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Radiative effects due to the combined action of stationary and alternating electromagnetic fields are 
considered by the analytic continuation technique in the first order with respect to the fine structure 
constant a = e '/h c. The real parts of the corrections to the electron and photon masses are determined 
for the case of low wave intensities (~= eEo/cmw < I) by means of the expressions for the probabilities of 
the multiphoton electron scattering and electron-positron pair production by photons in the wave field or 
magnetic field. In the overlap region the derived formulas are in agreement with results obtained in an 
investigation of radiative processes in stationary crossed fields and also with the results of an analysis of 
the mass and polarization operators in the field of an electromagnetic wave. Polarization effects are studied. 
It is shown that in this case the anomalous magnetic moment of the electron is a function of all the 
parameters that characterize the total field (w, Eo, and H). Corrections proportional to the wave intensity 
are obtained .for the Schwinger value of the anomalous electron moment. 

PACS numbers: 12.20.Ds, 13.10. +q, 14.60.Cd 

The interaction of electrons and phonons with an elec­
tromagnetic vacuum in a constant electromagnetic field 
has been studied in sufficient detail (see, e. g. [1-5J). In­
terest has arisen recently in the study of similar pro­
cesses in the field of an intense electromagnetic wave, 
in view of the added possibilities afforded by the use of 
laser techniques. It turns out that the presence of a 
sufficiently intense electromagnetic wave in a vacuum is 
capable of leading to effects analogous to those that take 
place in constant fields. The emission of a photon by 
an electron and the production of electron-positron pairs 
by a photon in the field of a wave[6J are processes that 
give rise to radiative effects leading to changes in the 
masses of the electron and the photon. The question of 
the change in the photon mass in the field of a wave was 
cons idered in [7] by us ing the electron Green's function 
obtained by Schwinger. [8J An analogous method was 
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used in[9J to calculate the polarization operator. Quite 
recently [10, 11J the method of operator diagram technique 
has yielded the corrections to the mass and polarization 
operators in the field of a wave of rather general form. 

In this paper we use the dispersion-relation method to 
consider radiative processes in the field of an electro­
magnetic wave, with account taken of the action of a 
constant magnetic field. The development of a method 
of analytic continuation as applied to the case of an in­
vestigation of radiative effects in constant crossed fields 
was described by Ritus. [4, 12J The main deviation 
from[4,7,9-12J is that the external field was chosen by us 
to be a superposition of fields, namely a constant mag­
netic field of intensity H and the field of a plane electro­
magnetic wave propagating along a magnetic field, 

H=(O,O, H), 
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Eo=Eo{c, COS q;+ge, sin IT}. Ho= [nXEo], (2) 

where k= (w,k) is the wave 4-vector (k 2 =0), cp= (kx) 
=koXo-kx=w(t-z), n=c=l, g=±l describes the cir­
cular polarization of the wave, e1 and e2 are two-dimen­
s ional unit vectors, and n = k/I k I. 

A generalization of this method of analytic continua­
tion to the case of the joint action of a wave and a con­
stant field has shown that the method makes it possible 
to treat from a unified point of view the contributions 
made to the masses of the electron and the photon by 
the presence of stationary and nonstationary fields. The 
introduction of a constant magnetic field H makes it pos­
sible to include correctly in the analysis also the elec­
tron spin and identify subsequently the additional energv, 
proportional to J.L(H. t) (t is the electron spin), of the 
interaction of the electron with the magnetic field with 
the energy of the interaction between the anomalous mag­
netic moment of the electron with the magnetic field. In 
this case the proportionality coefficient J.L depends on Eo, 
wH, and e. It turns out then that in the presence of a 
constant and alternating electromagnetic field the anom­
alous magnetic moment of the electron is a function of 
all the parameters that characterize the summary field 
w, Eo, H, and also the electron energies e, 

It should be indicated t~at this approach was made 
possible by Redmond's(13] well-known exact solution of 
the Dirac equation in fields of configuration U) + (2). 

A similar procedure is used to calculate the spin-in­
dependent parts of the corrections to the self-masses 
of the electron and photon in a combined field consisting 
of a constant magnetic field and a plane electromagnetic 
wave. In particular, when the wave field is turned off 
(Eo- 0) we obtain the results of[3-5] for the values of the 
parameter X=HP!/Herm« 1 (Her = m2/e, P! is the trans­
verse component of the electron momentum). In the 
other limiting case (H- 0) corresponding to turning off 
the magnetic field, we obtain the results of[7.9-11] for the 
values ~ = eEo/mw« 1. In addition to the known results, 
we obtain here also an explicit expression for the square 
of the photon mass in the ~ < 1 approximation, with al­
lowance for the polarization effects. 

We note that in modern cw lasers the parameter ~ 
reaches values 0.1, while the value ~» 1 generally 
speaking corresponds to the constant-field limiL [6] The 
choice of the values of the parameter X« 1 ensures a 
real physical situation, wherein the effects of the wave 
and constant fieldS manifest themselves most brightly. 

Since the imaginary part of the amplitude of elastic 
scattering of a photon by a photon through a zero angle 
(in this case by an electromagnetic wave) is connected 
with the total probability of pair production by a photon 
in lhe field of an electromagnetic wave, while the real 
part of this amplitude can be reconstructed from the dis­
persion relations, this information enables us to esti­
mate the cross section for the scattering of a photon by 
an electromagnetic wave-an effect of fourth order in 0' 

in perturbation theory. 

It should be J:oted that the general case of arbitrary 
values of the paran.leter ~ can be considered within the 
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framework of the dispersion-relation technique also 
when several photons of the wave take part in the reac­
tion. In this case, however, it is necessary, generally 
speaking, to take into account both the induced multi­
photon effects, as well as effects that contribute in the 
higher powers of the eXIJansion in 0'. 

1. ELECTRON MASS IN AN EXTERNAL FIELD. 
ANOMALOUS MAGNETIC MOMENT 

The probability of emission of a photon by a polarized 
electron in fields (1)+ (2) as a function of the invariant 
variables ~, X, ;(. = 2s(kp)/m 2 was obtained in[4]. It is 
given by the formula 

W= ;; ts (l~U)'C:) 'I, j d6( 1+5' :: b)'(F;')'. 
s= __ o -oa 

j=1.2, 

F,'=o", (hu) { £~<PJ.'- [ ~' 2:U ( <!J-a ( ~:) '<1>') 

-abW+ euX )w,] J.} Tbc,-c'U{ cW-a6 (2:)' <!J'} J.. (3) 

where 

~. ~'= ±1; 

• 2sl. ( X ') a=6--;>; b=6'+(1+s') 1--u' ; 
'V Y,s 

C=6-;g-~~; v=gs 2:>( 6-2g : )( 1+;' :: b); 
~-'=(1-2g.£)(-2g+)(+s'u: b); x=x,I.~,=2(k~); 

1" 1 x x m 
(kp) ,(kp') • x. 

y=-;;;;;-; 1=~; x'=1+sz ; 

q, and <1>' are the Airy function and its derivative with 
respect to the argument y = (U/2X)"/3b; J s are Bessel 
functions of the argument 1'; P and P' are the 4-momenta 
of the initial and final electrons. In formula (3), the s­
term of the sum is the partial probability of a process 
conSisting of either absorption of s photons of the wave 
with emission of a single photon k' (s > 0), or in the 
emission of s + 1 photons, of which s are identical with 
the wave photons. The conservation laws for the quasi­
energy and for the lOl1gitudinal component of the quasi­
momentum are thereby satisfied. 

Formula (3) was obtained by us in the approximation 
m/e « 1 and ~k' IF.« 1, but it is easy to show that in the 
case when the magnetic field is turned off and account is 
taken uf the conservation law (1 + e)(x: /u - 1) - 02 = 0, 
which follows directly from the properties of the Airy 
function, this formula goes over into the total s-quan­
tum probability of electron emission in a field of a plane 
circularly-polarized wave, which agrees with the results 
of Nikishov and Ritus. [6] 

In the case ~ < 1 with allowance for the terms - ~2 we 
obtainl14.15] for from formula (3) the total probability, 
aiter integrating with respect to 0, 

(4) 
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FIG.!. Emission of an electron in a constant magnetic field 
and in the field of a plane electromagnetic wave. 

where Wo determines the probability of the synchrotron 
radiation 

a.m's~ du { 2 ( U,), y(])(y)} W.=--=- -- (]),(y)+- 1+-- (]) (y)-~x-- , 
l'ne 0 (1+u)' y 2(1+u) 1+u 

(]),(y)= J (])(x)dx, 
y 

_ (U) 'I, y- - , 
x 

~=±1. 

W~ are the corrections to Wo, due to the influence of the 
wave: 

2,- d .z 
W.'--6' a.m J-_U_{~ [2y'(])+2r(])'+y(]),1 

l'ne 0 (1+u)' 2y 

+-[y'(])+2r(])'+y(r+1)(]),I-~-_--(r(])+y(])') , u+1 u} 
y l'y(Hu) 

_ ( U) 'I, (])=(])(y). (])'=(])'(y) , (]),=(]),(y) , y- - , 
x 

r=2- 1-4- . u' ( X') 
x2 1(2 

(6) 

W.1 corresponds to the probability of the Compton scat­
tering with allowance for the magnetic field, W1 deter­
mines the probability of the stimulated Compton effect 
in a magnetic field: 

( X) 'I, ( U ) ( x ) 'I, x' ] (X ) 'I. [ ( +4 --;- 1 + --;;- 11>,.-8 -; -;z 11>,.' +4u~ -;; 1 

+~+4.£) 11>,.±4..!. (..!.) 'I. 11>,.']} , 
2u ,,' "u 

11>,. = (]) (y,.), y,.=(:) 'I, (1+ :). (8) 

The processes (5)- (8) correspond to the Feynman dia­
grams in Fig. 10 

The diagram on left represents the summary process 
(4), while on the right side diagram a corresponds to 
the probability (5), b to (6), and c and d to (7) and (8). 
AB seen from (5)-(8), the partial probabilities depend 
essentially on the ratio X/x, and as resonance is ap­
proached (2X/x- elm) the principal terms in the sum­
mary probability cancel each other in such a way that 
W takes the form U4• 15] 

(9) 

where it is implied that e(e/m)4 < 1, and Wo is the prob­
ability of the synchrotron radiation. 

diated series of frequencies becomes dependent on a 
single parameter, w- eH/w, in contrast to the case whe,; 
wand eH/e differ greatly from each other. We shall there­
fore investigate here in greater detail the case X/v.. < 1, 
when the increments to the probability Wo are not trivial. 

According to the unitarity relations for the S matrix, 
the amplitude T// forward scattering of an electron in 
an external electromagnetic field, in order e2 in the 
quantized photon field, is connected with the probability 
of photon emission by a polarized electron by the rela­
tion (see, e. g. , [4.161) 

2ImT,,=W(x, ", 6'). (10) 

By regarding the probability W as a function of the 
complex variables X and x (~2 is fixed in the correspond­
ing probabilities), we can write for each of them, at a 
fixed value of the other, dispersion relations that con­
nect the real and imaginary parts of the amplitude Tl/' 
Recogniz ing that 

m 
T .. =--tl.m, 

e 
(11) 

where m and e are the mass and energy of the electron 
while t.m is the correction to the self-energy of the elec­
tron, the dispersion relations can be written directly for 
He t.m. Since each of the variables X and x contains the 
dynamic characteristics of the electron pJ. and p, the 
changes of the variables X and x can be carried out fixed 
values of pJ. and p. Thus, we use the dispersion rela­
tions to investigate the properties of the electron self­
energy as a function of the magnetic field H and the wave 
frequency w. 

Using the analytic-continuation procedure proposed 
by Ritus (see[4.121), we can reconstruct from the imagi­
nary part of the mass operator [this part is determined 
by formulas (4)-(8), (10), and (11)] a real part having 
the necessary analytic properties, by changing over 
from the Ai"ry functions to the functions 

j(z) = ~j rH"+"I') dt, 
l',,; 

• 
(12) 

the real and imaginary parts of which on the real axis 
are connected by the Hilbert transformations 

!(z)=T(z)+il1> (z), 
1 ~ (]) (z')dz' 

T(z)=--f-,-· 
1'[ z-:; 

(13) 

This holds true because the analytic properties of the 
mass operator with respect to the variables X and lot are 
determined in the main by the properties of the functions 
I(z.), I'(zs)' and /1 (z.), where in our case zs= (U/X)2/3 
. (1 + s lu), and s = 0, ± 1. A study of the analytic prop­
erties of the functions I, I', and 11 of different argu­
ments was carried out in detail in [4.121. 

This circumstance is obvious beforehand, for if the Guiding ourselves by the indicated scheme, we can 
frequency of the wave is close to the frequency of revolu- • write for the real part of the spin- independent incre-
tion of the electron in the magnetic field (eH/e), the ra- ment to the electron mass 
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R • - am R I- du { 5+7u+5u' eum-- e -- f' 
2'1-; (Hu)' 3z • 

[ [ u' (i u' u' , 
+6' -+(Hu) -+--4~)] (2/.-/.--/.+) 

4 2 x' x' 

[ ui ] + (u'+u+i) /z+4-;;-(z./.-z+i+) 

u'+2u+2 [U'X' ] + j'r+4-(f-'+f/) 
z x' 

u(1+u) X' , 
+--(/.--f.+)+2u'Z-(f-+f+)+~(f-'+f/)]}, 

')( )(2 x2z 

where 

f=f(z), j'=f'(z) , 
- 1 

f.=f.(z)= I dx(f(X)--;-) , 

f,~=f(z,,), f,,' =/' (z,,), 

_ ( U) 'I, z- - , 
x 

For the spin part we have respectively 

am I- zdu { [ Redmt=-~x-=Re -- f+s' rf+z/, 
2'ln (Hu)' . 

(15) 

Since we are interested mainly in the corrections to 
ReAm and ReAme, in the case when the contribution from 
the wave and from the constant field are comparable in 
magnitude, we shall carry out the calculations under the 
assumption that X« 1. In this limit, expressions (14) 
and (15) become much simpler and, using the asymp­
totic expansion of the functions 

Y(z,,)=~ t r(3k+1) ( £..)' ( ~) 'H' , 
zl'n ._. k! 3u' z" 

(16) 

where 

z=(u/X)'\ z",=z(1=+x/u) , r(m)=(m-1)I, 

we can obtain a series in powers of X. Retaining in the 
expansion the terms -xo, X, X2, and also ~o, ~2, xe 
(recognizing that ~ < 1) and neglecting - el, we obtain 
for the regularized value of ReAme 

am {8 , (1 In 3 33 ) Re!'J.m=- -x- In-+C+---
2n 3 - X 2 16 

Here 

[ x'-8 (n' , ) +5' .4T 3"+F(x-1)+F(-x-l) 

+F(x-i)-F(-x-l) 
y. 

x'-2x;+2 ] + _, .}. 
2(1-x')' 

F(x)= j In(l:t)dt . 
is the Spence function and C=O. 577 ... 

(17) 

In the rest system we can rewrite ReAme in the form 
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Re !'J.m'=-Il'(tH), 

..i=~{1-12X'(In~+c+ In3 _ 37) 
Il. 2n X 2 12 

+ ,[ -1 + 1 +3x' + 2~'+6x' ]} e 
S - (1-x')' (1_x,),Inx +... Il.= 2m' (18) 

From (17) and (18), when the wave is turned off (~- 0), 
we obtain the results of[3-5] in the limit X« 1. Accurate 
to terms linear in X, expression (17) agrees with the re­
sult of[10] in the case ~ « 1. Formula (18) in this limit 
(X - 0) determines the contribution of the plane electro­
magnetic wave to the correlation term bp.H. This term 
can be identified with the interaction energy of the vac­
uum magnetic moment of the electron with the magnetic 
field H, and the coeffiCient p.(O thus determines the in­
crement to the anomalous magnetic moment of the elec­
tron, due to the presence of a plane electromagnetic 
wave: 

a [ 1 +3x' 2x'+6x' ] 
ll(s)=6'TIl. -1+-(1 ')' + ( ,),Inx. (19) 

~n -x 1-x 

Breakdown of the total probability into partial proba­
bilities makes it possible to trace the contribution of 
each partial process to the values of ReAm and p.. Thus, 
in the approximation linear in X, the first term of (18) 
stems from the probability W ~, and the remainder from 
W.t and Wt. Thus, in an alternating field the anomalous 
magnetic moment of the electron depends on the ampli­
tude and frequency of this field. We call attention to the 
fact that the real part of the electron mass contains 
pole term s of the type 1/(1_~2). It is easily seen that 
these poles, however, lie in the unphysical region, since 
the condition ~=1 is equivalent to condition 2(kp)=m2 

or k - P = 0, which leads to a patently incorrect conclu­
sion that the isotropic vector k is equal to the timeUke 
vector p. 

In the limits ~«1 and ~»1 we have for p.(~) re­
spectively 

, 3a 'I 1 Il=-S Il.-X n-, 
n x 

x<1, 

(20) 

We note that the radiative corrections in the wave field 
are nonlinear in the wave amplitude. 

2. SELF-MASS OF PHOTON IN AN EXTERNAL FIELD. 
SCATTERING OF PHOTON BY AN INTENSE WAVE 

The correction of order C\! to the photon mass in an 
external electromagnetic field of the chosen configura­
tion (1)+ (2) can also be obtained by the dispersion-rela­
tion method, using the explicit form of the probabilities 
of the process of electron-positron pair production by 
an external (non-wave) photon k'. The total probability 
of this process is a function of the variables 1'/ = Hk~/ 
Hcrm, As =2s(kk')/m2 , and~ • 

In the case when the photon k' propagates in a plane 
perpendicular to the magnetic-field intensity vector, 
this probability is equal to[17] 
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am' ~ ~ du ( 2tj ) 'f, 
W= 2nk,'tj~ S u[u(u-4)P -;-

8 __ 00 .. 

x j dV( 1+6' ~: b)' (F;')', j=1,2; (21) 

F.'=6t-.t·l' u (u-4){ 6~cI>J,' + [ ~+ V u~4 ( cI>-a ( 2u'l ) 'I. «1>' ) 

+abcI>- ( 2: ) '1'«1>' ] J.} +6.-.- t.u [c«1>-av ( 2utj ) 'f, cI>' ] J.; 

-_ 2 'f, 

F,·~6n·l'u(u-4) [ccI>-av (-2) cI>' ]J.+6t - -t·U 

X {s~cI>J,'+ [~+ (<<1>-a ( ~tj ) 'I. cI>') +abcI>- ( ~tj ) 'I. cI>,] J.}; 

s 2su ( }.,' ) S 
a=s--~; b=v'+(1+s') 1--; c=v+gs-~; 

v }.. u v 

v=-gs ~:u ~ (v+2g ~ ) ( 1+s' :: b) ; 

~-'=(1-2g_'l )(1+2g-tj )(1+s'~b); 
'Y-}. "(+}. }.' 

2(kk') 
}.=}..I.~. =---;;;;-; }.'=~ 

• 1+s" 

Here p- and p+ are respectively the 4-momenta of the 
electron and positron, y- = (kp-)/ wm, y+ = (kp+)! wm, cI> 
and Js are Airy and Bessel functions, respectively, of 
the arguments y = (u/271)2/3b and 11. 

We note that formula (21) leads, by a transition to the 
limit as 71- 0 with allowance for v2/(1 + e) = At /u - 1, to 
the formulas of Nikishov and Ritus [6] for the case of pair 
production by a photon interacting with a plane electro­
magnetic wave, when s photons of the wave take part in 
the reaction. 

Just as in the preceding section, we consider the case 
of small ~ (~< 1). We then obtain from (21)[17,18] 

W=W,(tj)+Wo'(s', tj, }.) +W_. (s', tj, }.)+w.(s'; tj, }.), (22) 

where the partial probabilities have the following mean­
ing: Wo is the probability of production of a pair by a 
photon k' in a magnetic field for the case of a linearly­
polarized photon: 

II • .L 2am' ~S du [ 2 ( 1 U), ] 
W, = n'/'k,' U[U(U-4)],1. cI>.(Y)+y- 1±'"2-'"2 cI> (y) , . 

(23) 

( 
U ) 'I. 

y= - • 
'1 

-
«1>. (y)- J «1> (z)dz; 

wt are the corrections to Wo, due to the wave 

W'II . .L=_~, am' S~ du {2 cI>'+2 'cI>+ «1> 
, .. n'/'k,' y[u(u-4) J'" r y Y. , 

- ~ [(2±1)rcI>'+(1±1)Y'cI>+y(r+1)cI>.1}, 

_ ( u ) ·f. u' ( tj') «1>=cI>(y), y- - , r=2- 1-4- . 
tj }.,}.' ' 

(24) 

W_1 is the probability of production of a pair by two pho­
tons (by an external linearly-polarized photon k' and 
wave photon k): 
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The probability W{',~ corresponds to the process of pair 
production by the photon k', accompanied by emission of 
the photon k which is identical with the wave photon. 
This probability can be easily obtained from formula (25) 
by replacing A with - A. 

For the same reasons as above, we confine ourselves 
to the cases far from resonance. 

By considering elastic scattering of a photon in an ex­
ternal field in first order in O! at k' > 2m, we find that the 
photon mass becomes different from zero, with the fol­
lowing relation for the imaginary part of the mass: 

1m k"=-k," 1m n,'=-k,'W. (26) 

Here W is the total probability for pair production by the 
photon k', nF is the refractive index in the given field 
(1)+(2), and 

k"=k,"-k"=k,"( 1-np'). (27) 

The real part of k,2 is reconstructed from the dispersion 
relations. The contribution to the amplitude of the elas­
tic scattering of the photon comes in this case from the 
diagrams of Fig. 2. The solid line corresponds here 
to the motion of the electron in the magnetic field, the 
cross marks the external field of the wave, and the 
dashed line represents the motion of the external non­
wave photon while the vertical lines denote the dissec­
tion of the diagrams. 

It is easily seen that the square of the summary am­
plitude of the last three diagrams (Figs. 2b, 2c, 2d) is 
proportional to the cross section of the scattering of a 
photon by an electromagnetic wave through zero angle. 

Using arguments similar to those in the procedure of 
Sec. 1, we can obtain for the real part of the photon 
mass the following expression, which depends on the 
polarization of the external photon (the (] and 11 compo­
nents): 

R k " - am' R S~ du {2(2U+1+3) , 
e 'I.L-- e 1 

" n" r u(U-4)]'h 3zu , 

[ [ 1 1 (1 u' u'tj' )] 1 
+26' 4"--;;- '"2+'Tz-4~ (2/ .-t.--/'+)-T(f·--/,+) 

u-2+1 [ u·.,' ] u(u+l) +-- /'r+4-" (/-'+//) +---<t-'+f+') 
uz}.' }.'z 

u-1+1 [ U'l', ] u+1 11' ]} 
+--u- jz+47 (LJ--z+I+) +-u- z }.,<t-+I+) , 

'f 'I­• • 
---{OJ---= .... -aO- 4---~--+ 

>f f >f ';< 
• • • t 

4- ~c-o--- +--p-- ' 

(28) 

FIG. 2. Elastic scattering of a photon in a constant magnetic 
field and in the field of a plane electromagnetic wave. 
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where 

j=j(z) , _ ( U) 'f, r,=j(z",) , z- - , 
TJ 

U' ( TJ') r-2],2 1-4); . 

We carry out the calculation in analogy with Sec. 1. 
Then at 1/« 1 the renormalized real part of the photon 
mass is 

Rek'~=- am'{ 11~3 'l'+6'[_3+A-:-4VJ.~4 In(V" 
:'1 90 A I. 4 

1/ i. ),1 1.-4 1.+4 (,IT 1/-1. -) ( 4 8 ) -'- rT- 1 + Y;:--,-, In Y4'+ V4'-1 - 1-;:--); 

Xln' (V:' + V ~ + 1) - (1 + ~ - ~,) In' (V ~ + V ~ -1)]}. 
(29) 

In particular, as 1/- 0 we obtain from (29) the contribu­
tion made by the wave field to Rek'2 and averaged over 
the photon polarization: 

R k" , am' { (,1 I. ,1-1. -) [11 1.+4 1,-4 
e =-6 - -3+ln y ~+ Y -+ 1 Y----

:t ,,4 I. A 

- (1- ~ - ~,) In (V ~ + V ~ +1)] +In (V ~ + V ~ -1) 

X[VJ.~4 I..~4_(1+ ~ - ~,)ln(V ~ + V~ -1 )]}. (30) 

We present the values of Rek'Z(;\,) in the limiting cases 
;\, « 1 ~d ;\, »1. At;\,« 1, obviously, the external photon 
produces practically no electron-positron pairs as it 
propagates in the field of a plane wave of low intensity. 
In this case we have 

Rek"=-a' am'I..'!!... 
11 360 

(31) 

This result agrees with that of[11] (see also[7]). Thus, 
in the absence of absorption Rek'z < 0 and Ren~ > 1. 

In the case;\,» 1 the contribution of the imaginary part 
of the photon mass to the refractive index becomes dif­
ferent from 0, and the real part of the photon mass is 
equal to 

am" . 
Re k"=a'-(ln' 1.-2 In 1,-11'+6). 

211 
(32) 

Knowledge of the polarization operator (II) makes it pos­
sible to obtain an asymptotic formula for the scattering 
of the photon by a photon through zero angle at w» m. 
Indeed, noting that the density of the incident wave phO­
tons is j = E~/41TW, and the density of the external photons 
is equal to unity, we obtain for the cross section 

do = ;:,,{ (Re II) ,+ (1m II) '} dQ. (33) 

In particular, in the c. m. s. 

(x' 00 
do ''''-In'-dQ, 

:12ffi~ m 

which coincides exactly with the corresponding expres­
sion given in [16] p. 80. At w« m we can obtain from 
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formula (33) an estimating formula for the scattering of 
light by light in the limit of low frequencies. Using the 
asymptotic form of Rell at w« m, we obtain 

( 11)' (00 • do-a' 180 r.' --;;) dQ. (34) 

3. DISCUSSION OF RESULTS 

The foregoing radiative corrections to the motion of 
an electron and a photon in an external electromagnetic 
field of the form (1)+ (2) should in prinCiple lead to ob­
servable effects. A classical example of effects of this 
type, observed in experiments, is the level shift of a 
bound electron in an external Coulomb field (the Lamb 
shift). A characteristic feature of the corrections to the 
electron and photon masses at high energies (~» 1 for 
the electron and ;\, » 1 for the photon) is their growth, 
which is proportional to the squares of the logarithms, 
with increasing invariant variables x and;\,o This de­
pendence on the variables x and;\, is typical of radiative 
corrections in vacuum (for example, for the form factor 
of the electron j{O, see[t6], p. 80). The existence of a 
similar analogy was indicated by Ritus. [4] In contrast 
to the radiative corrections in a constant field, where 
at large values of the invariant variables the real and 
imaginary parts of these corrections are practically 
the same in absolute value and increase with increasing 
variables in power-law fashion, [4] in an alternating field 
at x» 1 and ;\, » 1 the real parts of these corrections are 
decisive and are equal to 

(X e'E' 
Re Ll.m = ---' In' X 

811 moo' • 
Re k" =...::.- e'E,' In' I.. 

211 00' 

In the region of small values of x,;\, (x,;\'« 1) the depen­
dence on the invariant variables is substantially differ­
ent. It is interesting that the radiative corrections to 
the electron mass and to the photon mass in a weak con­
stant magnetic field and in the field of a plane electro­
magnetic wave (~< 1), at the values;\,« 1 and x« 1 of 
the invariant variables, can be written in the following 
symmetrical forms: 

ReLl.m=i.. am {x'ln~+Xl'In~}. 
3 11 X x 

k" 11 am' ( '+ ') Re = - 90 -;:;- TJ TJt • 

J.l=J.lo-=:""'{ 1-12 (x' In~+ 2x.'ln~)} . 
2n X x 

Here 

Eo Po-P' 
Xt=---, 

HJ(p m 

These formulas are asymptotic: they are valid in re­
gions where not only the arguments of the logarithms 
but the logarithms themselves are large In(1/X)>> 1, 
In (1/ x)>> 1. For experiments with laser beams it ap­
pears that greatest interest can attach to just this re­
gion of small values of X. 

In conclusion, let us estimate the contributions made 
to the anomalous moment of the electron by the presence 
of the constant and alternating fields. Thus, for record 
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large stationary magnetic fields, in the case elm = 103 , 

we have the parameter X-1O-5, whereas in modern la­
sers it appears that fields can be obtained with values 
~ = 0.1 at W-1015 sec-I. For the values given above, a 
contribution to the anomalous magnetic moment of the 
electron, due to the electromagnetic wave, can exceed 
the contribution from the constant magnetic field by two 
orders of magnitude. When account is taken of the con­
tribution to the anomalous moment of the vacuum cor­
rections in the next higher approximations in (l (- (l2, (l3), 

it turns out that the corrections obtained here generally 
speaking make a smaller contribution than the term 
- a2, but a larger one than the term - (l3. [19] 
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Quasi-classical dynamics of symmetric molecules 
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We study the vibronic problem in the simplest Iahn-Teller and Renner-Teller systems in the quasi­
classical energy and momentum range. The method developed in this paper leads to a transcendental 
equation for the levels, which includes the action in the adiabatic terms, the interference phase, and the 
probability for non-adiabatic transitions. We discuss the consequences and possible generalizations of the 
theory. 

PACS numbers: 32.20.Vh, 31.10.Cc 

The basic features of the nuclear motion in symmetric 
molecules are caused by the existence of those surfaces 
in the nuclear coordinate configuration space on which 
the molecular electronic terms are degenerate, The 
adiabatic approximation is violated near the correspond­
ing symmetric configurations and the motion of the nu­
clei on anyone of the degenerate potential surfaces be­
comes coupled with the motion on the others. 

These features of the nuclear dynamics manifest 
themselves strongly in the electronic-vibrational spec­
tra of Jahn-Teller and Renner-Teller molecules. Op­
tical transitions connecting electronic terms in the re­
gions of adiabatic nuclear motion are collected in rela­
tively wide bands with a simple Franck-Condon struc­
ture, while anamolous spectra arise for transitions be­
tween terms in symmetric nuclear configurations. The 
data from spectral studies at those frequencies, which 
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give information about the dynamical coupling of elec­
tronic states, cannot be understood without a detailed 
study of the dynamics of the nuclear motion in the ap­
propriate regions of space. Meanwhile all calculations 
of electronic-vibrational wavefunctions and energy lev­
els performed for symmetric molecules up to the pres­
ent[1-4) refer to low-lying excitations corresponding to 
initial values of the series of quantum numbers m and 
n (see Figs. 1 and 2 below). In those states the nuclear 
motion of real molecules is localized close to stable 
molecular configurations which are far from being com­
pletely symmetric. Completely symmetric configura­
tions are reached only in states with large quantum 
numbers when the motion of the nuclei along connected 
potential surfaces is complicated. 

Notwithstanding the complexity of such a motion the 
conditions m» 1 and n» 1 give us the possibility of ap-
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