
the region of normal dispersion are realized only in the 
case of inversion of the initial population of the levels 
of the working transition, and represent solitons of 
Lorentzian shape or 21T pulses of hyperbolic type. Under 
arbitrary dispersion conditions, soliton regimes are 
also possible in the form of periodic trains of 21T pulses 
of elliptical and trigonometric types. The solitons of 
Lorentzian shape, trains of a trigonometric type and 
special types of isolated solitons with e < 21T (class 9) 
are stable, which indicates the possibility of their prac­
tical realization (see the estimates in Sec. 1). 

We note in conclusion that the soliton regimes of SRS 
can have great value in the analysis of the detailed tem­
poral structure of the radiation of combination lasers, 
since the fields ariSing in such systems have intense 
fluctuation discharges of short duration. The observa­
tion of soliton regimes in "pure form" is advantageously 
carried out in gases at low pressure - O. 1 atm in the 
case of durations of the initial laser pulses of -1-10 
nanosec. 

The authors thank S. A. Akhamanov for discussion of 
the results of the work and useful remains, and also G. 
M. Makhviladze for discussion of the question of the 
stability of soliton regimes. 

l)We note that here and below we neglect the pumping of energy 
into the antistokes and higher Stokes components, since the 
intense fields of the exciting and first Stokes radiations are 
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given at the input to the medium, and the fields of the other 
components are generated from noise nuclei. 

2)We note that for the special case of the absence of dispersion 
1/1 = 1/8' this type of soliton solutions was found also in a recent 
publication. [8J 
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The crossing of discrete energy levels, each of which interacts with the continuous spectrum, is discussed. 
The problem is reduced to the consideration of only two, but quasistationary, levels with suitably 
modified interaction. A formula for the amplitude of the nonadiabatic transition in this problem is derived 
for a sufficiently general dependence of the terms on the interatomic distance. The behavior of the 
populations of such states is investigated, and it is shown that the interaction between the levels through 
the continuum has an important effect both on the nonadiabatic transition amplitude and on the 
population of states. It is noted that both the formulation of the problem and the method of solution given 
by Karas' et al. (1974) and by Bazylev and Zhevago (1975) are subject to error. 

PACS numbers: 31.!O.Bb 

1. It is necessary to introduce the concept of quasi­
stationary energy terms when different atomic-collision 
processes are investigated. In contrast to the usual 
discrete states, quasistationary terms are characterized 
not only by the energy E but also by the width r which 
describes the possibility of decay, i. e. , the possibility 
of a transition of the system from a given electronic 
state to the continuum with the emission of an electron 
or photon. In general, both E and r are functions of the 
distance between the colliding particles. The interac­
tion and crossing of such terms play a fundamental role 
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in collisions leading to the formation of vacancies in the 
inner electron Shells of atoms. [2,3] Such states are com­
monly referred to as the autoionization states. Another 
example is charge transfer on negative ions. Thus, 
analysis of experimental data shows[·] that the crossing 
of quasistationary molecular terms corresponding to dif­
ferent charge-transfer channels must be taken into ac­
count in these reactions. Multiple crossing of quasi­
stationary terms is also expected in collision processes 
involving the partiCipation of atoms in highly excited 
states, for example, in Penning ionization processes of 
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the form A + B* - A" + B + e. It is interesting to note that 
similar problems also arise in certain types of wave­
guide. [5] 

The theoretical analysis of the interaction between 
quasistationary levels was undertaken by Kogan et aZ. [8] 

and Lisitsa and Yakovlenko. [7] These workers investi­
gated in detail the case of parallel, time-independent 
terms and their results have extensive applications to 
atomic processes. Osherov[8] used the example of non­
adiabatic transitions in mixtures to consider the cross­
ing of an inclined and a horizontal term. 

The aim of the present paper is to investigate the in­
teraction between two electronic states I CPl.!) with dis­
crete energies El(t) and E!(t) which cross at t= O. Each 
of these states interacts with the continuum, and this 
leads to their decay with the emission of electrons or 
photons. This problem has recently been considered by 
Karas' et aZ. [9] and Bazylev and Zhevago. [10] However, 
the formulation and method of solution of the problem 
given by these workers are subject to error, so that the 
final result is not correct. This has led us to a more 
detailed analysis of the various difficulties that have giv­
en rise to the misunderstanding. 

2. In verifying the initial set of equations, we shall 
follow the procedure given by one of the present authors 
in[11]. Assuming that the total energy of the colliding 
atoms is sufficiently large, so that the quantum-me­
chanical energy exchange between electronic and nuclear 
motions can be ignored, we can take the time-dependent 
Schr6dinger equation with the Hamiltonian given by 

H(t) =H.+V=E. (t) 1<p.>(<p.I+E,(t) 1<p.)(<p.1 + J doo 001(0)(001+ V. (1) 

The vectors of discrete states I CPl.Z) and states in the 
continuum I w) form a complete orthonormal set, and we 
assume that the operator V satisfies the relation 

In the ensuing analysis; we shall assume, for Simplicity, 
that (wi VI CPl.2) is independent of w, and that the contin­
uous spectrum extends from - 00 to 00. Physically, this 
assumption means that the limit of the continuum lies 
well away from the region of crossing, and the widths 
are sufficiently slowly varying functions in this region. 

We shall take the solution of the Schrodinger equation 

HI 'l'>=i~ I'l'> 
at 

in the form 

I 'l')=a, (t) l<p,>+a,(t) l<p,>+ J doo b (00, t) e-'·'Ioo) (2) 

so that by eliminating b(w, t), we obtain the following set 
of equations for the probability amplitudes: 

d (a,) (E,-'/'ir. V-'/,i(r.r,)"') (a.) 
idi a, = V-'i,i(r,r,)'" E,-'/,ir, a,' 

(3) 

d ei&t 

i - b (00, t) = (a,r,'I'+a,r,'I,)-=, 
dt l'2n 

(4) 

where r l .2 represents the coupling between the original 
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discrete levels and the continuum: 

The problem of the interaction between two discrete ar­
bitrarily time-dependent levels with each other and with 
the infinite number of states in the continuum has thus 
been reduced. to the interaction between only two but 
quasistationary levels. The set of equations given by 
(3) can readily be generalized to the case of a large 
number of levels and continua. 

Proceeding now to the solution, we note, first of all, 
that the set of equations given by (3) for quasistationary 
states differs from the complete system (3) and (4) by 
the fact that it is not Hermitian. This is why, in the 
case of the two-level problem, the question of the time­
independent transition probability is not trivial in rela­
tion to (3). Another important point is that coupling to 
the continuous spectrum leads not only to the appearance 
of the level width but also the imaginary term 
-ti(rlr 2)1/2. This term describes the interaction be­
tween levels through the continuum, which is clearly 
indicated by the form of the equations given by (3) and 
(4). This modified interaction between quasistationary 
levels (as compared with the interaction between the 
initial discrete states) was not taken into account in[9] 
or[lO] and, therefore, the initial equations that are 
solved there can be regarded as valid only in the ab­
sence of interaction through the continuum. This oc­
curs when the width of one of the terms is zero, or the 
width of the terms is determined by transitions to states 
in physically different continua, which is of no interest 
for applications. The modified. interaction for horizon­
tal terms is derived in[7] and, for a horizontal and an in­
elined term in[S]. It is interesting that the exchange in­
teraction operator between single-nucleon quasistation­
ary states is also proportional to (rlr z)1/2. This has 
been shown by Dalidchik. [12] 

3. We shall write the solution of (3) in the form 

I 'I [A.H.. ( 1'l'>=a.I<p.>+a, <p,>=~-' (H .. -E,) 'I, ClI, t.t.) 

+A, (En-H,,) "'ClI,(t, t.) ] !<p.)+~-'" [A. (H .. -E,),/·ClI, (t, to) 

A,H.. ] 
- (En-H,,) 'I. ClI,(t, to) l<p,), 

where 

H .. , .. =E."-'/,ir",, H,,=V-'/,i(r,r,)"', 

ClI", (t, to) = exp ( -i J E"ndt ) 
~ 

the energies of the adiabatic terms are 

E,. n='/, (H .. +H .. =i~), 

and the splitting is given by 

~=[ (H,,-H,,)'+4H,,']"'. 

(5) 

(6) 

Equation (5) is, at the same time, the definition of the 
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time-dependent quantities Al and A a, the significance of 
which becomes clear if we rewrite the solution (5) in the 
form 

(7) 

The expressions in brackets are commonly referred to 
as the vectors of the adiabatic basis I.pI,II)' [13] On 
this basis, the energy matrix of (3) is diagonal with ei­
genvalues E I , II (in contrast to the basis of the initial 
states I CPI,2»' which is called nonadiabatic in colliSion 
theory. 

Let us begin by considering the usual two-level sys­
tem without attenuation, when r 1 = ra = 0 i. e., EI,u(t) 
are real for real t. The corresponding definitions of 
the transition probability amplitude g between adiabatic 
states can be introduced either with the aid of an adia­
batic or diabatic basis. In the first case, the only def­
inition is 

(8) 

and, in the second, 

a,(t,) ( S" ) g=lim-(_ ) exp i E,dt 
it ...... at tt -t, 

for a. (-t,) =0. (9) 

It is readily shown that (8) and (9) lead to the same re­
sult provided only the quantity to in (7) is taken to be the 
point of closest approach of the diabatic terms, 1. e. , 
Hll(tO) = H22(to). We note that the choice of to affects only 
the phase and not the modulation of the amplitude g. 

Bates[16] has shown that, for a linear difference be­
tween diabatic terms in the neighborhood of crossing, 
Hll -H22 '" ~Fvt (~F is the difference between the forces 
on the terms and v is the relative velocity), the esti­
mated time interval Mad during which transitions take 
place between adiabatic terms can be obtained from the 
condition 

dtad 

S ~dt""1 
o 

and is given by 

Mad"" (4n/ ~Fv) "'. 

The same estimate is obtained for ~tad in the linear 
case and from the condition that the exact solutions 
must have the asymptotic behavior of (7) (see Sec. 5, 
with r 1,2=0). 

In the diabatic basis, the tranSitions occur in a 
broader interval ~td determined from the requirement 
that one of the coefficients in front of the exponentials 
in brackets in (5) is much smaller than the other, 1. e., 
I Hu - H221 »H12• This inequality yields ~td «I H12/ ~Fv I . 
Consequently, 
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in the limit of small velocities when, and only when, 
the concept of an adiabatic term is valid. 

Thus, even in this simplest case, the use of the adi­
abatic basis is to be preferred. In fact, the physical 
requirement that must be imposed on (8) is I tl - tol 
» Mad, whereas that corresponding to (9) is I tl - tol 
»~td' so that the coefficients A 1,2 reach the asymptotic 
region much more rapidly than al and a2' This differ­
ence is important when the solutions are matched in dif­
ferent regions. As will be shown below, this is partic­
ularly important in the case of quasistationary terms. 

The traditional approach to quasistationary states is 
to conSider the problem of the dependence of the popula­
tions on time. This was done for parallel terms in[6,7]. 
The equations given by (6) in[IO], which are described 
there as probabilities, in fact determine the populations 
of two crossing quasistationary terms that do not inter­
act through the continuum. 

If we wish to retain the formulation of the problem of 
finding the time-independent probability, that is tradi­
tional for the two-level system, it is convenient to use 
the definition in the adiabatic basis (8). We note at once 
that, since the system given by (3) is not Hermitian, 
the usual requirement I gl ,;; 1 is not satisfied for this 
"probability." Nevertheless, this extension of the def­
inition of g is very useful because it enables us to extend 
the usual formalism of the theory of slow atomic col­
lisions to the case of quaSistationary terms. 

We also note that, in contrast to the case where r 1,2 

= 0, the choice of to affects not only the phase but also 
the modulus of the amplitude g. The condition Hll(to) 
= H22(to) now gives a complex value for to which is some­
what more difficult to interpret but is quite natural in 
adiabatic theory. On the other hand, any attempt to 
generalize the definition in the adiabatic basis (9) leads 
to its own much more substantial difficulties connected 
with the fact that the decay law for the diabatic states 
is not exponential (see below for further details). 

Finally, we note the third possible formulation of the 
problem for the system (3), (4), which is: to determine 
the spectrum of the emitted particles, 1. e., b(w, t_ oo ), 

and to elucidate how the crossing of terms affects this 
spectrum. 

4. We must now determine the quantity g. For sim­
plicity, we shall assume initially that El = alt, E2 
= - aat, and that r 1,2 is independent of time. 2) In this 
approximation, the set of equations given by (3) corre­
sponds to the well-known Landau-Zener problem[13] but 
now for the crossing of quasistationary levels with con­
stant widths. 

Let us conSider the solution of (3) subject to the ini­
tial condition corresponding to the motion of the atoms 
over the lower adiabatic term Ex> i. e. , 

I 'I' (t_- oo »=«1, (t, t.) 1'1',). (10) 

The required solution of (3) is 
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FIG. 1. 

r ! I 

a,=C exp - 2 f. (HII+H,,) dt] Dn [ -a.'I'e"'< (t-i : ) ] , 

(11) 

Q,=-i'in C exp [- ~ i (HII+H,,) dt] DH [ -a.'I'r'< (t-i : )] , 

where Q = Ql + Q2' y = (r 1 - r 2)/2, and Dn is the parabolic 
cylinder function with 

n=- : ( V -i (r,~)'I). 

Using the well-known asymptotic expressions for Dn[14l 

for 1 Q 1/2tl > ,~, we can verify that the initial condition 
given by (10) is satisfied. The constant C is uniquely 
related to the choice of to. 

If we consider the solution (11) for t> 0, we find that 
the component of the wave function corresponding to 
motion over the upper adiabatic term is 

Consequently, in accordance with (8), the probability 
amplitude for the nonadiabatic transition is 

(12) 

so that, for VB < r 1r 2/4, we have 1 gl > 1 (see the Appen­
dix). 

For an arbitrary function E1•2(t), the transition am­
plitude can be found by the method of phase integrals 
assuming that the splitting of the adiabatic terms (~) 
has a pair of complex roots t1•2 close to the real axis 
and sufficiently isolated from other zeroes and singular­
ities in~. For V2 >r1r 2/4, the Stokes lines on which 

t 

1m S II dt=O, 
t, 

are shown by the solid lines in Fig. 1. To solve the 
problem, we must specify (10) for sufficiently large 1 tl 
on a Stokes line passing through to(t 1 + t 2)/2 (to = - iy/ Q 

for linear terms). 

Beyond this, the solution is constructed as shown 
in[15l for Hermitian problems on over-barrier reflection 
or nonadiabatic transitions. We find that 

Ill,(t<-Mad ,to) 1'¥,> ..... glll,(t>Mad,to) I'¥II>, 

g = exp ( - -} S lldt). 
I 
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(13) 

(14) 

The contour 1 runs around the upper zero in ~ along the 
cut and begins at the point to, as shown in Fig. 1. 

When V2 < r 1 r 2/4, the Stokes lines are as shown in 
Fig. 2. The situation resembles subbarrier transmis­
sion with the one difference that the zeros in ~ no 
longer lie on the real axis. If we use this analogy, we 
can readily construct the corresponding approximate 
solution. The usual approach to subbarrier transmis­
sion is to evaluate the. phase integral in (13) between the 
turning points t1•2• Correspondingly, the tranSition 
amplitude is given by 

• b 

g = exp ( - + S lldt). 
t. 

which, of course, is equal to the amplitude in which the 
integral is evaluated over the contour around one of the 
turning points. To achieve a unified approach, we shall 
therefore assume that, in both cases, V(r1r 2)1/2/2, 

the phase integrals in (13) are taken from the point to, 
and that the tranSition amplitude is given by (14). In 
the case of linear terms, (14) becomes identical with 
(12). 

Bazylevand Zhevago[10l have noted, in connection 
with the reappraisal of the work of Karas' et al. ,[Gl 
that the Stueckelberg method, i. e. , the method of phase 
integrals, is not valid in the case of a complex~. A 
derivation of (14) shows that this is not so. However, 
the results in[Gl and of our own work are quite different. 
In fact, it follows from (12) and (14) that, in the pres­
ence of interaction through the continuum (which is es­
sentially the case in[Gl), the transition amplitude is 
e-rv2/ot according to the Landau-Zener theory, whereas 
the formula given by (4) in[Gl gives a much more compli­
cated expression. The reason for the discrepancy is 
that the phase integrals in[Gl are evaluated between 0 and 
t along the real axis which, even in the absence of inter­
action through the continuum (H12 real), is not a Stokes 
line. This integration gives rise to factors on the left 
and right of (13), whose moduli are not equal. The in­
clusion of these factors (and they were not allowed for 
in[Gl) leads to the correct expression for the amplitude, 
• -rV2 /C1 
1. e. , e . 

5. We must now conSider the time dependence of the 
populations in the problem with linear terms. For dia­
batic states, the result is given by (11) for any t. Using 
the asymptotic behavior of Dn and omitting the unimpor­
tant common normalizing constant, we have for 
t< - (2/ Q)1/2 

FIG. 2. 
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(15) 

and for t> (2/ a)1/2 

where 

. (i, r.t) e( ) = exp - - a t --
2' 2' 

It is clear from these expressions that, in general, the 
attenuation has a complicated non exponential character 
for each diabatic state. 

Let us now consider in greater detail the important 
case of small widths V(r1r 2)1/2/a =-Ren« 1 when the 
power factors in (15) and (16) need not be taken into ac­
count. For r 1« r 2, we find from (16) that the attenua­
tion of both states is determined by the width of the ini­
tial populated state. For sufficiently large positive 
times we have I al/a21» 1, i. e. , the second state is not, 
in fact, populated as a result of crossing. When r 2 « r 1, 
on the other hand, the population of the second state is 
much greater than the population of the initial first state 
after the crossing when a1 / 2t» 1. Finally, when r 1:::: r 2, 
both exponents must be taken into account in (16). 

The attenuation of the populations of adiabatic states 
is much Simpler. In the problem involving linear terms, 
the expressions given by (13)-(16) for I tl > /ltad yield the 
following expressions for the population of the state 
IlJIr ): 

exp (- i S Eldt) , t < - Mad; 
~ 

(17) 

f exp ( - i j Eldt ), t > j.tad 

'. 

and the population of the state IIJI II): 

0, t<-Mad; (18) 

gexp ( -i SEldt), t>Mad. 
~ 

The transition amplitude g was found above, and the 
quantity 

f= 
i(2nn) 'I. [ n ] 
( ) exp -i-n+n-nln(in) r 1-n 2 

(19) 

can be interpreted as the probability amplitude for re­
maining on the initial adiabatic term after passing 
through the nonadiabatic region. When r 1 = r 2 = 0, the 
expression given by (19) becomes identical with the usu­
al Landau-Zener result. [131 In general, however, f and 
g are independent because the relation If I 2 + I gl2 = 1 is 
no longer satisfied. Both g and f must be known, for 
example, when we wish to calculate the transition prob-

481 SOy. Phys. JETP, Vol. 44, No.3, September 1976 

abilities and populations in the case of a double transit 
through the region of nonadiabatic term interaction. In 
this case, the solution obtained within the framework of 
the linear model must be matched to the solutions cor­
responding to the motion over real terms outside the 
nonadiabatic region. In (17) and (18), the matching of 
the solution is achieved simply by replacing the model 
dependence Er,II(t) by the real dependence. Finally, we 
note that, in the case of the general function Er,II(t) , 
the use of the method of phase integrals again leads to 
(17) and (18) but withf= 1. This is a reflection of the 
well-known fact that the method of adiabatic integration 
of (3) does not take into account the change in the am­
plitude for the initial state due to the nonadiabatic tran­
sition. [131 

The formulas given by (17) and (18) enable us to elu­
cidate once again the Significance and usefulness of the 
concept of transition probability in the non-Hermitian 
problem which we have conSidered. It follows from 
these expressions that this probability takes into ac­
count the effect of the interaction in the transition re­
gion on the population of states. 

As in the case of discrete terms, the transition prob­
ability amplitude can be interpreted as the factor in 
front of the corresponding exponential in the dependence 
of the populations of diabatic terms on time (16). The 
definition of the probability in the diabatic basis (9) 
rests on the possibility of isolating this coefficient in 
the limit as I tl _00. However, as we have seen, this 
separation cannot, in general, be achieved by this meth­
od for quasistationary terms, even in the case of a lin­
ear time dependence. On the other hand, when this 
separation is poSSible, the approach to asymptotic be­
havior may be found to be slower as compared with the 
case of discrete terms, which gives the impreSSion of 
an expansion of the region of interaction between the 
quasistationary terms. nOl Here, we must note that this 
"expansion" is only a manifestation of decay effects in 
the relatively large region of interaction between the 
diabatic terms, - /ltd < t< /ltd' The region of interaction 
between the adiabatic terms, which has a direct phys­
ical significance, remains unaltered. 

6. We note in conclusion that it follows from the form 
of R12 = V - i(r 1 r 2)1/2 that the effects of the usual inter­
action and the interaction through the continuum are, in 
general, of equal importance. For example, for many 
processes involving the emission of an electron, r- 1 
eV, which is even greater than the usual magnitude of 
V. It is therefore difficult to agree with the main con­
clusion in[61 that the attenuation of states has no effect 
on the transition probability. 

The authors are indebted to Prof. N. P. Penkin for 
his constant interest and support, to Prof. Yu. N. Dem­
kov, Prof. G. F. Drukarev, and V. S. Rudakov for use­
ful discussions, and to S. S. Moiseev for suggestions 
that have led to an improvement in our presentation. 

APPENDIX 

It follows from[121 that Igl>l when v 2 <r1r 2/4. To 
elucidate the physical reason for the behavior of the 
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ReEl, 

I 

Fig. 3. 

"probability, " let us consider the limiting case when the 
terms interact only through the continuum (V = 0) and, 
for simplicity, let us suppose that r 1 = r 2 = r. The pow­
er factors t n in (15) and (l6) have moduli equal to unity, 
so that the difficulties associated with the application of 
the diabatic basis are of lesser significance. 

The solid lines in Fig. 3 represent the time depen­
dence of the real and imaginary parts of the energy of 
the adiabatic terms in this case, and the broken lines 
represent the same quantities for diabatic terms. It is 
clear that, when -r/a<t<r/a, the effective width of the 
term to which the transition takes place is less than r. 

When t« - t:.td , the decay of the diabatic state I CPl ) 
occurs in accordance with the formula exp{- rt) and, for 
t» t:.td , it occurs in accordance with the law I gl2 e-rt 

with I gl > 1. This behavior of the probability of transi­
tion between quasistationary states is connected with the 
fact that the interaction through the continuum leads to 
a slowing down of the decay of the populated state in the 
region of term interaction. This is clear from Fig. 3. 
Outside the interaction region, where the terms decay 
with constant width, this slowing down leads to the ap­
pearance of the factor I gl > 1 in the formula for the pop­
ulation. 

1) A brief report of this research was presented to the First 
All- Union Seminar on Autoionization Phenomena, Moscow 
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1A. Z. Devdariani, V. N. o strovsky , and Yu. N. Sebyakin, 
Abstracts of Papers read at the Ninth ICPEAC, Seattle, 1975, 
p. 220; A. Z. Devdanani, V. N. Ostrovskii, and Yu. N. 
Sebyakin, Sbornik trudov pervogo vsesoyuznogo seminara po 
avtoionizatsionnym yavleniyam (Collection of Papers given at 
the First All-Union Seminar on Autoionization Phenomena), 
Izd. MGU, 1976, p. 102. 

2V. V. Afrosimov, Yu. S". Gordeev, A. N. Zinov'ev, D. Kh. 
Rasulov, and A. P. Shergin, Sbornik trudov pervogo 
Vsesoyunogo seminara po avtionizatsionnym yavleniyam 
(Collection of Papers given at the First All-Union Seminar on 
Autoionization Phenomena), Izd. MGU, 1976, p. 25. 

3V• V. Afrosimov, G. A. Le1ko, and M. N. Popov, Sbornik 
truoov pervogo Vsesoyunogo seminara po avtoionizatsionnym 
yavleniyam (Collection of Papers given at the First All-Union 
Seminar on Autoionization Phenomena), Izd. MGU, 1976, p. 
37. 

4R. F. Mathis and W. R. Snow, J. Chem. Phys. 61, 4274 
(1974). 

5A. V. Lazuta, S. Yu. Slavyanov, and I. B. Tampel', Sbornik 
trudov V Vsesoyuznogo simpoziuma po difraktsii i raspros­
traneniyu voln (Collection of Papers given at the Fifth All­
Union Symposium on Diffraction and Propagation of Waves), 
Nauka, Leningrad, 1971, p. 125. 

6V. I. Kogan, V. S. Lisitsa, and A. D. Selidovkin, Zh. Eksp. 
Teor. Fiz. 65, 152 (1973) [SOY. Phys. JETP 38, 75 (1974)]. 

7V. S. Lisitsa and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 66, 
1981 (1974) [Sov. Phys. JETP 39, 975 (1974)]. 

BV. I. Osherov, Fiz. Tverd. Tela (Leningrad) 10, 30 (1968) 
[Sov. Phys. Solid State 10, 21 (1968)]. 

9V• I. Karas', S. S. Moiseev, and V. E. Novikov, Zh. Eksp. 
Teor. Fiz. 67, 1702 (1974) [Sov. Phys. JETP 40, 847 (1975)]. 

10V• A. Bazylev and N. K. Zhevago, Zh. Eksp. Teor. Fiz. 69, 
853 (1975) [Sov. Phys. JETP 42, 436 (1975)]. 

ttV. N. Ostrovskil, Vestn. Leningr. Univ. Ser. Fiz. Khim. 
16, 31 (1972). 

12F. I. Dalidchik, Yad. Fiz. 21, 51 (1975) [SOY. J. Nucl. Phys.] 
13E. E. Nikitin, Teoriya elementarnykhatomno-molekulyarnykh 

reaktsii (Theory of Elementary Atom-Molecule Reactions), 
Part 1, NGU, Novosibirsk, 1965. 

14A. Kratzner and W. Franz, Transcendental Functions (Russ. 
Transl. IlL, 1963). 

15G. M. Zaslavskil, Lektsii po primeneniyu metoda VKB v 
fizike (Lectures on the Application of the WKB Method in 
Physics), NGU, Novosibirsk, 1965. 

16D. R. Bates, Proc. R. Soc. Ser. A 257, 22 (1960). 

Translated by S. Chomet 

Devdariani et al. 482 


