
a(q2) _ a N (q2); K1~~+1 is as before given by Eq. (58), and 
inK1~~+1 one must set AO(q2) =2q2_2(N 2 +1)N-2m2• 

The reggeization of the vector meson is proved in the 
same manner as for SU(2), since Eqs. (63)-(66) remain 
valid with the indicated substitutions. 
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The properties of deep levels (real, virtual, and quasistationary) lying near the boundary of the lower 
continuum are investigated. The effective range expansion is generalized to the case of the Dirac equation. 
With its aid the motion of the levels near the boundary £ = - me 2 is investigated for different values of 
the angular momenta j and I. The formulas become simpler in the limiting cases R<h/mc and 
R>h/mc, where R denotes the range of the forces. In particular, the case of a wide potential well 
R>h/mc reduces to a determination of the spectrum of the bound and quasistationary states in the 
Schrooinger equation with a power-law potential. The asymptotic behavior of the critical nuclear charge 
Zcr is found in the region RN>h/mc (RN denotes the nuclear radius), and Zcr is calculated for the muon 
for various distributions of electric charge inside the nucleus. Differences in the behavior of the levels near 
£ = - mc 2 for scalar and spinor particles and the inapplicability of the single-particle Klein-Gordon 
equation for Z;::: Zcr are discussed. 

PACS numbers: 11.1O.Qr 

1. INTRODUCTION 
Deep levels, lying near the boundary of the lower con­

tinuum of solutions to the Dirac equation, are investi­
gated in the present article. The appearance of levels 
near the boundary e = - m e2 is of interest for quantum 
electrodynamics (the critical nuclear charge Zcr and the 
spontaneous production of positrons from the vacuum 
for Z > Zcr or associated with the approach of two heavy 
nuclei to within a distance R <Rcr [1-8]) and for nuclear 
physiCS (the formation of a 1T-meson condensate and a 
phase transition in nuclei, the possible existence of 
superheavy nuclei with charge Z - (137)3/2(9.10]). 

The motion of the levels near the boundary of the low­
er continuum has been considered by a number of au­
thors[2.11-15] in connection with problems of quantum 
electrodynamics in strong external fields. In this con­
nection the Dirac and Klein-Gordon equations were 
solved analytically or numerically for potentials of the 
following special forms: rectangular well, Coulomb po­
tential, and Hultben potential. We shall consider the 
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question of the motion of the levels and the analytic 
properties of the S-matrix for an arbitrary potential, 
using a generalization of the effective range method to 
the relativistic case. In this connection one is able to 
express the energy levels and the expansion parameters 
of the S-matrix for e- _me2 in terms of the wave func­
tion at the critical point V = Vcr, i. e., at the moment 
when the level intersects the boundary of the lower con­
tinuum. 

Let us describe the contents of this article. A gen­
eralization of the effective range expansion to the case 
of the Dirac equation is presented in Sec. 2. The limit­
ing cases R« ~c = Ii/me and R» Xc (R denotes the char­
acteristic range of action of the potential and m is the 
particle's mass) are considered in Secs. 3 and 4. By 
using the effective potential method, [2.3] it is shown in 
Sec. 4 that investigation of the levels near e = - m e2 in 
the case R »~c reduces to the solution of the Schro­
dinger equation. In Sec. 5 the asymptotic form of Zcr 
is found in the region RN» Xc which has not been pre-
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viously investigated (RN is the nuclear radius), and the 
critical charge of the nucleus for a muon is evaluated. 
In Sec. 6 a comparison is made of the behavior of the 
levels and the analytic properties of the S-matrix near 
e= _mcz for scalar and spinor particles. 

Below we assume Fi = m = c = 1, the energy E is mea­
sured in units of m d-, ~ = (1 - fZ)l/Z, and we write the in­
teraction potential (the time component of the 4-vector 
A,..(x)) in the form 

V(r)=-Vf(r). (1.1) 

We shall assume the functionj(r), determining the shape 
of the potential, to be fixed, but the depth V can vary. 
The Dirac equation is given by 

dG x dF x a;:- = --;:-G:," [1+e+Vf(r) ]F, dr"" =[ 1-8-Vf(r)]G + -;:-F, 

(1. 2) 
where x ='f (j + t) for states with j = II ± t; II and lz de­
note the orbital angular momenta corresponding to the 
upper (G) and lower (F) components of the Dirac bispin­
or. In contrast to the nonrelativistic situation, for e 
'" - 1 the angular momentum lz is more important than 
ll; for the sake of brevity we denote lz =: l. For example, 
we have x = -1, II =0, and l = 1 for the ground level 

Is1/2' 

2. THE EFFECTIVE·RANGE METHOD FOR THE 
01 RAC EQUATION 

First let us assume x "* 1 (the states nPlIz are excluded 
. by this). In this connection the angular momentum l:;.1. 
For V = Vc let such a level drop down to the boundary of 
the lower continuum. For values of V close to Vcr, it 
is convenient to represent the dependence of the energy 
level E on V in the form of the equation 

V,,-V=<p(A) , A=(1-e')'I •. (2.1) 

Let CP*(~) denote the even and odd parts of the function 
cp(~): cp(~)=cp+(~)+cp-<~), CP*(-~)=±CP*(~). For small 
values of V - Vcr, only the first terms of the expansion 
of cp *(~) are essential for ~ - 0: 

(2.2) 

One can express the coefficients cz and CZ 1+1 in terms 
of the wave function of the level at the critical point 

c,= [2 jf(r>x/(r)dr r', clI+l=(-1)'[A.I(21-1)!!]'c" 

" x.'(r)=[G'(r)+F'(r) ],_-., v-v", 

f x,l(r)dr=1, 

where A I is the coefficient in the asymptotic form: 

(2.3) 

(2.4) 

(2.5) 

The derivation of formulas (2.3)-(2.8), (2.13) and 
(2.14), and also of the formulas given in Sec. 6 for sca­
lar particles is not discussed here, but has been pub-
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lished separately. [16,17] It is assumed that the interac­
tion potential is regular at the origin and has a short 
range of interaction: V(r) - 0 faster than any power r-n 

as r-«>. If V(r) behaves like r-n at infinity, the effec­
tive range expansion has the form (2.6) only for n > 2l 
+ 5. [18,19J We note that weaker restrictions on the rate 
of decrease of the potentiall) are required for the valid­
ity of the asymptotic expressions (2.5) and (2.12) and 
also for the formulas which are derived below for the 
coefficients in the series (2.2). 

Since x"* 1, it follows that l :;.1, and owing to the cen­
trifugal barrier the bound state is not delocalized as 
f - -1. Let us emphasize that the Dirac equation has a 
solution with energy e = -1, possessing the finite norm 
(2.4), only for discrete values of the well depth V 
= Vcr(nx) at which one of the levels of the discrete spec­
trum drops down to the boundary of the lower continuum. 
For k - 0 and values of V close to Vcr, the S-matrix has 
the form 

S,(k) =e''''= (ctg b,+i)/ (ctg b,-i) , (2.6) 
1 1 

k"+'ctgll,(k)= --+-r,k' + ... 
a, 2 

(a l is the scattering length, r l is the effective range, 
and k = (ez _1)l/Z). The scattering amplitude is given by 

where 

~= Gt. (V-V,,) +Gt.(V-V,,)'+. " 
a, 

2 -Gt.=-A" J f(rlx,'(r) dr, r,=-2[ (21-1) !!lA,]'. 
, 0 

(2.7) 

A connection exists between the parameters Cz, CZ 1+1 

and al,r l 

(2.8) 

The existence of such a connection is not surprising 
since a bound state corresponds to a pole of the S-ma­
trix and is determined by the equation cot1i l(k) =i for 
k = i~. As is evident from Eq. (2.3), Cz >0 for any at­
tractive potential. Therefore, the discrete level enters 
the lower continuum with a finite slope 

1 
e=-1 +-2 (V,,-V)+ ... , V-V,,-O. (2.9) 

c, 

A collision of real and virtual levels takes place at V 
= Vcr' and then these levels emerge into the complex 
plane, being converted into a pair of Breit-Wigner 
poles: k=i~=k'+ik", 

k'=±[(V-V,,)/c,l"', k"=(k')21/r,. (2.10) 

These poles are always located on the second sheet (Fig. 
1) since k" <0 for rl <0. The other sign for the effec­
tive range would lead to a contradiction with unitarity. 
The essentialness of the condition r l <0, which is always 

Popov et al. 452 



K" Kif 

® ® 
a k, b 

k, 

0 K' 0 K' 
kz k, 

kz 
kz k, 

kz 

FIG. 1. Distribution of the poles of the S-matrix in the k-plane 
for the Dirac equation with £ --1 and k = (£2 _1)1/2 -0; a) for 
" "1, b) ,,= 1. 

satisfiedZ) in virtue of (2. 7), is evident from here. 

The energy of the quasistationary level, which is sub­
merged into the lower continuum for v> Vcr, is given by 

£=- (1+k')"'=£0+i1/2. 

At threshold I kill «k', and for EO we have the same for­
mula (2.9) as in the subcritical region. The threshold 
behavior of the width y has the form (kR« 1) 

1=1, (V-V,,) '+"', 

1,=-2(r,c;+'h) -'= (-1)'c2l+,c,-('+1·' .. (2.11) 

For V> Vcr the probability for the spontaneous produc­
tion of positrons is equal to y. It decreases with in­
creasing angular momentum 1, which is explained by the 
presence of the centrifugal barrier whose penetration 
factor depends on the positron's momentum - kZI+l as 
k-O. 

Let us turn our attention to the unusual sign of the 
imaginary part: 1m e '" y/2 > O. Such a sign is also ob­
tained upon solving the equation for E in a Coulomb po­
tential[Z] and is explained by the fact that we are work­
ing in a theory which is not second-quantized, examin­
ing the unoccupied states (holes) in the lower continuum. 
Upon a transition to quasistationary positron states, the 
energy e changes sign, and 1m Ep '" - y/2 <0. 

The case x '" 1 is a special case since 1 = 0 and the 
bound state is delocalized for e - -1. At the critical 
point V = Vcr the wave function has the asymptotic form 

G(r) =-1/2r, F(r) =1, r_oo. 

The power series for cP (A) starts with a term - A: 

1 
cj =-1/cxt, cZ=-TrOcl+a.ZC13, ... 

c:t,=-2 S lxa' dr, ro=2 S (1-Xo') dr, 
o o 

~ 

(X,=-2 S f(r) (GoG,+FoF,) dr. 
o 

(2. 12) 

(2.13) 

(2.14) 

The functions Go and Fo pertain to V = Vcr and energy 
e = -1; G1 and Fl are corrections to them which are lin­
ear in V - Vcr. The equations for G1 and Fl are ob­
tained[17] if the system (1. 2) is expanded in powers of 
V - Vcr and the terms - (V - V cr)Z are discarded. 
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Comparison with Eqs. (2.3) shows that the case x = 1 
is more complicated for calculations: In order to deter­
mine the first two terms of the expansion cP (A) it is not 
only necessary to find the wave function of the level at 
the edge of the lower continuum, but also the correction 
to it of order V - Vcr. The analytic properties of the 
poles of the S-matrix are also more complicated. The 
curve of the Pl/z-level is in contact with the boundary of 
the continuum 

e=-1+_1_(V_V,,)'+ ... , V-V,,-O. 
2c,' 

(2.15) 

Solving Eq. (2.1) with respect to A, we obtain the two 
roots 

(2.16) 

where p, = Cl/2cZ and k~ = (V - Vcr)/ cz. The location of 
the poles kl = iAI and kz = iA2 in the k-plane depends on 
the signs of the coefficients Cl and Cz' It follows from 
Eqs. (2.13) and (2.14) that Cl>O for any arbitrary at­
tractive potential; as to cz, it is not possible to estab­
lish its sign in the general case. However, cz>O in all 
of the examples we have considered, and also in the 
limiting cases R« 1 and R» 1 (see below). Therefore, 
we shall assume that Cl and C2 are positive. Then, for 
V < Vcr the first level is real and the second is virtual: 
Al > 0 and A2 < O. For V> Vcr the real level turns into a 
virtual level, moving away onto the second sheet 

i 
k=--(V-V,,)+ .... 

c, 

A collision of the two virtual levels takes place for kg 
= p,2 (or V - Vcr "'cU4cz), after which they move away 
along the imaginary axis of the k-plane (Fig. 1b). The 
picture of the motion of the poles of the S-matrix for 
x", 1 is analogous to that obtained in the article by Mig­
dal et al. [ZO] for the S-levels in the nonrelativistic 
Schri:idinger equation with a wide barrier. 

Further simplication of the formulas is possible in 
the limiting cases of narrow and wide (in comparison 
with Ii/mc) attractive potentials. For this purpose we 
introduce the range of action R of the forces, assuming 
f=f(r/R) in Eq. (1.1); R is measured in units of :ICc 
=Ii/mc. 

3. THE CASE R « 1 

Changing to the variable x =r/R, assuming V =gz/R, 
and neglecting terms of order R in Eq. (1. 2), we obtain 
for G and F a system of equations which do not depend 
on the energy E. For x * 1 the function XI (x) == (G2 +F2)1I2 
is normalized by the condition 

f x,'(x)dx=1, 

where XI(x) =Blx-I as x-co. The dependence of the quan­
tities of interest to us on the radius R may be introduced 
in explicit form 

c, ={ 2 [f(Xlx.'(X)dX r', c,,+,=(-1)'[B.I(21-1) !!l'c,R"-" (3.1) 
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FIG. 2. The effective potential for the Dirac equation: a) £ 

> 0; b) 0> f > - 1; c) f > - 1. 

(3.2) 

The quantities C2, y, and B, are constants of the order 
of unity, which depend on the shape of the potential, but 
do not depend on R. 

As is clear from Eq. (3.2), for states with large 
angular momenta l the probability for spontaneous pro­
duction of a positron in the threshold region V - Vor 
« Vcr falls off rapidly with increasing l. We note that 
the case of the ground state (x = -1, II =0, l = 1) in a 
narrow well was investigated earlier. C21 

For levels having the quantum number x = I, Xo(r) is 
not a function of only the single variable x = r /R. From 
Eqs. (2.13) and (2.14) we have Cl =O(R) and C2 =0(1). 
Therefore, in the case R «1 a collision of the virtual 
levels takes place near the boundary of the lower con­
tinuum 

v - V,,=c.'/4c,=O(R'). 

4. THE CASE R » 1 

The case ofa wide potential well is more difficult in 
connection with both the analytic solution and the nu­
merical solution of the problem. 3) First, let us assume 
monotonicity of the potential: I' (r) < 0 for 0 < r < 00 (be­
low we shall show how this restriction can be avoided). 

The effective potentialC2• 31 is given by 

U(r)=U.+U" 

where Uo is the potential for a scalar particle and U& is 
the spin correction: 

. 1 x~+U 
U,(r)-IIV(r)-T V'(r)+~, 

U (r)=~[2:+~( V')' _ 2XV'] 
• 4 W 2 W rW (4.1) 

W(r)=1+e-V(r). 

With increasing depth of the well V, the effective po­
tential varies as shown in Fig. 2. When V becomes 
greater than 2m c2, a region of effective attraction ap­
pears near r =0. 

For x =r/R - 0, let 

i 
!(x)=t-zazU+ ... , a,cx>O. (4.2) 

Let us set V = 2 +vR"" + ••• , where v =0(1), and let us 
assume that the spin term Us can be neglected in com­
parison with Uo (this is justified by the result). Then 
furE=-l, x=-lwehue 

U.(r) =-V-'/,V'=-vR-'+ax". 
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The turning point is 

x.=r,IR= (vlaR,)1Ia<1.. 

The existence of a bound state at the edge of the lower 
continuum is equivalent to the appearance of a level with 
zero binding energy in the effective potential. The con­
dition for the appearance of a levelt21.221 

determines the exponent II: 

In order for ~ to remain bounded (~=0(1) as R-oo), it 
is necessary that 

v=2cxl (cx+2). (4.3) 

Knowing v, let us analyze the problem more rigor­
ously and determine the behavior of the level near e 
= - 1. Assuming 

r=pR''', V=2+vR-', £=-1+~R-', (4.4) 

we have 

U.=- 2l+V + x(x+1) +a(~) a+ 
R' 2" R ... 

U. ~ ~(cx+2x_t)zU-' [ 1 +O(zU) J. 

Hence 

U.(r)IU.(r) _R-'(m+l)/(m+2)<t 

for r«R; in this region one can neglect the spin term 
Us in comparison with Uo• The squared Dirac equation 
assumes the form 

~ [ x(x+1) ] -+ 2 lL_apa - --- )(.=0 
dp'''' 2p' ' 

O<p<oo, (4.5) 

where J.l = e +v. This equation has a discrete spectrum 

"="'" n=l, 2, 3 .... 

Finally we obtain 

V"=2+" • .R-,, e=-l+(I'n.-v)R-'= V,,-l- v, (4.6) 

i. e., a linear dependence of the energy level e on the 
depth V of the well. 

An imaginary part appears in e for V> Vor; the thresh­
old behavior of this part is determined by formula 
(2.11). The constant y, is related to the barrier pene­
tration and is exponentially small for R » 1 

'Y/a:exp {-2 J [2U,(r) 1'" dr }=e-~R, 
(4.7) 

~=4 J dx[f(x) (1-f(z» l"'. 
o 
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(We recall thatf(x) ;:;;1, see Eq. (4.2).) The influence 
of a finite penetration barrier on eo = Re B can be ne­
glected since exp(- !3R)«R-II for R» 1. 

The wave function is mainly concentrated in the clas­
sically allowed region r::; ro - R V / z, which is small in 
comparison with the range R of the forces (since v/2 
< 1 for a> 0). Because of this, in order to determine 
the asymptotic (R - 00) spectrum of the levels it was 
found to be sufficient to give the first terms of the ex­
pansion of the interaction potential V(r) for small r. 

If a = 2, Eq. (4.5) coincides with the SchrBrlinger 
equation for a three-dimensional harmonic oscillator, 
from which 

ft .. =[2n+j+'/,(sign x-i) 1 (2a)"', n=1, 2, 3,... . (4.8) 

The other example is a rectangular well, V(r) = - V8(R 
-r). Expressions for Vcr for arbitrary values of n, x, 
and R are cited inCl4l; for R » 1 one finds 

(4.9) 

where ~nx denotes the n-th positive zero of the Bessel 
function JpW, 

p=j+'/, (sign x-1) = I x 1-1+'/,sign x. 

This result agrees with (4.6) since a rectangular well 
corresponds to a-oo and v=2. 

Let us proceed to the coefficients Cz and CZ/.i' Since 

[~] =-(2c,)-', dV ' __ 1 

it follows from (4.6) that Cz = ~ in the case R» 1, inde­
pendently of the shape of the potential. From a com­
parison of Eqs. (2.11) and (4.7) we obtain CZl+i 

ex: exp(- !3R). Thus, in a wide well the probability of the 
spontaneous production of positrons for V> Vcr contains 
the exponentially small factor exp(- !3R). 

The generalization of these results to the case of 
nonmonotonic potentials is simple. Let V(r) have a 
minimum at the point r =ro 

a (r-To)' l(r)=1-""2 7l + .... ro>O (4.10) 

(we assume ro and R to be quantities of the same order). 
In order to eliminate R from the Dirac equation, we 
change to the variable 

p=(r-ro)R-"', _oo<p<oo. 

We define the quantities v and e according to Eqs. (4.4) 
for v = 1. Finally we arrive at the equation for a one­
dimensional oscillator, 4) from which 

v.,.-u 
e=V,,-1-V=-1+71+ . .. , Vn = (2a) ". (n-'/,). (4.11) 

The wave function of the n-th level is mainly concen­
trated in the region 
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Ipl~(nlw)"" w=(2a)"'. i.e., 
Ir-rol ~(nR)"'a-'·«'R. 

This justifies neglect of the following terms of the ex­
pansion in Eq. (4.10). 

5. THE CRITICAL CHARGE OF THE NUCLEUS FOR 
A MUON 

That value of Z for which the discrete level with quan­
tum numbers n, j, x drops down to the boundary of the 
lower continuumCl -41 is called the critical charge Zcr 
=Zcr(j,j, x). The spontaneous production of positrons 
by a Coulomb field becomes possible for Z > Zcr. In re­
cent years many articles have been devoted to these 
questions (seeCS - 51 and the additional references cited 
there). 

The value of Zcr depends on the nuclear radius R N • 

The calculations carried out up to the present time per­
tain to the region RN« 1. This is a good approximation 
for the electron (Ii/mec = 386 F), but it is not appropri­
ate for the muon (li/mlJ.c = 1. 87 F). Let us find the 
asymptotic value of Zcr in the region RN» 1. 

For Z > 137 it is necessary to solve the Dirac equa­
tion in the presence of a Coulomb potential which is cut­
off at small distances 

V(r)=-~f(x)IR", x=rIR", (5.1) 

where?; = Zez = Z/137 and RN is the nuclear radius in 
units of Ii/mc. The cutoff functionj(x) depends on the 
electric charge distribution over the volume of the nu­
cleus. 

According to the results of Sec. 4, the asymptotic 
form of Zcr for RN» 1 is determined by the behavior of 
the electrostatic potential cp near the center of the nu­
cleus 

2 
cp(r) =cp(O) - "3np(O)r'+O(r'), 

(
. 1 

ao--aox'+ ... , x-O 
f(x)= 2· 

X-I, x-+oo 

(5.2) 

a,=R"I.lI" a,=p(O)/po, (5.3) 

here Po = 3Ze/47TR~, p(r) denotes the charge density in a 
spherical nUCleus, and 

-
In = J p(r)rndr. 

o 

For example, for a small sphere which is uniformly 
charged throughout its volume (cutoff model II, see[Zl) 
we have 

p(r)=p,8(Rs-r), ao='I,. a,=1. 

Assuming 

for r «RN we arrive at Eq. (4.5) in which J.J. =vnx ' a 
=az/ao, and a =2. For RN» 1 the asymptotic behavior 
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of tor =Zor/137 has the form 

2 
~,=-, 

a, 

(5.4) 

Let us compare expression (5.4) with the numerical 
solution of the problem. Outside of the nucleus the 
Dirac equation with energy f = -1 has an exact solution, 
expressible in terms of Bessel functions of imaginary 
order. Denoting the logarithmic derivative of the in­
terior (r <RN ) wave function at the edge of the nucleus 
by ~, we have the following equation for the determina­
tion of Zor [21: 

zK • .'(z)IK;,.(z) =2t 
:=(8~"R,)'!'. \'=2(~,;-x')"', 

where Kjv denotes the Macdonald function. 

Let us consider two models of cutoff: 

I f(x)=1 
II f(x)=(3-x')/2 

for O<x< 1, ({x) =x-' for x> 1, 
for O<x<1, f(x)=x-' for x>1. 

(5.5) 

Model I corresponds to a surface charge distribution; 
model II corresponds to a uniform volume density of 
charge inside a nucleus having a sharp boundary. 

The results of the calculation are shown in Fig. 3, 
where the difference tor - t or is given for the level lSt/2' 

Here ~or denotes the value of the critical charge ac­
cording to the asymptotic formula (5.4). For the ground 
state: x=-l, n=l, r=-t, 

(5.6) 

where f3 1 =2, f3 2 =0 for model I and f3 1 =;, f3 2 = (~)3/2 
= 1. 5396 for model II. It is interesting to note that, for 
model II the approach of tor to the asymptotic value (5.6) 
takes place much more rapidly than for model 1. The 
accuracy of the asymptotic form amounts to :::: 1% for 
RN=5 and ::::0.3% for RN=10 (for model II). 

'i;cr - ~cr 
1.0 

5 1P 15 20 

FIG. 3. The difference between the exact value tor and the 
asymptotic value (5.6) for the ground state 181/2' The nuclear 
radius RN is measured in units of Fi/mc. The numerals I and 
II on the curves refer to cutoff models I and II. The values 
of tor - for for model II are increased by a factor of ten in the 
figure. 
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FIG. 4. The critical charge of a nucleus for a muon in cutoff 
models I and II. 

In order to determine the critical charge for muons, 
it is necessary to know the dependence of the radius RN 
on Z. For ordinary heavy nuclei RN =roA1/3 and A 
=2.6 Z. The possibility of the existence of nuclei with 
Z _1373/2 was predicted by Migdal[91; however, their 
density and the relationship between A and Z remain 
quite indeterminate. Let us use R N = r 0 A 1/3 and let us 
setro=1.20 F, A/Z=2.671; the nucleardensityn=3A/ 
41lR~=noo-3, where no is the density of ordinary nuclei. 

The value of tor depends on the parameter .l = orf/3 
(Fig. 4). If.l = 1 and model II is assumed, tor = 16. 7 
and Zor =2280. The value of Zcr strongly depends on the 
model of the superheavy nucleus, i. e., on the nuclear 
density n, the relationship between A and Z, and on the 
form of the cutoff function in Eq. (5.1). It is not dif­
ficult to find the critical charge for the subsequent levels 
of the muon spectrum with the aid of the asymptotic 
form (5.4), which gives 

where .ltor = tcr (N, x ) - tor (1, - 1), N is the principal 
quantum number, and ro=0.64 is the pa.rameter ro=1.2 
F in units of Ii/ml"c, For example, the difference be­
tween the values of Zor for the levels ls 1/2 and 2P1/2 

amounts to :::: 270. 

For comparison we recall that, for an electron tcr 
=1.25 and Zcr=170 (for the ground level[2,41). It is ob­
vious from here how Zor depends on the mass of a light 
particle moving in the Coulomb field of a nucleus. 

The asymptotic behavior (5.4) enables one to rapidly 
determine the change in Zor associated with a variation 
of different parameters. Let us estimate, for example, 
the influence due to a smearing of the edge of the nu­
cleus. Selecting the charge distribution in the form 

p(r) =const lHexp( (r-RN)ld) ]-', (5.7) 

where R N» d, we find 

~,= : ( 1+ ~ t' + ... ) , ~. = (: ) " ( 1+ + t'+ ... ) , 

where t = rrd/R N «1. Hence 
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(5.8) 

For RN = 11. 6 Ii/m,.c =21. 7 F, which corresponds to <5 

= 1] = 1 and d = O. 5 F, taking the diffuse nature of the nu­
clear boundary into consideration increases the value 
of Zcr by 0.35%. 

The value of Zcr obtained above for a muon should be 
regarded as a first approximation, since we did not take 
into consideration the screening of the bare nucleus' 
potential by the electron cloud, which nucleus draws to 
itself from the vacuum as a result of the spontaneous 
production of e+e- pairs. [3) The number of electrons in 
the vacuum shell of a supercritical atom is given by 

4 ~ 
N. ""&t~3In RN' ~~1. (5.9) 

Hence it is clear that, for Ze3 ~ 1 or t? 10 the number 
of electrons Ne becomes comparable with the nuclear 
charge Z; therefore, screening significantly modifies 
the bare potential and increases the value of Zcr for a 
muon. A calculation of Zcr with the corrections due to 
screening taken into consideration is being carried out 
at the present time. 

6. CONCLUDING REMARKS 

1. The Dirac equation admits an exact solution in 
very few cases: rectangular well and Coulomb field. 
The formulas of Sec. 2 provide a description of the mo­
tion of the levels near f = - m c!- for a potential of arbi­
trary form in terms of the two parameters C2 and C21+1' 

For their evaluation it is sufficient to find the wave 
function at the critical point. By this means the prob­
lem is substantially simplified. 

2. Analogous results are obtained for levels close to 
the boundary of the upper continuum. In this case it is 
convenient to change the sign in Eq. (2.1) 

(6.1) 

Here Vo denotes the well depth at which a bound state 
appears; the orbital angular momentum II plays the role 
of l. Expressions (2.3) and (2.13) for the coefficients 
C2 and C21+1 retain their form. If II ~ 1 the emerging 
level deepens linearly with respect to V - Vo. Now).{ 
= -1 ([1 =0, the levels nS1/2) is a special case, when the 
level deepens - (V - VO)2. 

3. Let us compare the behavior of the levels near e 
= - m c2 for scalar and spinor particles (in both cases 
the interaction with the external field is introduced by 
the principle of minimal electromagnetic interaction, 
P jJ. - p,. - eAI" and the electrodynamics is renormaliz­
able). Let a bound state with energy e = - 1 appear in 
the Klein-Gordon equation for V = Vo. For values of V 
close to Vo, the energy level e is determined from the 
equation 

v.-v=<p(") = L,cn"n, n - ' { 1 1=0 
• - 2, 1;;;'1 ' (6.2) 

For the sake of simplicity, we shall confine our at-
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tention to the caseS) R« 1. Assuming Vo = t/R and dis­
carding terms - R and - R2 in the Klein-Gordon equa­
tion, we obtain 

X,"+[~'f(x)-I(l+1)x-'lx,=0, x=r/R. (6.3) 

From here the spectrum t = tnl is determined. For 
f = -1 the normalization conditions have the form 

X.(oo)=1, if 1=0, 
(6.4) 

I x,'(x)dx=1, if 1;;;.1. 

Let us introduce the notation 

"-=1 [f(x) l"x,'(x)dx. 

Then for l=O 

(6.5) 

and for l ~ 1 

c,=1/21', C2I+,= (-1) '+![B/ (21-1) !!l'R"/ (2~",.f), (6.6) 
B,=lim x'X' (x) as x"'" 00. 

Since the radius R does not explicitly appear in Eq. (6.3) 
or in the boundary conditions, tn" C1, and C2 are quan­
tities of the order of unity. In contrast to the Dirac 
equation, C1 <0. Therefore, a bound level is not pres­
ent for V < Vo; this level emerges from the lower con­
tinuum at V = Vo, and its energy 

1 
e=-1 +2"'+'" 

increases with increasing depth V. According to Mig­
dal, [9) such levels should be interpreted as bound states 
of antiparticles. Neglecting terms - A3 in Eq. (6.2) and 
changing from V, E to dimensionless variables v, w 

V= (v- vo)! (V,,-Vo), t.=-c,w"'l2c,. 

II C1 2 

e=-(1-,,') '=-1 +-w+ ... 
8c,' 

(Vcr - Vo = d/4c2), we reduce Eq. (6.2) to the form 

(6.7) 

There are two branches of the single-particle spec­
trum, corresponding to particles (wJ and antiparticles 
(wJ 

w~=[1±(1-lJ)"'l', O<v<1. (6.8) 

The two branches merge together at the critical point 
v = w = 1. The curve of the s -level has a bend (see Fig. 
5a) for C1 < 0, C2 > 0 (these conditions are satisfied for 
any attractive potential, whenf(x) ~ 0). Analytic con­
tinuation of the one-particle solutions into the region V 
> Vcr (i. e., v> 1) leads to states with complex energies 
on the physical sheet. This indicates that the Hamilto­
nian of the Klein-Gordon equation ceases to be self-
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FIG. 5. Dependence of the energy level on the depth of the 
potential: a) s-level for scalar particles; b) PI/2 level for 
the Dirac equation. The continuous curves correspond to real 
levels, and the dashed lines correspond to virtual levels. The 
potential is assumed to be short-range. 

adjoint for V>Vcr ' Taking vacuum polarization into ac­
count separates the levels 1::., and their collision at the 
point V = Vcr does not occur. [91 

For states with l'" 1, it follows from Eq. (6.6) that 
C2 >0. Therefore, boson levels with angular momenta 
l'" 1 enter the lower continuum with a finite slope. 6) 

However, a comparison of formulas (3.1) and (6.6) 
shows that C2'+1 and r, have different signs for bosons 
and fermions. As a consequence of this, the picture of 
the motion of boson poles with increasing V differs from 
Fig. la by the fact that the colliding poles emerge on the 
first sheet: Imk1,2>0. 

Independently of whether bending of the boson level 
exists near the boundary I:: = - 1 or not, continuation of 
the Klein-Gordon equation into the region V> Vcr leads 
to poles on the physical sheet, i. e., runs into a con­
tradiction with unitarity. At the same time the poles 
k1,2 in the Dirac equation move away onto a nonphysical 
sheet for V> Vcr' Thus, the statistics of the particles 
is essentially manifested in the analytic properties of 
the S-matrix near the boundary of the lower continuum. 
The one-particle Klein-Gordon equation cuts itself off 
at the critical point, but the Dirac equation does not 
contradict unitarity for V> Vcr. Therefore, one can 
anticipate that, as a zero-order approximation, it re­
tains meaning in the trans-critical region, but taking 
account of vacuum polarization is essential in a narrow 
region near E = -1 (since e2 « Ze2 ). This conclusion is 
important for calculations of the probability for the 
spontaneous creation of positrons during a collision of 
nuclei, the energy spectrum of eO, and other similar 
quantities. [2,7,81 

4. Up until now we have assumed that I V(r) I <: r-n for 
r-"" and n>2. Let us show how the limiting transition 
to an unscreened Coulomb field takes place. Cutting off 
the potential V(r) = - ,Ir at large distances r-R» 1, 
we have (~ =0, t) 

(6.9) 

Cl <0 for scalar particles, which leads to a bend in 
the s -level curve. Since 'cr - '0 -c~, the bend is located 
exponentially close to the boundary of the lower con­
tinuum and vanishes in the limit R - "". In analogous 
fashion the tangency of the P1I2-level curve with the 
boundary E = -1 disappears as R - "" for fermions (Fig. 
5b). In an unscreened Coulomb potential, all levels of 
the discrete spectrum enter the lower continuum with 
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finite slope. [21 However, continuation of a discrete 
level into the region Z > Zcr corresponds, in the boson 
case, to an S-matrix pole on the physical sheet, but in 
the fermion case-it corresponds to a pole on a non­
physical sheet. Thus, the principle difference between 
the Klein-Gordon and Dirac equations is maintained in 
supercritical fields and for an unscreened Coulomb in­
teraction. 

The question of level bending near e = -1, arlStng in 
connection with a discussion of 1T-meson condensate in 
nuclei, appeared recently as a topic of discussion. [23,241 
In this connection various methods (the virial theo­
rem, [241 numerical calculations(231) indicated that level 
bending is characteristic for a short-range potential, 
and vanishes upon transition to a Coulomb field. 7) How­
ever, the analytic properties of the poles kl' k2 in the 
trans-critical region were not investigated in[23,241. 

\)For example, expressions (2.3) are valid for all values 
l ~ 1 provided that lim V(r)y2+e = 0 for r - 00 and some Ii> O. 
This is explained by the fact that we are considering the 
special case V= Vcr' when a bound state with zero effective 
energy E = (£2 -1)/2 = 0 appears in the potential. Among the 
potentials which do not satisfy the enumerated conditions, 
potentials having a Coulomb tail at infinityl21 are of special 
interest. They may be treated by the present method with 
the aid of a cutoff for r >R and the limiting transition R - 00 

(see Sec. 6 for further detials). 
2)Complex poles of the S-matrix on the physical sheet arise for 

the Klein-Gordon equation when V> Vcr. The fact that such 
a difficulty does not arise for fermions is a remarkable 
property of the Dirac equation. 

3)See, for example, articlel151 in which the Klein-Gordon equa­
tion is solved in the presence of an exponential potential. 

()In this equation one can discard the centrifugal and spin terms 
since in the important region r - ro 

U.(r)/U.(r) _R-i, x(x+1)/r,U.(r)-R-i, 

Uo(r) --.Vf(r) _if, V'F(r). 

Because of this, the asymptotic spectrum (4.11) is degenerate 
with respect to the angular momentum j. In the preceding 
case (ro=O) the centrifugal energy is essential as r-O, and 
the dependence of the level spectrum on j is retained. 

5)The general case is investigated in(6), where an effective 
range expanSion is obtained for the Klein-Gordon equation in 
the presence of an arbitrary potential. 

6lThis conclusion is undoubtedly valid in the case R« 1. For 
potentials having a sharp edge (of the rectangular well type) 
not only a bending of the s-level, but also of the p_Ievel1161 is 
possible for sufficiently large values of R. In the absence of 
level bending, Vcr = Vo. . 

7 )This fact was established earlierl2l for a narrow (R« 1) po­
tential of arbitrary form f(x). 
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Radiative effects due to the combined action of stationary and alternating electromagnetic fields are 
considered by the analytic continuation technique in the first order with respect to the fine structure 
constant a = e '/h c. The real parts of the corrections to the electron and photon masses are determined 
for the case of low wave intensities (~= eEo/cmw < I) by means of the expressions for the probabilities of 
the multiphoton electron scattering and electron-positron pair production by photons in the wave field or 
magnetic field. In the overlap region the derived formulas are in agreement with results obtained in an 
investigation of radiative processes in stationary crossed fields and also with the results of an analysis of 
the mass and polarization operators in the field of an electromagnetic wave. Polarization effects are studied. 
It is shown that in this case the anomalous magnetic moment of the electron is a function of all the 
parameters that characterize the total field (w, Eo, and H). Corrections proportional to the wave intensity 
are obtained .for the Schwinger value of the anomalous electron moment. 

PACS numbers: 12.20.Ds, 13.10. +q, 14.60.Cd 

The interaction of electrons and phonons with an elec­
tromagnetic vacuum in a constant electromagnetic field 
has been studied in sufficient detail (see, e. g. [1-5J). In­
terest has arisen recently in the study of similar pro­
cesses in the field of an intense electromagnetic wave, 
in view of the added possibilities afforded by the use of 
laser techniques. It turns out that the presence of a 
sufficiently intense electromagnetic wave in a vacuum is 
capable of leading to effects analogous to those that take 
place in constant fields. The emission of a photon by 
an electron and the production of electron-positron pairs 
by a photon in the field of a wave[6J are processes that 
give rise to radiative effects leading to changes in the 
masses of the electron and the photon. The question of 
the change in the photon mass in the field of a wave was 
cons idered in [7] by us ing the electron Green's function 
obtained by Schwinger. [8J An analogous method was 
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used in[9J to calculate the polarization operator. Quite 
recently [10, 11J the method of operator diagram technique 
has yielded the corrections to the mass and polarization 
operators in the field of a wave of rather general form. 

In this paper we use the dispersion-relation method to 
consider radiative processes in the field of an electro­
magnetic wave, with account taken of the action of a 
constant magnetic field. The development of a method 
of analytic continuation as applied to the case of an in­
vestigation of radiative effects in constant crossed fields 
was described by Ritus. [4, 12J The main deviation 
from[4,7,9-12J is that the external field was chosen by us 
to be a superposition of fields, namely a constant mag­
netic field of intensity H and the field of a plane electro­
magnetic wave propagating along a magnetic field, 

H=(O,O, H), 
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