process of the correlated J-diffusion is described by 
the solution of the equation (3.4) 

"'(11 )_ 1 {_ [J-exp(-th,)J']' } 
.,., , 0, t - exp , 

2nlkT[ 1- exp( -2th,)] 2lkT[ 1- exp(-2th·,)] 

(3.5) 
which was obtained by Hubbard[17l within the framework 
of the Langevin phenomenology, which can now be iden
tified with the limiting case of "weak collisions." In 
addition, the physical meaning of the phenomenological 
parameters D and u becomes clear in terms of the free
rotational mechanis m of J -diffusion. 

The concrete speCification of the collisions, which 
leads to the Feller equation, has also one more advan
tage over the phenomenological theory in that it allows 
us to consider, besides the weak collisions, also strong 
collisions that restore immediately the equilibrium dis
tribution in J. In this limit, similar to T approximation 
to the Boltzmann equation, we have 1'=0, so that we ob
tain the identity 

(3.6) 

and from Feller's equation we obtain in place of (3.4) 

(3.7) 

The "J-diffusion" approach process described by this 
equation is in essence not even a diffusion of the angular 
momentum in the true sense of the word, since the 
spreading over all of J space takes place as a result of 
the very first collision by one impact, and not by a se
quence of such impacts. The change of J has in this 
case an uncorrelated character (all the subsequent val
ues do not depend on the preceding ones) and is de
scribed by the distribution 

ell (1, J o, t) =<PB(lo)[ l-exp (-tho) ] +1\ (J-l.) exp (-th,), (3.8) 

which has nothing in common with (3.5). ThUS, strong 
collisions give rise to the hopping mechanism of J re
laxation, which is always an alternative of the diffusion 
mechanism. [27,32J However, since the term "J diffu
sion" has become standard, we can retain it but must 
not take it literally but in a broader sense, in the sense 
of "J -migration" or "rotational relaxation, " which is 
true with respect to both types of collisions, both weak 
and strong. 

4. ORIENTATIONAL RELAXATION 

The presence of the distributions (2.13) and (2.15), 
which satisfy the stationarity condition, make it pos
sible also to reduce the orientational-relaxation prob
lem to a mathematically closed formulation. Carrying 
out the necessary averaging in (2.6), we obtain for the 
Fourier component 
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-d,(O)'I'B(J)=i[ ~ ql-ro ] d,(c.>, I) 

1 . ~ 

--[ d,(ro,l)-.E J T",(l',l)d"(ro,l')dl'], 
To q' 0 

where the operator Tq'q(J',J), which effects the ex
change in J and q spaces, is 

< a) -- 16 -cos' -2 e2i (8+11) (sm' 'n>e2ifJ 

"4 -

16 -
- <sin' a>e'" 

4 

1 16-""2 <3 cos' a-1> "4 <sin' a>e-Zi• 

16 -4"" <sin' a>e-'" < cos' ; ) e-2i (8+'l) 

(4.1) 

(4.2) 

(here and below the sign of the component do is re
versed). The bar denotes averaging over the distribu
tionj(O, 1/), while the angle brackets denote averaging 
over f(J - yJ'). In contrast to the analogous matrix used 
by Gordon, [261 all three Euler angles are retained in the 
present matrix, a procedure which is far from unneces
sary. Only because of thiS, as already indicated, [261 

does the averaging over the distribution of the angles, 
which occurs in adiabatic colliSions, cause all the non
secular terms to vanish, including by the same token 
the O-Q-S exchange. For non-adiabatic collisions, the 
presence of all angles is also most important, since it 
makes it possible to reduce the matrix to a symmetrical 
form, which should be inherent in it by virtue of most 
general considerations. [33) After independence of the 
angles ° and 1/ is assumed, symmetrization by means of 
averaging is possible only in the case when these angles 
are distributed in the same manner: J(O, 1/) = 1/I(8)1P(1/). 
Taking this into consideration, we have 

(4.3) 

Here 

x = J exp(2i6) 1j1(6) d6, (4.4) 

and 

.70(z')=~[lo(z')-I'(z')], .7_(z')=/o(z')- ~ .7o(z'), 

.7,.(z')= ! lo(z')±T/l(Z')+ ~ I,(z'), (4.5) 

where Ii (z') are modified Bessel functions with z' 
=2y{3J'J/(1- y2). 

From the physical point of view, Eq. (4.1) describes 
orientational relaxation, just as the Fourier-trans
formed Eq. (3.1) describes rotational relaxation. From 
the mathematical point of view, however, it is incom
parably more complicated. Even in comparison with 
Teller's equation there are considerable complications 
connected with the presence of the dynamic term and of 
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the much more complicated structure of the nucleus. 
Therefore an analytic solution of the problem, not only 
in the general case but also in the limiting situations of 
weak (y-l) and strong (y=O) collisions, encounters ap
preciable difficulties. The extent of these difficulties, 
however, is not the same. In the case of correlated 
variation of J(y-1), the same expansion in (1- y) which 
had transformed (3.1) into (3.4) and (4.1) reduces to a 
difficultly-solved system of three coupled partial dif
ferential equations of second order. Only by ignoring 
this coupling, i. e., by assuming the plane of rotation 
unchanged and the O-Q-S exchange inSignificant, is it 
possible to obtain lucid solutions in both the linear and 
nonlinear formulation of the problem. [351 On the other 
hand, if J varies in uncorrelative fashion (y=O), then 
we can resort to the general method that makes it pos
sible to reduce the system of integral equations into 
algebraic equations. [271 We shall make use of this pos
sibility to obtain lucid results. 

Besides the purely methodological advantages, the 
model of strong collisions is preferable also from the 
point of view of the realistically attainable collision ef
fectiveness. Experiment indicates that the cross sec
tions of the collisions that lead to J diffusion are close 
to the gaskinetics cross sections, [341 and are not much 
smaller, as might be expected were we to have 1 - y« 1. 
Furthermore, small changes in the angular momentum 
as well as in the momentum can be naturally expected 
in collisions between heavy particles and light ones, and 
not with partners of comparable mass. It is also equally 
clear from the quantum-mechanical point of view that 
the probability of non-adiabatic processes which lead, 
in particular, to J-J and O-Q-S exchange, [261 increases 
no slower than 1/R6 with decreasing impact distance. 
This means that the strong-interaction region is reached 
quite rapidly and its contribution to the J-diffusion cross 
section can be decisive. In the case of long paths, when 
the interaction is weak, mainly dipOle-allowed transi
tions with .6.J=± 1 take place. However, in the case of 
close paths, transitions with I.6.JI = 2,3, ... become 
allowed with increasing order and with increasing mul
tipolarity of the interaction, so that in the case of 
strong interaction transitions with any .6.J are possible, 
a fact indeed corresponding to the approximation (3.6). 

The fact that impact theory, in contrast to the Hub
bard diffusion approximation, can describe, in addition 
to the weakly-disorienting collisions (a« 1T), also col
lisions that spread J out over all directions (a .$1T), is 
well known and is frequently used. [23-251 Less known is 
the fact that collisions that disorient J completely can
not be weak in the sense of J exchange if the molecule 
axis is not displaced during the collision time. The 
converse is also true: if all the hindrances on .6.J are 
lifted, then the collision "spreads out" J both in magni
tude and direction. Therefore at y = 0 we obtain from (4. 3) 

(4.6) 
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The numerical values of the matrix elements stem from 
the averaging marked by the angle brackets in (4.2), 
which is carried out, by virtue of the strong collisions, 
over the uniform da/rr distribution. 

The assumption that the spreading out in J space is 
not adiabatic must inevitably be used when attempt is 
made to extend the impact theory to dense media. In 
fact, even by virtue of the very condition that the im
pact theory (2.8) we must have the inequality 

However, if the impact theory remains valid also at 
A« 1, when Hubbard's relation is satisfied, then we also 
have 

(4.7) 

Moreover, Hubbard's relation itself, as we shall see 
below, is obtained strictly speaking only at 7f. =0, as 
was indeed assumed in all the studies that reproduced 
this result within the framework of the impact the-
ory. (24,251 There is no need, however, for such an ex
cessive enhancement of the inequaltiy (4.7). The phase
coherence loss, even if small, may turn out to be sig
nificant after complete averaging of the rotation, when 
it becomes the only cause of the broadening of the spec
trum, a cause corresponding to the classical model of 
random warps of the axis. It is important only that unit 
step of these warps be small by virtue of (4.7) so that 
when the integrand of (4.4) is expanded in its terms we 
have 

(4.8) 

with allowance for the fact that, owing to the symmetry 
of the collision, the odd terms vanish as a result of the 
averaging. 

5. COLLAPSE OF STRUCTURE 

Under the assumptions made, the solution of (4.1) can 
be obtained in quadratures. Indeed, finding the partial 
d.(w,J) and averaging them over J, we have 

d.(oo) =A. [ d.(O) +T;' 1: T.',d., (00) ] , 

" 
whence 

\"1 [ 6." 1 ]-' \"1-' a.(oo)=.t..J ---T,'. d,'(O) = .t..JG",d,,(O). 
q' Aq TJ q' 

We have introduced here the notation 

Sw 'PB{J)dJ 
A= 

q Q i(fJ-iqUJo/+"c:/ 

izijl 
---exp(-z')Ei(z'), q=±2, 

200. 

(5.1) 

(5.2) 

where Wo = 1/1 is the frequency corresponding to the 
smallest rotational quantum, z = (/73/2)(w/wo - i/WOTJ ), 
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while cI>(iz) and Ei(z2) are respectively the error integral 
and the integral exponential function (the notation for the 
special functions is in accordance with Jahnke, Emde, 
and L6sch. (361 Using (5.1), we obtain ultimately in (2.1) 

1 \"1-' F(oo)=--;:;-Re .t..J G,',d_.(O) d.· (0). 
,', 

(5.3) 

Diagonalizing the matrix G by means of a similar trans
formation 

\"1 -, 
Q,', = .t..J U".,G.,.U.,=Q"{j",, (5.4) 

p'p 

we can represent the spectrum (5.3) in the form of a 
sum of three lines 

1 \"1 N 

F (00) = --; Re .t..JiI,Q"-'d,, (5.5) 
, 

the intensity of which depends on the products of the 
corresponding elements of the transform vectors 

iI, = 1: U,',d,' (0), d: = 1: U,~: d" (0). (5.6) 
q' q' 

These results enable us to describe quantitatively the 
change in the form of the spectrum, starting with the in
stant of time when the rotational structure of the side
bands becomes smeared out and the Q band appears in 
the form of a homogeneously broadened component. At 
low densities we have A» 1, which makes it possible, 
by using the smallness of the off-diagonal elements of 
the matrix G (of order A-1), to simplify (5.5) and to ob
tain for the central part of the spectrum the expression 

(5.7) 

From (5.7) we can find the relation between the times 
of the orientational and rotational relaxation of a linear 
molecule in the quasi-static limit: 

(5.8) 

Comparison of (5.8) with the analogous relation (T8 = T J/ 
4) for spherical tops(241 shows that at identical pres
sures the orientational relaxation of linear molecules is 
slower than that of spherical ones, which have one addi
tional rotational degree of freedom. 

With further increase of the density, besides the cen
tral band and the side bands, broadening will take place 
in the 0 and S bands; this broadening is particularly 
noticable for the narrowest Q line. The broadening of 
the bands ends with their coalescence into one (col
lapse), which should be followed either by further broad
ening or by a narrowing of the spectrum as a whole. 
Which of the two possibilities is realized in fact can be 
assessed only from the actual form of the solution at 

(5.9) 

We shall dwell separately on this limiting case, in or
der to demonstrate that the narrowing by pressure does 
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indeed take place. Its analysis is greatly facilitated by 
the fact that the inequalities (4.7) and (4.9) make it pos
sible to carry out first an asymptotic expansion of ~(iz) 
and Ei(z2), and then use the diagonalization procedure 
(5.4) for the matrix G by perturbation theory. Using 
the matrix U of the eigenvectors G in (5.6) and confining 
ourselves in (5.5) to terms of second order of small
ness, we obtain the following expression for the spec
trum: 

F(oo) =_ 3A' { fa (00) 
2n [oo+w-'I,ooB(oo) ]'+fo'«o) 

+ f.(oo) }+ 1+3A' fQ(OO) 
[oo-w-'I,ooB(oo) )'+f8'(OO) 1t 00'[ 1-3B(oo) )'+f.' (00) • 

B(oo) = (;;;>"-0)')1:/ 
1+w2T/ ' 
3 5 

f o(oo)=fs (OO)=T,-1_ 2w'T, +ZT,-IB(oo), (5.10) 

where w2 =J'l-112. The first two terms are the "rem
nants" of the 0 and S branches. They can be interpreted 
as Lorentzian lines with a width of scale T -} that varies 
insignificantly along the contour; the line centers coin
cide with the frequency centers of the bands ± w. With 
increasing density, they continue to broaden, but their 
amplitude tends to zero. Thus, as a result of the col
lapse, the side band branches become forbidden and the 
entire intensity is pumped over in final analysis to the 
central component (Fig. 2). The shape of the latter is 
also close to Lorentzian, as is evidenced by the insig
nificant variation of rQ(w) over the spectrum. Its width, 
which is inversely proportional to the intensity at the 
maximum (at zero frequency) actually coincides with 
1/Ts. Whether the residual width of the spectrum de
creases or increases with increasing density depends 
entirely on whether the Hubbard relation holds or not. 
To answer this question we investigate the density de
pendence of the orientational-relaxation time 

(5.11) 

bearing in mind the fact that T.r - p-l • If we assume that 
there is no loss of phase coherence in the collisions, 
then in the limit as p_oo we obtain from (5.11) 

1 I 
'te==-=--, (5.12) 

3OO'T, 6kT T, 

inasmuch. as w2 = 2kT II for linear molecules. This is in 
fact the Hubbard relation, and its experimental confir
mation can be regarded as evidence favoring the nar-
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FIG. 2. Transformation of 
spectral contour with increas
ing density (the arrows mark 
the intensity transfer). 
Dashed-A> I, solid line-A < i. 
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rowing of the Raman-scattering spectrum by collisions. 
As shown in the Appendix, for spherical molecules it is 
valid to the same extent as for linear ones. 2) The uni
versality of relation (5.12), which contains no param
eters except the moment of inertia of the molecule, is 
a guarantee that it is precisely the free rotation, modu
lated by the collisions in frequency and in direction, 
which collapses to orientational relaxation. If, in addi
tion to all other, the phase coherence also collapses 
(fI- *0), then this establishes the limit of applicability 
of the Hubbard relation on the high-density side. 

APPENDIX 

We write down for the unit vector n, which is rigidly 
connected with the core of the spherical top, the equa
tion of motion in the form 

(A.1) 

which is valid if the phase coherence is not lost in the 
collisions. Solving (A. 1) formally and substituting the 
obtained solution in the right-hand side, we arrive at 

o 1 i t 
o;n(t) = p J [J(t) [J(t')n(t') lldt'+T [J(t)n(O) I. (A.2) 

Averaging over the realizations, we obtain for each of 
the components n,,(t) 

0- ~ t Sl t-sl--nu(t)= ~- 1~(t')lp(t)np(t')dt'--12 n~(t')dt', 
at p PoP 0 

(A.3) 

where account is taken of the fact that J" =0. Using the 
uncoupling procedure of(27] as well as the fact that the 
different spatial projections of the angular-momentum 
vector of the spherical top are not correlated 

(A.4) 

we obtain under the usual assumptions t» T.r and J 2T~1 
12« 1 

(A.5) 

Equation (A. 5) leads to an exponential correlation func
tion 

(A.6) 

with a characteristic damping time 

3 r 
'tn=--=--· 

2 PT, 
(A.7) 

Analogous reasoning can be used also directly for the 
polarizability tensor, which is expressed in accordance 
with (2.3) in terms of bilinear combinations of the com
ponents n", but it is simpler to use the known rela
tion(l1] 
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(A. 8) 

and to obtain from (A. 7) 

1 r 
't'e=--=-. (A.9) 

2 r-c, 

Substitution of the value of J2, which equals for spheri
cal tops 

r=3kTI, 

again leads to the expression (5.12) 

I )The reasons for the absence of the d.1 components are the 
same as those for the absence of the do component in the m 
spectra of linear molecules. [26J 

2)In an investigation of the density dependence of the time of 
nuclear quadrupole relaxation, which, like the width of the 
Raman spectrum, is proportional to liTe, Neilsen and Gor
don[37J reached conclusions that contradict (5. 11). The rea
son for this is the attempt to integrate the spectrum (5.5) 
without taking into account the complicated transformation of 
the eigenfrequencies and eigenvectors of the matrix G dur
ing the collapse process. 
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