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It is shown that in strong ultrashort pulse fields, specific SRS (stimulated Raman scattering) regimes arise 
which are not accompanied by amplification (SRS solitons). The existence of any of the regimes depends on 
the initial conditions and the dispersive properties of the medium. The stability of a number of soliton 
regimes with respect to weak perturbations of various kinds is demonstrated. The results are applied to the 
case of two-photon resonance absorption of pulses of different frequencies. 

PACS numbers: 42.65.Dr 

1. INTRODUCTION 

The effect of self-induced transparency, which arises 
in the passage of powerful ultrashort light pulses through 
a medium, has been widely studied in recent years. [1] 

Interest in this phenomenon is connected both with the 
fact that one can extract additional information on the 
optical characteristics of matter (the determination of 
the constants of radiative transitions, the longitudinal 
and transverse relaxation times), and with the possibili­
ty of obtaining supershort pulses. The theory of the ef­
fect of coherent illumination for a medium with single­
photon resonance absorption was first given by McCall 
and Hahn. l2 ] It was shown in Refs. 1, 3, 4 that this ef­
fect takes place also in media with two-photon reso­
nance and non-resonance absorption. 

In our previous researches, (5] we established the pos­
sibility of the existence of the effect of self-induced 
transmission in the case of stimulated Raman scattering 
(SRS) under the conditions of the interaction of ultra­
short pulses of exciting and Stokes radiation in a loss­
less medium (SRS solitons). Similar transmission 
arises only when the length of both pulses is much less 
than the transverse relaxation time Tz• The reason for 
the effect is that the energy absorbed by matter from 
the pulses is then coherently returned to the field as a 
result of the stimulated scattering. As a consequence, 
a stationary scattering regime becomes pOSSible, in 
which the form of both pulses and their amplitudes do 
not change. It was found in Ref. 5 that for definite form 
of the initial conditions, the SRS solitons should be 
pulses of Lorentzian shape, and the value of the overlap 
integral is 

0 ... ~ j E'{6')E,{6')d6'=2rc, (1) 

where E" Es are the real amplitudes of the pulses of 
the exciting and first Stokes radiation, X is the scatter­
ing matrix element. The condition (1) shows the thresh­
old character of the effect. Estimates show (see Ref. 
5) that the upper boundaries of the threshold values of 
the fields EI and Es amount to - (10-100)T2:lIZ ", 105_106 

V/cm at normal pressures in gases and -107 V/cm in 
liquids. Under such conditions, a strong change in the 
level populations takes place during the scattering, 
which sharply distinguishes the situation from SRS in 
the field of quasistatic or ultrashort pulses with an in-
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tensity less than the given threshold (see Ref. 6). How­
ever, even if the threshold conditions are satisfied at 
the input to the medium, to make clear whether the SRS 
pulses go over to the soliton regime, it is necessary to 
solve the complete set of nonstationary equations which 
describe their temporal evolution. This can be done 
only in the special case of "proportional" input pulses, 
which are considered in Ref. 5. The numerical solution 
of the nonstationary equations cannot give a final answer 
to the problem. It is therefore of fundamental impor­
tance to consider the problem of the stability of the mo­
tion of the SRS solitons relative to small perturbations. 

In the present work, we have found all the possible 
soliton regimes which can exist in the case of combina­
tion interaction of ultrashort pulses in a lossless medi­
um (Secs. 2 and 3). Whether one obtainS this or that 
type of soliton depends on the initial conditions and the 
dispersive properties of the medium. The stability of 
several soliton regimes is studied in Sec. 4, relative to 
the different types of small perturbations. In particular, 
the existence of perturbations is shown in which the soli­
tons change their duration and velocity without change 
in the shape of the pulse. 

2. BASIC EQUATIONS 

We shall assume that the scattering takes place on one 
pair of levels of the scattering molecules, and consider 
the case of the one-dimensional problem for simplicity. 
In the envelope approximation, the set of equations which 
describes the evolution of the pulses of the exciting and 
first Stokes radiations of the SRS consists of the abbre­
viated Maxwell's equations for the amplitudes of the 
fields and the equations of motion for the averaged val­
ues of the polarization. In the case of resonance (WI 

- Ws = wv' where WI and Ws are the frequencies of the 
scattering and Stokes fields, Wv is the frequency of the 
operating transition) this set has the form1 ) [5]; 

(jE. 1 dE, 1 
--+--~ -= --Aj.l.ow"ZI\/,.-uE i , 
dz c. Ot 2k, 
dE, 1 ,)E, 1 , 
--+ --.- = -).~(liW/l\'rl:E8' 

dz c, at 2/;, (2) 
du u du u '). 
di= - T,' di= -r,+hE,E,W. 

dW '}. W-W,q 
at = - h"E,E,u- -T-,-

where u, v are the amplitudes of the transverse polar-
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ization, W is half the difference between the populations 
of the upper and lower levels, W" is the equilibrium 
value of W; Tl and Ta are the times of longitudinal and 
transverse relaxations; JJ.O=41T/tf; N v is the density of 
the scattering molecules; cl,a = (a w/ak)",.", I,,, are the 
group velocities of the pump wave and the Stokes wave, 
respectively, which can be close to the phase velocities 
c/-Je(wl ,.) under the condition ae/aw« e/w (kl,. are the 
moduli of the wave vector, e(w) is the dielectric con­
stant of the medium). For the consideration of ultra­
short pulses with durations much less than Ta and TlJ 
we set T 1 = T 2 = 00, as usual (account will be taken below 
of the effect of the finiteness of relaxation times). Then 
it is not difficult to reduce the set (2) to the form 

fiE, 1 fiE. . - + --=-x.E, sm cp, 
fiz c. fit 

cp= ~ J E,(z, t)E.(z, t)dt; 

fiE, 1 aE, . - + --= x.E. SID cp, az c, at 

y., .• =A/tocoo, .• NvW·f/2T)' .•. 

(3) 

The quantity cp(z, t) has the meaning of the turning angle 
of the polarization vector. 

We now find the general soliton solution of the set (3), 
corresponding to stationary pulses EI and Ea propagat­
ing with the same group velocity V. It has the form 

cp=CPo(t-z/V), E,=E.,(t-zIV) , E,=Eo.{t-z/V). (4) 

We note that the equality of the group velocities should 
guarantee the maximum degree of coherence of the in­
teraction of the pulses. Introducing the variable ~ = t 
- z/V, we get, after substitution of (4) in (3), 

dE.. vc.. 
- = -XI --EOi 8m ,+,0, ds V-c. 

de.. Vc, . 
- =x,--E •• Sln cpo, ds V-c, 

whence 

E .. '=a.(C,-cos 'Po), E .. '=a, (C,-cos <Po), 

where C h Ca are constants of integration, 

From (5) and (6), we have the equation 

dcpolds= {b(C,-cos <Po) (C,-cos <Po)} "'. 

where b =x2/naalaS' Introducing the new variable x 
=tan(cpo/2), we obtain the solution (8) in the form 

(5) 

(6) 

(8) 

•. dx 1 
f = -(s-so). (9) 

{b [C,-i+(C,+1)x'] [C,-i+[C,+1)X']}'I, 2 .. 
The integral (9) contains all the soliton solutions of the 
set (3). By specifying different C1 and Ca, we obtain 
different classes of SRS solitons. Limitations on the 
dispersive characteristics of the medium, at which the 
existence of solitons of the given class is possible, fol­
low here from the requirement of the positiveness of (6) 
and the form of Eqs. (7) for as' al (W"< 0). We note 
that the quantities C1 and Ca are connected with the ini-
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tial values of the fields and the polarizations. 

Thus, in the formation of SOlitons, an important role 
is played by the effects of group retardation. In this 
connection, it must be noted that account of dispersion 
in first approximation, to which Eqs. (2) correspond, 
is completely adequate for the problems of the optics of 
ultrashort pulses (see Ref. 6). 

3. SOLITON SOLUTIONS OF THE SRS EQUATIONS 

We now consider soliton regimes which correspond to 
various relations between the group velocities of the in­
teracting waves (normal and anomalous dispersion) and 
different initial populations of the working levels of the 
molecules of the medium. 

1. We find the solitons corresponding to the cases 
C1 =Ca =± 1. 

A. Let C1 =Ca = 1. It then follows from (6) and (7) 
that the .velocity V should lie in the interval c. < V < CI 

(i. e., ai' a.> 0). The condition which arises here cor­
responds to the case of anomalous dispersion. [7] We 
integrate (9) with the initial conditions X'o = 0, ~o = - 00, 
which, for given choice of constants C1 and Ca, corre­
sponds to CPo(_OO) =0, Eos{-OO)=O, Eol(_oo)=O, i.e., at 
the initial moment of the interaction of the fields, the 
medium is in equilibrium. Then 

cp.m =2{'/,n+arctg (sl.)], o=cp.(ca)-cpo( -00) =2n, (10) 

E'- 24. E ,- 2a. -,_ 11} (11) 
e. - 1+ (sl.) , ' .. - 1+(sl.)" '(, . 

which agrees with solutions of (1) obtainedtsJ by another 
method. 

B. Let C1 =Ca = -1. The soliton solutions are possi­
ble upon satisfaction of the condition CI < V < C a (ajJ aa 
< 0), which corresponds to the region of normal disper­
sion. Integrating (9) in the case xo = 0, ~o = 0, we obtain 
x = ~,ffj. From (6), we have 

, 2a. • 2a, 
Eo. = - , E,,'= - -----.:-=--

i+(sl'b)' i+(sl'b)' 
(12) 

and CPo(- 00) = - 1T, CPo(oo) = 1T and li = 21T. It then follows 
that in the case t = - 00, the considered pair of levels 
should have an inverted population (W(- 00) = W III 
xcosCPo(_oo». Thus, the propagation of 21T-pulses of SRS 
of Lorentzian shape in a medium with normal disperSion 
is possible only under the condition of inverted initial 
population. 

2. We now consider the cases C1 =Cz =C> 1, C1 =Cz 
=C<-1. 

A. Let C> 1. As in the class lA, we obtain the con­
dition c.< V< ci (ai,s> 0), which is satisfied in the region 
of anomalous dispersion. According to (9), 

[( C-1)'" (1 -)] <Po(6)=2ar~tg CH tg '2s l'b(C'-1) , 

whence 

a.(C'-1) 
E .. '= --~--====­

C+cos(s l'b(C'-1) 

, a,(C'-1) 
E .. = ---'--::==-

C+cos(s l'b(C'-1) 
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The solitons (14) represent an unbounded periodic suc­
cession of pulses with period T = 2rr I Ib (C 2 - 1). The 
value of the overlap integral over one period is equal to 

i. e., the solitons (14) are an infinite train of 2rr pulses 
(we shall call them solitons of the trigonometric type). 
We note that in the given case, absence of relaxation 
processes is assumed (T1 = Tz =(0). Therefore, in the 
case of 2A, it is necessary that T« Tz• In the real sit­
uation, the effect of finite Tz should lead to a gradual 
incoherent dephasing of the scatterers and consequently 
to a cutoff of the train. Thus the number of pulses in 
the train is - T ziT. 

B. Let C < -1. Here the condition Cj < V < c. (aj •• < 0) 
follows from (6), (7). This condition is satisfied in the 
case of normal dispersion. The solution (9) leads to the 
expressions (13), (14). The solitons form an infinite 
train of 2rr pulses of the trigonometric type. 

3. We consider the case C1> 1, Cz> 1, where C1 * Cz. 
lt follows from (6) that cs< V< Cj is the case of anoma­
lous dispersion. 

A. Let C1>Cz• We introduce the parameters aZ=(C1 
-1)/(c1 + 1), {3z = (Cz - l)/(Cz + 1) and make the change of 
variables x = {3 tamp. Integration of (9) with the boundary 
conditions Xo = 0 (l/J = 0), ~o = 0 gives 

where V(l/J,q) is the elliptic integral of the first kind. 
Then 

q>.(~)= 2arctg{ ~ tn[ +-r-'~ ]}; 

E '=a C,C.-1+(C,-C,)cn(~I't) 
... C,+ cn(sl't) • 

E '= a,(C,'-1) -r-'=[b(C-1)(CH)]'" 
Oi C,+cn(~I't) , '" 

(15) 

(16) 

where cn and tn are the elliptic functions. The solutions 
of (16) represent an infinite periodic train with period 
T =4K(q)-r, where qZ = 2(C1 - CZ)/(c1 -l)(Cz + 1); K(q) is 
the complete elliptic integral of the first kind. It is not 
difficult to obtain the result that 0T = %(2K-r) - <Po(- 2K-r) 
=2rr, i. e., the solitons (16) are infinite trains of 2rr 
pulses (we shall call them solitons of the elliptic type). 

B. Let C 1 < Cz• In this case we obtain solutions simi­
lar to 3A: 

'i'.m=2arctg {a:tn (s/2-r)}; (17) 
E ,_ a.(C.'-i) 

.. - C,+cn(6/'t) • 

E '=a c,c,-1+(c.-C,)cn(61't) ,-'= Yb(C +1) (C -1)' (18) 
Oi' C,+cn(6h)' ", 

they are infinite trains of 2rr pulses of the elliptic type 
with period T=4K(q)-r(qZ =2(Cz -C1)/(c1 +l)(Cz -1». 

4. We consider the case C1 < -1, Cz < -1, C1 * Cz. In 
this case, Cj < V < c. is the region of normal dispersion. 
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It is not difficult to see that the solutions represent in­
finite trains of 2rr pulses, which in the case C1>CZ have 
the form (15), (16) and in the case C1<Cz-(17), (18).Z) 

5. The following cases are considered that are simi­
lar to classes 3 and 4. 

A. The case C1> 1, Cz < - 1, in which the conditions 
V>cs, V>Cj (as> 0, aj<O). 

B. The case C1 < -1, Cz> 1, in which the conditions 
V<cs, V<Cj (a.<O, aj>O). 

Limitations on the dispersive properties of the medi­
um do not arise in either case. Solitons are infinite 
periodiC trains of 2rr pulses, described in the case 5A 
by the expressions (17), (18), and in case 5B by the ex­
pressions (15), (16). 

6. The study of the solutions (9) shows that in the 
cases C1 *± 1, Cz = 1; C1 = 1, Cz * ± 1 there are no soliton 
solutions having physical meaning in the case ~ > O. 

7. We now consider the case in which one of the con­
stants is equal to - 1 and the second is greater than 1 in 
modulus. 

A. LetC1<-1, Cz=-l (cj<V<c s is the region of 
normal dispersion). In this case, integration of (9) at 
Xo = 0, ~o = 0 gives 

q>.(~) =2arctg [( ~:~:)'" sh L~-r)]' -r-'= [-2b(C.H)j"· (19) 

We obtain the following expressions for the fields (we 
shall call them solitons of the hyperbolic type): 

E ,_ a,(C.-l)ch'(s/'t) 
•• - 1+ [(C.-l)/(C.+1)] sh'W-r) , 

E ,__ 2a. 
Oi - 1+ [(C.-1)/(C.+1)] sh'(~/'t) 

(20) 

Here <po(-oo)=-rr, <po(oo)=rr, and O=2rr. The fields (20) 
represent 2rr pulses, and for the case t = - 00 the medium 
is inverted (<Po(- (0) = -rr). 

B. In the case C1 = -1, Cz< -1 (ej < V< cs) we have 

'i'.(~)=2arctg [( C,-l) "'sh (J..)] . -r-'= [-2b(C,+1) 1'" 
. C,+l 2-r 

(21) 
E ,_ 2a. 

" - - 1+ [(C,-l)/(C,H)] sh'W-r)' 

E '= a,(C,-l)ch'(s/'t) 
OJ 1+ [(C,-i)/(C,+1)] sh'(sl't)' 

(22) 

Just as in case A, <po(-oo)=-rr, <po(oo)=rr, O=2rr, i.e., 
the solutions (22) are 2rr pulses. 

C. In the cases C1> 1, Cz = -1 (V> c., V> cj-arbi­
trary dispersion) and C1 = -1, Cz> 1 (V< c., V< Cj­
arbitrary dispersion), the soliton solutions are de­
scribed by Eqs. (19), (20) and (21), (22), respectively • 

8. We consider the following cases. 

A. C1=1, Cz =-l (V> c., V>cj-arbitrary disper­
sion). In this case, 

'i"(6) =2 arctg [ell,], -r-'=Yb. 
(23) 

E ,_ 2a, 
Oi - - 1+e2t/ l"' 
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B. C1 = -1, Ca = 1 (V < cs' V < c,-arbitrary disper­
sion). In this case, the solutions are obtained from (23) 
by the substitutiona,,--a., a,--a" Eo.-E01 ' Itfol­
lows from (23) that rpo(_oo), rpO(OO)=1T, ()=1T. Thus, the 
fields (23) are 1T pulses. 

9. In cases in which one of the constants is smaller 
than unity in modulus and the other is not equal to unity, 
the arising soliton regimes correspond to turning angles 
of the polarization vector of the medium that are re­
stricted to separated parts of the interval (-1T, 1T). For 
example, in the case C1 =Ca =C (0 ~C< 1), when CI< V 
< c. is the case of normal dispersion, we have 

Ql.m=-2arctg[~thl], IQl.IO;;;2arctg~, a'= HC 
a 21: a l-C 

E '= - a,(l-C') E '= _ a.(l-C') , 1:-'= [b(l-C')]'/', 
O. C +ch (sl1;) , •• C+ ch (sIT) , 

If, on the other hand, c.< V< Cf, then 

Ql.m=2arctg [ ~ Cth(~( ~ +0))], o=lnl ~~:I 
a,(1-C') ,a,(l-C') 

Eo.! , EOi == J • 

ch(slT+o)-C ch(s/1:+o)-C 

In the first case ()=4 arctan(l/a), in the second ()';'21T 
-4 arctan(l/a). In the case 0 ~Cl < 1, Ca> 1, we have, 
at V<c" V<c", 

Ql.(s)=2arctg[ cn~~1:)]' 
,i-C, ,C,-1 -, [I I )]" 

al = i+C, ' a, = C,+l; 1: = 2 b (C,-C, " 

The solitons represent an infinite periodic train of the 
elliptic type with period 4rK(atl~) and areas ()T 

=4 arctanal in the case of arbitrary dispersion and ()T 

= 21T - 4 arctanal in the <:!ase of anomalous dispersion. 

We note that the analysis given here can be extended 
to the case of two-phonon resonance absorption of the 
pulses with unequal frequencies. For this process, the 
virtual level is found between the working levels of the 
transition of the molecule, i. e., w, + w. = wV' It is not 
difficult to see that the description of the two-photon ab­
sorption can be obtained formally by replacing Ws by 
- w. in (2) and (5). Thus, all the obtained classes of 
soliton solutions also take place in the case of two­
photon absorption with the obvious change in the condi­
tions on the dispersive properties of the medium. We 
shall also show that the subsequent investigation of the 
stability is applicable also to the case of two-photon ab­
sorption. 

The results obtained above were applied to the case 
of total absence of relaxation (T1 =Ta =00). We shall 
show that account of the finiteness of Tl and Ta leads, 
as in the case of the usual effect of self-induced trans­
parency, [2J to a gradual small change in the soliton 
pulses in the process of their propagation. The con­
siderations given below are valid both for solitary pulses 
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and for each of the TalT periods of the train pulses. 

With the aid of (2), it is 'easy to obtain the result that 
the amounts of energy of the pump pulses and the Stokes 
wave passing through a unit area of cross section, 

cl'e(ID,) so. cl'e(ID)" 
O'=----g;- E.'(z,t)dt, O,=~ SE.'(z,t)dt 

~ 61 

obey the equations 

1 dO, 1 dO. h!l,Nv so. W (z, t) - W·' 
ID,e(ID,) "'d; = - ID.e (ID,) "'d; =-c' ----s;- T, dt, 

e, 

where 61 = - co, 6a = 00 in the case of solitary pulses, 61 

= - 6a = - T 12 in the case of trains (T is the period of the 
train). These equations show that an additional trans­
formation of the energy from one wave to another takes 
place as a result of the relaxation processes. We make 
use here of the relation 

S
"{ r.'(z,t)+v'(z,t) W(Z,t)[W(Z,t)-W"]} 

--:....:...-:....-~~ + dt=O, 
T, T, 

e, 

which is easily obtained from (2) by considering the 
change in the length of the "Bloch" vector with compo­
nents (u, v, W) because of the relaxation. Then 

dO, 1 dO, 
ID,8(ID,) a;: = - ID,e(ID.) a;-

• hJJ."!vv S"{ r.'(z,t)+v'(z,t) , [W(Z,t)-W"]'} 
=c 8ltW" 6 T. + T. dt. 

I 

This formula is valid for pulses of arbitrary shape (not 
necessarily solitons) and for any relation between their 
durations and relaxation times. We now turn to the 
solutions of soliton type and use the smallness of the ra­
tios rlTl' riTa, where the quantities r corresponding to 
each type of solitons defined above have the meaning of 
a characteristic scale of their duration (in the case of 
trains, the same role is played by the ratios TIT h 

TITa). Then we have 

The expression thus obtained shows that the rate of 
change of the energy of the solitons is a small quantity, 
- r(T i 1 + Til), i. e., account of the small relaxation 
terms leads to a weak effect of them on the passage of 
the solitons (in this sense, the given problem does not 
differ from other problems of the theory of ultrashort 
pulses[9]). The relaxation effects lead to a gradual at­
tenuation of the jump and a growth in the intensity of the 
soliton wave. This takes place both from the growth of 
the population of the lower level, with characteristic 
time T 1 and from the damping of the polarization of the 
medium with characteristic time Ta. The transforma­
tion of one wave into the ollier takes place much more 
slowly, however, than in the case of the exponential re­
gime of nonstationary SRS. [6] It is easy to show that the 
critical length at which the relaxation effects disrupt 
the soliton regime is given by the expression 
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It should be noted that, in the absence of relaxation (T1 

=T2=00) zc_ oo • By virtue of the specifics of the com­
bination interaction, the relaxation leads not to a gradu­
al absorption of the sOlitons, as in the case of reso­
nance approach, but to a gradual increase in one wave 
at the expense of the other. As in the case of the ordi­
nary effect of self-induced transparency, [2) the effect of 
the relaxation processes can be compensated with the 
help of weak focusing of the beams in the medium. 

Thus, the SRS solitons, as all other waves of such a 
type, no] are intermediate self-similar asymptotic forms 
that exist until relaxation effects begin to appear. For 
a demonstration of their physical realizability, we must 
verify that the soliton waves are stable to small per­
turbations, the regions for which always exist experi­
mentally (inhomogeneity of the composition of the medi­
um, fluctuations of the thermodynamic quantities and so 
forth). 

4. STABILITY OF THE SRS SOLITONS 

We shall call the SRS solitons stable if small perturba­
tions of the fields do not grow with time, thus violating 
their stationarity. Introducing the quantities 

AJ' AJ CP.,.(z,t)=T E".(z,t)dt, cp(z,t)=1i E,(z,t)E.(z,t)dt, (24) 

we get with the help of (3) 

{}cp. 1 {}cp. 
-{} +--{} =2x.(coscp-C,), 

z c, t 

{}IP< 1 {}cp, ( (}cp )' ucp, (}cp, 
-+--=-2x,(coscp-C,), - =--. 
uz c, {}t {}t {}t {it 

(25) 

The stationary pulses found in Sec. 3 correspond to sta­
tionary solut~ons of the set (25) 

, , 
CPo.= ~ J Eo.' (,') dr, <p,,= ~ J E,,'(~')d~', .. .. , 

cpo= ~ JEo.(s')E,,(s')d,'. .. 
The investigation of the stability of the solitons Eo., EOI 
is equivalent to the investigation of the stability of the 
quantities CPo, CPos, CPO!' We consider the behavior of the 
small perturbations near cpo(~), CPOsW, CPOI(O: 

cp.(z, t)=CPo.(sH/.(z, t), cp,(z, t)=cp,,(6)+/,(z, t), 
(26) 

cp (z, t) =cpo (6) +/(z, t), 

where If. I « Ifo. I, If I I « I CPoll, If I « I CPo I. According 
to (25), the set of equations which describes the evolu­
tion of the small perturbations has the form 

oj. 1 0/. , {ij, 1 uj, , 
-+--= -2x,jsmcpo, _+--=2x,/smcp" 
uz c. {it {iz c, {it 

uj 1 Eo< {i/, 1 Eo. {}/, 
-=---+---. 
{it 2 Eo. {it 2 Eo< at 

(27) 

In the general case, the study of such a system pre-
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sents great difficulties. However, it is Simplified for 
solitons of classes 1, 2, 9 (C 1 =C2 =C), for which we 
can directly connect the perturbations f, f., f, with the 
help of (24): 

1 (a, a.) t=- -/,+-/, . 
2 as ai 

Using this relation in place of the last equation in (27), 
and transforming to the variables ~ =t - z/V and p =t, 
we obtain 

(28) 

where Y1 =V/(V - c.), Y2 = V/(V - c,), b =)..2afa.l1i2> O. 

1. We shall seek a solution of (28) in the form 

-
/("p)= L,lr<s)exp(a,p), (29) 

where f,(~) are assumed to be bounded functions in the 
case I ~ 1< 00, and 

-
/(s, 0) = L, /, (6) 

,_0 

gives the distribution of the perturbation at the initial 
instant of time p = O. If the real part of one of the ex-

. ponents a, turns out to be positive, then, by virtue of 
(29), the soliton regime is unstable. If Rea,<O for all 
1, then the soliton regime is asymptotically stable. In 
this case, the perturbation tends to damp out with in­
creasing p, and the system is returned to the soliton 
regime. If Rea, .;: 0, then the soliton regime is stable, 
but it does not possess asymptotic stability, since the 
system does not return to its initial state and is close 
to it under the action of a small perturbation, even in 
the case p - 00. Substituting (29) in (28) and introducing 
the new function K,(~) according to 

/,(6)=K,(s)exp { -'I,J [cx,(,,(,+"(,)-l'bsincpo]ds}, 

we obtain the "Schrodinger equation" 

d'K, [1 ., 1 - dcp. ] --+ -bsm mo+-'Ib-cosmo-A, K,=O 
ds' 4 .,. 2 as'" , 

with the "potential" 

1. 1 -dcp. 
U(s)=-4 bSlll<p,+-'Ib-coscp, 

2 ds 

(30) 

with "energy" eigenvalues )..,. The spectrum of A, of Eq. 
(30) is bounded from below, beginning with some )..0 cor­
responding to the ground state. According to the prop­
erties of the potential UW, the initial part of the spec­
trum can be discrete. We number the ).., in the discrete 
portion in increasing order of )..0 < )..1 < ">..z < • ••• Then 
the index of the given .\, will simultaneously give the 
number of zeroes of the corresponding eigenfunction KI 
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of Eq. (30). The eigenfunction of the ground state Ko 
should not have zeroes. We shall show that in the con­
sidered case the ground state corresponds to ~o = O. The 
bounded solution of Eq. (30) with ~o =0 is of the form 

Using (8), we easily obtain the result 

K,= (D d'l'old';) '\ D=const. (31) 

Substituting the specific expressions (/Jo(~) for class 1 
(see (10), (12», class 2 (see (13» and class 9, it is not 
difficult to establish the fact that the derivative d(/JoId~ 
never vanishes. Consequently, ~o = 0 corresponds to 
the ground state, and all the remaining eigenvalues are 
positive, i. e., ~I > 0, l = 1, 2, .... Now, taking into 
account the connection between ~I and ai' we finally ob­
tain the result that the indices a I in the case 1 ~ 1 are 
purely imaginary, and a o = O. Thus, Eq. (28) for the 
perturbation of the overlap integral does not have expo­
nentially increasing solUtions, i. e., solitons of classes 
1, 2, and 9 are stable, although they do not possess 
asymptotic stability. 

2. The absence of asymptotic stability can demon­
strate the existence of weakly increasing perturbations. 
'therefore, it is important to investigate the effect of 
such a type of perturbation on the soliton regime. We 
shall show that there exists a perturbation that is linear­
ly increasing with the time p, of the form 

m. p)=A(~)+pB(s). (32) 

Substituting (32) in (28), we obtain 

d'A -dA - ckp, dB 
--Yb-sin«po-l'bA-cos«pO+('YI+'Y,)-ds' ds ds ds 

- ~ Yb('YI+'Y,)Bsin«po=O. (33a) 

d'B -dB ckp, dr-- 'lbdfSin «p.s-l'bBd["cos cpo=O. (33b) 

Differentiating Eq. (8) twice with respect to ~ and equat­
ing the resultant expression to (33b), we find that the 
bounded solution (33b) has the form B(~) =d(/Jo/d~. It is 
not difficult, by direct substitution in (33a) to show that 

Thus, the perturbation that is increasing linearly with 
time has the form 

(34) 

The result obtained can be interpreted formally as the 
presence of an instability of solitons relative to the per­
turbation (32). We shall prove, however, by using the 
approach applied in Ref. 11 in the case of a study of the 
stability of solitons in a medium with single-photon ab­
sorption, that such perturbations do not destroy the SRS 
solitons. For this purpose, we write down the expres­
sion (26) for the perturbed overlap integral (/J(z, t) near 
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the soliton solution: 

(35) 

where the small amplitude of the perturbation v is in­
troduced, and Ii = ~(Yl + yz). The expression (35) repre­
sents the expansion in a series in the linear approxi­
mation in v. Therefore, we have, with the same accu­
racy, 

«p(z. t) =«po[ (s+v(p-6s) )11:], (36) 

where the duration T for the unperturbed pulses has 
been introduced (or the period in the case of a train): 

{
Vb. C=+1 

,\"""1= yb(C2_1). C>1. C<-1. 

V?(1-C'). -1<C<1 

The possibility of the representation of (35) in the form 
(36) shows that the perturbations of the field again rep­
resent solitons, but now with a different velocity and 
duration relative to the initial values. It is not difficult 
to establish this by transforming the argument in (36) to 
the form (/Jo(z, t) = (/Jo[ (t - X/V')/T'J, where T' is the dura­
tion and V' the velocity of the perturbed pulses: 

.t'-I=T-I[Hv(i-6)], V'=V[Hv/(1-6v)]. 

It can be shown that in the first order of smallness in v 
the quantities T' and V' are connected with one another 
by the same relations as the quantities T and V: 

{
Vb7. C=+1 

T'-'= Vb'(CO-i). C>1. C<-1. 
y b' (1 - C2). - 1 < C < 11 

where b' =4x,xsc,csV 12 /(V' - cs)(V' - c,). This result 
means that the perturbed solitons relate to the same 
type of SOlitary pulses or trains as the unperturbed. 
Consequently, the perturbations (32) although they in­
crease with time, do not lead to a destruction of the 
solitons, but only to a change in their length and their 
velocity, keeping in this case the shape of the pulse en­
velope. Under the action of the perturbations (32), one 
21T-pulse transforms in continuous fashion into another, 
while in the case considered in Item 1 of Sec. 4, no re­
turn to the initial regime takes place. 

5. CONCLUSION 

The results show that, in addition to the well-studied 
quasi static and nonstationary regimes of SRS, specific 
soliton regimes of scattering are generated in strong 
fields of ultrashort pulses. They are not accompanied 
by amplification. Depending on the initial conditions 
and the dispersion characteristics of the scattering me­
dium, soliton regimes of different classes can exist. In 
particular, in the region of normal dispersion, for an 
initially equilibrium medium, SRS solitons can repre­
sent only periodiC trains of 21T pulses. Solitons in the 
form of isolated 21T pulses of finite duration at these 
same initial conditions can be realized only in the region 
of anomalous dispersion. Similar soliton regimes in 
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the region of normal dispersion are realized only in the 
case of inversion of the initial population of the levels 
of the working transition, and represent solitons of 
Lorentzian shape or 21T pulses of hyperbolic type. Under 
arbitrary dispersion conditions, soliton regimes are 
also possible in the form of periodic trains of 21T pulses 
of elliptical and trigonometric types. The solitons of 
Lorentzian shape, trains of a trigonometric type and 
special types of isolated solitons with e < 21T (class 9) 
are stable, which indicates the possibility of their prac­
tical realization (see the estimates in Sec. 1). 

We note in conclusion that the soliton regimes of SRS 
can have great value in the analysis of the detailed tem­
poral structure of the radiation of combination lasers, 
since the fields ariSing in such systems have intense 
fluctuation discharges of short duration. The observa­
tion of soliton regimes in "pure form" is advantageously 
carried out in gases at low pressure - O. 1 atm in the 
case of durations of the initial laser pulses of -1-10 
nanosec. 

The authors thank S. A. Akhamanov for discussion of 
the results of the work and useful remains, and also G. 
M. Makhviladze for discussion of the question of the 
stability of soliton regimes. 

l)We note that here and below we neglect the pumping of energy 
into the antistokes and higher Stokes components, since the 
intense fields of the exciting and first Stokes radiations are 

CrOSSing of quasistationary levels 1) 

given at the input to the medium, and the fields of the other 
components are generated from noise nuclei. 

2)We note that for the special case of the absence of dispersion 
1/1 = 1/8' this type of soliton solutions was found also in a recent 
publication. [8J 
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The crossing of discrete energy levels, each of which interacts with the continuous spectrum, is discussed. 
The problem is reduced to the consideration of only two, but quasistationary, levels with suitably 
modified interaction. A formula for the amplitude of the nonadiabatic transition in this problem is derived 
for a sufficiently general dependence of the terms on the interatomic distance. The behavior of the 
populations of such states is investigated, and it is shown that the interaction between the levels through 
the continuum has an important effect both on the nonadiabatic transition amplitude and on the 
population of states. It is noted that both the formulation of the problem and the method of solution given 
by Karas' et al. (1974) and by Bazylev and Zhevago (1975) are subject to error. 

PACS numbers: 31.!O.Bb 

1. It is necessary to introduce the concept of quasi­
stationary energy terms when different atomic-collision 
processes are investigated. In contrast to the usual 
discrete states, quasistationary terms are characterized 
not only by the energy E but also by the width r which 
describes the possibility of decay, i. e. , the possibility 
of a transition of the system from a given electronic 
state to the continuum with the emission of an electron 
or photon. In general, both E and r are functions of the 
distance between the colliding particles. The interac­
tion and crossing of such terms play a fundamental role 
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in collisions leading to the formation of vacancies in the 
inner electron Shells of atoms. [2,3] Such states are com­
monly referred to as the autoionization states. Another 
example is charge transfer on negative ions. Thus, 
analysis of experimental data shows[·] that the crossing 
of quasistationary molecular terms corresponding to dif­
ferent charge-transfer channels must be taken into ac­
count in these reactions. Multiple crossing of quasi­
stationary terms is also expected in collision processes 
involving the partiCipation of atoms in highly excited 
states, for example, in Penning ionization processes of 
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