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A study is made of a Friedmann model of a charge-asymmetric hot universe in which particle masses 
arise through spontaneous symmetry breaking. It is shown that the early stages in the evolution of the 
universe depend strongly on the ratio of the density of 'Y rays to the density of the excess of neutrinos 
over antineutrinos. A small value of this ratio must lead to unboundedly large masses of the elementary 
particles near the cosmological singularity. In a universe with number of'Y rays appreciably greater than 
the number of neutrinos, the masses of the particles are zero during the early stages of evolution and 
become nonzero as a result of a phase transition as the universe cools. 
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In recent years, the outlines have developed in ele­
mentary particle physics for the construction of a uni­
fied renormalizable theory of electromagnetic, weak, 
and strong interactions. Significant successes have 
been achieved in the unification of electromagnetic and 
weak interactions (see, for example, [1,2J). The most 
attractive feature of these models-the renormalizabil­
ity-is achieved by the high degree of symmetry of the 
original Lagrangians, which contain massless gauge 
fields and fermion fields. The masses of particles in 
modern models of unified field theory arise through the 
mechanism of spontaneous symmetry breaking. In the 
majority of models, the symmetry breaking is achieved 
by introducing scalar fields cp with nonzero vacuum ex­
pectation value, (cp) '* O. Particles which interact with 
the scalar field acquire a mass proportional to (cp). 

In the models of unified field theory, particles propa­
gate and are s.cattered on the background of the nonzero 
amplitude of the classical scalar field, which in this 
sense is a vacuum that cannot be observed in'the ab­
sence of gravitation. In the theory of gravitation, a 
classical scalar field with nonzero energy density is a 
source of the gravitational field. The possibility of a 
nonzero vacuum energy density can be taken into ac­
count in Einstein's equations in the for·m of a A term 
added to the energy-momentum tensor of the matter. 

When one is considering the evolution of a hot, 
charge-asymmetric universe, in which the particle 
masses and the vacuum energy density are determined 
by the expectation value of the scalar field, it must be 
remembered that this last depends on the temperature[3] 
and the density of the fermion charge. [4J At a tempera­
ture comparable with the mass of the scalar particles, 
there is intensive production from the vacuum of quanta 
of the scalar field, which leads to a dependence of the 
expectation value of the scalar field, and with it the 
masses of the observed particles, on the temperature. 
Therefore, in models of unified field theory with spon­
taneous symmetry breaking there is a critical tempera­
ture (in Weinberg's model -102 GeV) at which sym­
metry is established: (cp) =0 (see[3J). 

The possibility of a phase transition with respect to 
the temperature to a state with broken symmetry during 
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the early stages in the expansion of a hot universe was 
first considered by Kirzhnits and Linde. [3, 5J Linde[6J 
investigated the time evolution of the cosmological "con­
stant" A in Einstein's equations due to the temperature 
dependence of the energy denSity of the scalar field. 
In[4J Linde and Lebedev showed that in models of unified 
field theory in which massless fermions (neutrinos) in­
teract with a gauge field, which acquires mass through 
the spontaneous symmetry breaking, the expectation 
value of the scalar field increases monotonically with 
increasing denSity of the fermion charge. ThUS, during 
the early stages in the evolution of the universe two 
processes can compete: symmetry breaking with in­
creaSing density and restoration of symmetry with in­
creasing temperature. 

It is therefore of interest to consider the self-consis­
tent variation with time of the radius of curvature of a 
charge-asymmetric hot universe and the expectation 
value of the scalar field (and with it, the masses of the 
elementary particles). 

In writing down the Lagrangian of the scalar field in 
general relativity, we shall require the equations of 
motion to be conformally invariant in the limit of van­
ishing unrenormalized mass. This is achieved by add­
ing to the Lagrangian the term Rcpcp+/6, where R is the 
scalar curvature. [7J The energy-momentum tensor cor­
responding to such a Lagrangian has a number of im­
portant advantages. [7, 8J 

We shall show that the properties of the matter near 
the cosmological singularity depend strongly on the ratio 
of the density of the neutrino excess in the universe 
(the difference between the numbers of neutrinos and 
antineutrinos) to the density fly of y rays. In particular, 
if this ratio has a large value, there is no phase transi­
tion with respect to the temperature. [3J In this case, 
the masses of the elementary particles near the cos­
mological singularity (at the Planck time til "iG) ex­
ceed their modern values by the factor (GF /G)1/2_1016 
(GF is the constant of the weak interaction). 

In Sees. II-III, we consider the evolution of the uni­
verse in the simplest field-theoretical scheme with 
spontaneous symmetry breaking-the Higgs model con-
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taining the minimal number of different particle species: 
scalar mesons, massless fermions (neutrinos), and 
vector fields. The effects due to the presence of mas­
sive fermions (leptons and hadrons) do not, as regards 
the evolution of the hot universe, significantly alter the 
conclusions of the simplest scheme, and they are con­
sidered in the Appendix, in which the behavior of Wein­
berg's SU(2) ® U(1) model with the inclusion of hadrons 
in the limit of a high density of the fermion excess is 
considered. 

I. EVOLUTION OF A COLD, CHARGE·ASYMMETRIC 
UNIVERSE 

1. Spontaneous symmetry breaking and general 
relativity 

We consider the simplest scheme of a model of uni­
fied field theory describing the gauge-invariant interac­
tion of the vector field AI' with a complex scalar field 
cp =pexp(ix) and a massless fermion neutrino field </I. 
The corresponding Lagrangian has the form 

L = -~F,,,' + g"'(D"q:)+(D,rp)+~q:q:+ - C(q:q:+) + g"'¢i1.D.¢. 
'f 6 

(1.1) 
where Fj£v = aj£AV - avAj£' Dj£ =V I' - igAj£' gj£V is the sym­
metric metric tensor, R is the scalar curvature: R 
=gj£VRj£v (Rj£V is the Ricci tensor), and VI' is the covari­
ant derivative. We take the function U(cpcp+) in the stan­
dard form 

(I. 2) 

In the absence of a fermion current, the field cp in 
flat space has the anomalous vacuum expectation value 

p,'=!J.'/2'.. (I. 3) 

The masses of the scalar and the vector field are 

Note that in field-theory models, the choice of the 
last term in the expression (I. 2) is arbitrary. When 
gravitation is included, the corresponding choice fixes 
the zero point for measuring the gravitational energy of 
the vacuum (in this connection see[S,9]). We choose the 
constant term in (I. 2) in such a way that the vacuum en­
ergy is zero in flat space. That this energy is small 
follows from the experimental restrictions on the value 
of the cosmological constant A (see, for example, [10]). 

The introduction into the Lagrangian (1.1) of the term 
Rcpcp+/6 ensures conformal invariance of the theory in 
the limit IJ.- O. The equations of motion of the scalar 
and vector fields corresponding to the Lagrangian (I. 1) 
have the form 

(I. 5) 

F'::=glW (2gp'V,-g;h,~·). (I. 6) 

where V I' '" a I' X - gA I' is a gauge-invariant combination 
of fields. The covariant differentiation (1.6) gives a 
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law of conservation of the current on the right-hand 
side of this equation. 

To derive the equations of gravitation, we use the 
principle of least action. We choose the action in the 
standard form 

s = S d'xl- ·H[ + L -RI16:tG}. (1.7) 

where /:;. = detg j£V' L corresponds to (1.1), i is the La­
grangian of the fields that are not included in (1.1) and 
do not interact with the scalar field and the massive 
vector field. Varying (1.7) with respect to g j£V' we find 

(I. 8) 

where OJ£V is the modified energy-momentum tensor 

(1.9) 

where T j£V and T j£V are the standard energy-momentum 
tensors of the fields calculated from the Lagrangians 
i and L, respectively, without allowance for the term 
Rcpcp· 16 in (1.1). 

The equations of gravitation in the form (I. 8) were 
derived for the first time in[S]. In the same paper, it 
was shown that the energy-momentum tensor modified 
by the addition of the last term in (I. 9) has finite matrix 
elements in all orders of renormalizable perturbation 
theory in g and A. Note (see[S] for more details) that 
this modification of the Einstein equations does not lead 
to consequences that contradict experiments. 

We shall assume that the matter described by the en­
ergy-momentum tensor T j£V has the equation of state 
p = e/3, and therefore the only constant dimensional pa­
rameters of the theory are IJ. and C. In this case, con­
traction of (1.9) in conjunction with use of the equations 
of motion of the fields gives a simple expression for the 
scalar curvature: 

(1.10) 

Substitution of (1.10) into Eq. (I. 5) redefines the con­
stant of the self-interaction of the scalar fieW (cf. [8]): 

(1.11) 

Since 1J.2/A - C-J in models of unified field theory, [11] it 
is easy to see ·that (A - A')/A- clcF _10-23. Therefore, 
the inclusion of the term Rcpcp+ 16 into the Lagrangian of 
the scalar field modifies the equations of gravitation but 
hardly affects the equations of motion. 

2. Friedmann universe with spontaneous symmetry 
breaking 

In what follows, we shall consider the evolution of a 
homogeneous and isotropic charge-asymmetric Fried­
mann universe with the metric 

ds'=dt'-a'(t) dl', (1.12) 
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where a(t) is the radius of curvature of the universe, 
and we shall assume that the main excess of fermion 
charge is in the neutrinos. In such a universe, there 
is a nonzero density of the charge Jo interacting with 
the field A 1" 

(I. 13) 

where n.. is the density of the neutrino-antineutrino ex­
cess. In a homogeneous and isotropic universe, only 
the classical parts of the fields p(t) and Vo(t) can be non­
zero in accordance with Eqs. (1.5) and (I. 6). 

In this case, we obtain from (I. 6) 

(1.14) 

where J~V) is the charge whose existence is due to the 
nonzero amplitude of the scalar field: 

(I. 15) 

In other words, . in the model of unified field theory the 
weak charge Jo (in our case it is proportional to the 
fermion charge) induces in the scalar vacuum a charge 
equal to it in magnitude but opposite in sign. [4) 

The energy density e of the matter can be found by 
averaging eg with respect to the ground state with nv 
= (¢*¢) *0 (in this connection, see[12). With allowance 
for the equations of motion (I. 5) and (1.6) and the rela­
tion (1.14), E takes the form 

. a. nv2 3 I tIl 
S = ~+ p' + 2-PI' + U(p')+-+-(6n') "n 

a 4p' 4 ' , (1.16) 

where f = erg). The last term in this expression corre­
sponds to the energy of the degenerate neutrino gas. 
The term 

(1.17) 

is the energy of the effective interaction of the fermions 
through the massive gauge field. Such an interaction 
was considered for the first time by Zel'dovich[13) (see 
also(12 ), who assumed that the mass of the vector field 
mA is constant, and then Ueff =g2n~/2mi. In models of 
unified field theory, mA depends on the expectation val­
ue of the scalar field, which, in its turn, is a function 
of nv, and therefore the dependence Ueff(nv) in the model 
we consider is more complicated than n~. 

In a closed model of the universe (with volume 
27T 2a3 (t)) nv =Nv/27T 2a3, where Nv is the difference be­
tween the total number of neutrinos and antineutrinos. 
In an open universe nv =Aa-3; the constant A, however, 
in this case does not have such a clear physical mean­
ing as for the closed model, and in what follows we 
shall therefore consider a closed model of the universe 
for convenience. We shall see that all results for phys­
ical quantities depend only on the densities of the 
charges, and are therefore valid for a model of any 
type. 

The equation that describes the variation with time 

437 Sov. Phys. JETP, Vol. 44, No.3, September 1976 

of the radius of curvature of the Friedmann universe 
has in accordance with (I. 8) and (1.16) 

(1.18) 

Averaging the equation of motion (I. 5) with respect to 
the ground state and using (I. 10) and (1.14), we find 

"+3 Ii . + 1 as_ o P -P --- . 
a 2 Op 

(1.19) 

The system of equations (1.18) and (1.19) describes the 
self-consistent variation with time of the radius of 
curvature a (t) of the universe and the expectation value 
of the scalar field p(t). 

It is easy to see that in a charge-symmetric cold uni­
verse (Nv =0) the anomalous expectation value (and 
therefore the masses of the fields) does not depend on 
the time, p = Po. The presence of an uncompensated 
number of neutrinos in the universe necessarily leads to 
a time dependence of the expectation value of the scalar 
field. 

Near the cosmological singularity, when 

(I. 20) 

where n~m) and am are the contemporary neutrino density 
and radius of curvature, Eqs. (1.18) and (1.19) describe 
solutions with p» Po. Note that for values of ;\ which do 
not contradict experiment (;\ > 10-6; see(14 ) and also(5 ), 

in which the restriction ;\ > 10-3 is found) and all plausi­
ble n.. the inequality ao« am holds. 

In the limit p» Po, when we can set jJ. = 0 in the equa­
tions, the equation of motion (1.19) for the expectation 
value of the scalar field becomes scale invariant. 
Therefore, for the early stage in the evolution of the 
universe (a« ao) there exists an exact solution of the 
system (1.18) and (1.19): 

~ = (+.)"'( !~ )""{ 1+ (6~,)'1 "'N;", 

(I. 21) 

(1.22) 

where 1, =.fG is the characteristic gravitational length 
(t, = l,). In Eq. (I. 22), we have ignored the contribution 
of e to the matter energy. Allowance for this energy 
merely changes the numerical coefficient in the curly 
brackets. 

Note that for the scale-invariant solution (1.21) the 
equation of gravitation (I. 18) takes the customary form 

( Ii )'_ 8nG 
-;;- - -3 - Eo, (I. 23) 

where EO is the matter energy density, not including the 
kinetic term (Eo = 10 - ii - 2(a/a)pp). It is also easy to 
see that for a - t 1/2 (I. 22) the sum of the time derivatives 
in (1.19) is zero. Thus, inclusion of the term RCPCP+ /6 
in the Lagrangian (I. 1) leads to a negligibly small con­
tribution of the time derivatives of the classical part of 
the scalar field, both in the Einstein equations (1.18) and 
in the equation of motion (1.19). 
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For A =0, Eq. (L 22) describes the ordinary Fried­
mann evolution of a universe filled with a degenerate 
Fermi gas of neutrinos. Note that for A < 1 the sponta­
neous symmetry breaking realized by the scalar fields 
does not lead to a significant change in the Hubble con­
stant. 

For a »ao, the treatment of the homogeneous classi­
cal fields p(ny ) is hardly valid. Therefore, all the re­
sults of the paper refer to the hadron stage in the evolu­
tion of the universe. From a certain mass on, the char­
acteristic neutrino density depends strongly on the ra­
dius of curvature of space: ny - C-;/2 _1048 cm-3 (see[4l). 

3. Production of particles and the equation of state of 
matter in unified field theory near the cosmological 
singularity 

We now consider small deviations of the amplitudes of 
the scalar and vector fields from their mean values: 

<p=p+ (qll+i<p,)/l'2, ('1',)=('1',)=0, (I. 24) 

(I. 25) 

The massive fields CP1 and alJ. are observable excitations 
of quasiparticle type. In vacuum, the masses of the 
fields CP1 and alJ. are determined by the expressions (1.4). 
In the presence of an uncompensated fermion charge, 
the fields CP1 and alJ. begin to interact not only with the 
classical scalar field but also with the classical part of 
the vector field. In this case (as in the absence of fer­
mion charge) the masses of the fields can be found by 
linearizing the equations of motion: 

(I. 26) 

In the region of small radii (1.20), the masses of the 
quasiparticles decrease monotonically (_a-1) to their 
vacuum values as the universe expands. 

We emphasize that these results apply to a cold uni­
verse. In a hot universe, there may be a phase transi­
tion, [3l at which the mass of the vector field becomes 
zero, near the cosmological singularity. As will be 
shown below, the dependence (1.26) also remains valid 
in a hot universe if there is a sufficiently large neu­
trino excess. 

Note that in the region (I. 20) the only dimensional 
parameter in the model of unified field theory is the 
gravitational length 19 =.fG, and therefore a rapid varia­
tion of the masses of the elementary particles (- a-1) 

near the cosmological singularity can be "observed" 
only in gravitational effects. 

An important influence on the evolution of the universe 
(and, in particular, on the equation of state of the mat­
ter near the cosmological Singularity) may be exerted 
by particle creation by the gravitational field (see, for 
example, [16l). In our model however, particle creation 
effects are almost completely absent because of the con­
formal invariance of the equations of motion during the 
early stage of evolution (in this connection, seeC17l). 
More precisely, the creation of particles by the metric 
is suppressed by the smallness of C 1J.2. Let us illus-
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trate this for the example of scalar particles with mass 
(1.26), which are described in the Friedmann metric by 
the equation 

(I. 27) 

We make a conformal transformation of the Friedmann 
metric to the Minkowski metric: 

and, transforming the fields simultaneously in accor­
dance with 

<p-+ijj=alP 

we rewrite (I. 27) in the form 

(I. 28) 

This equation describes the propagation of scalar par­
ticles with constant mass in a pseudo-Euclidean space 
with a time-independent amplitude of the new expecta­
tion value p = PcPo of the scalar field. In this case, par­
ticles are not created. Therefore, particles described 
by Eq. (1.27) are not created either in the real Fried­
mann universe whose conformal image is pseudo-Euclid­
ean space. The above arguments are valid of course 
not only for the linearized equation but also for the 
complete equation (1.19) when the unrenormalized mass 
IJ. is i.g1lored. 

The equation of state of fermions interacting through 
a massive vector field was considered for the first time 
by Zel'dovich. [13l At high densities, the repulsion of 
fermions with energy Ueff - n2 1m A (n is the fermion den­
sity) leads for mA = const to the hardest equation of state 
possible: P = E (seeC13l). It is easy to see that in our 
model Ueu (I. 17) is suppressed by the growth of the 
mass of the vector field, mA - p-a-t, and does not ex­
ceed the kinetic energy of the fermions (_a-4). There­
fore, in the models of unified field theory, when the 
mass of the vector field is acquired through interaction 
with the scalar field, the maximally hard equation of 
state is not realized for any fermion densities. 

By means of (I. 9) and the equations of motion, we 
find 

e.~-3P=-21-12p'. (1.29) 

Near the singularity, when e-a-4, p-a-t, the equation 
of state for the matter has the form P = e/3. 

II. EVOLUTION OF CHARGE-ASYMMETRIC MATTER 
IN A HOT UNIVERSE 

1. Applicability of the thermodynamic approach 

Hitherto, we have considered a universe populated 
only by excess neutrinos at T =0. The presence of y 
rays capable of producing pairs of particles of various 
species can appreciably alter the results of the preced­
ing section. We restrict our treatment to a universe 
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with a minimal number of particle species: scalar cp 
mesons, massive AIL and massless (y rays) vector par­
ticles, and massless fermions (neutrinos). Such a 
model, which reflects the main features of models of 
unified field theory, enables one to draw qualitative con­
clusions about the evolution of a universe with sponta­
neous symmetry breaking of the vacuum. 1) 

At a high temperature, the production of scalar and 
massive vector particles reduces the expectation value 
of the scalar field. In the absence of a fermion excess, 
there exists a critical temperature above which the 
symmetry of the vacuum is restored. C3l In a charge­
asymmetric universe, the situation is complicated by 
the competition between two mechanisms-the reduction 
of the expectation value of the scalar field with increas­
ing T and its increase with increasing density of fer­
mion excess. 

It is well known (see, for example, C18l) that in ther­
modynamic equilibrium the temperature can be uniquely 
expressed in terms of the density ny of the y rays: 

(II. 1) 

where the constant Ny for a closed model is the total 
number of y rays and !;(x) is the zeta function. During 
the expansion of the universe from the cosmological 
singularity, the number Ny is not constant. As the tem­
perature cools to T i < m i (m i is the mass of the particles 
of species i), this number rapidly increases by an 
amount of the order of itself because of the annihilation 
of pairs of particles of species i right down to the ex­
ponentially small "freezing" density. This last is the 
density at which the distance between particles in the 
expanding universe increases faster than collisions oc­
cur (seeC16l for more details). For constant masses, 
during the period of evolution when T (t) - m j, the vari­
ous particle species are not in thermodynamic equilib­
rium. Their entropy changes because of the . change in 
the total number of particles of given species. 2) In the 
model we consider, when the particle masses depend on 
the time, the thermodynamic approach can also be valid 
when T-mj because of the constancy of the ratio mi(t)/ 
T(t) (see (1.26) and (1.1». . 

If the total entropy of the universe is constant during 
evolution, the number 

(11.2) 

where Ni is the number of particle pairs of species i, 
remains unchanged. Therefore, at a definite stage of 
evolution Ny can be assumed constant if the N j ' s are 
constant during this stage. Taking as an example the 
total number of massive vector particles, we have 

, 'J 3d'p { 8 .. (p) }-' N .. = 211 a -- exp -- - 1 
(211)' T ' 

(11.3) 

By means of (11.1), we find from this expression 
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N = 3/(KA ) N 
A 4~(3) T, 

I(KA )= J dxx'{exp(x'+KA')'-1}-" 

o UL4) 
KA==mA(a)/T(a). 

We see that the number of y rays may be assumed con­
stant for T» m i and for m j - a-1 • During the late stage 
of evolution (as T-O), when virtually all pairs have 
been annihilated, N becomes equal to the contemporary 
number of y rays. 

In what follows, we shall assume that Ny does not de­
pend on the time, but we remember that in reality Ny 
in (11.1) is a step function whose values are almost al­
ways constant but different in different stages of evolu­
tion of the universe. 

As we saw in our treatment of the cold universe, the 
masses of the scalar and vector mesons increase un­
boundedly as the cosmological singularity is approached. 
Because of the scale invariance of the equations of mo­
tion of the particles during the early stages of evolution, 
their interaction cross sections are proportional to (j 
- m-2(a) and they tend to zero as a - O. In this connec­
tion, we may expect that the heavy particles are not in 
thermodynamic equilibrium as the universe emerges 
from the cosmological Singularity. Therefore, the 
methods of quantum statistics (which, in particular, en­
able one to speak about the dependence m (a)) do not be­
come applicable immediately after the emergence from 
the singularity. 

With the expansion of the universe and the increase 
in the cross sections (proportional to a2 ) there comes a 
time t s at which thermodynamic equilibrium is estab­
lished. Leaving aside for one moment the question of 
the symmetry of the vacuum for t>ts, let us estimate 
when this time occurs. Thermodynamic equilibrium 
begins when the cosmological time t exceeds the mean 
free time T of the particles: 

t>-r:=1/on, (II. 5) 

where n is the equilibrium density of heavy particles, 

n= (gj211') T'/(K), (II. 6) 

and g s is the number of degrees of freedom of the field 
which describes the given species of particles. Using 
the expressions (I. 22), (I. 26), and (11.1), we find for 
scalar mesons3) 

K,= l'Z:"'1-'!'[2~ (3)'}.l\',/N..l '!'. 

(11.7) 

(II. 8) 

For A -10-3 and Ko -10, which corresponds to the maxi­
mal possible value of the ratio N./Ny that does not con­
tradict experiments (see below), we have 

ts~ 10" tg• (II. 9) 

It follows from the above expressions that for matter 
with low specific entropy (N.» Ny) the applicability of 
the thermodynamic approach (t> t s) begins much later 
than tg • Note that this restriction on the applicability 
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r =0 

FIG. 1. 

+ C1 =0 

f 

of the thermodynamic description from below (and not 
above, as in calculations in the framework of traditional 
schemes; see, for example, U6]) is due to the rapid de­
crease in the cross sections for interactions of particles 
(<1- t) as tc is approached. Note that much more strin­
gent restrictions on the applicability of the thermody­
namic description of the evolution of the universe in 
models of unified field theory arise in homogeneous 
anisotropic metrics. For example, for the Kasner so­
lution, 

(II. 10) 

where 80 is the characteristic isotropization time. For 
the values 80 $1 sec and Ko < 10, which do not contradict 
experiment, we find 

t,";10" tg• (II. 11) 

For Ko> 1, the applicability of the thermodynamic 
treatment is restricted to the region of times (t > t s) in 
which the time derivatives in the equation of motion 
(1.19) are small compared with the other terms. In­
deed, it is easy to see that the terms with derivatives 
(- ["5/2) become less than the remaining terms (_ ["3/2) 

at the time t~·,\ -213t, < t s for Ko> 1. 

In what follows, in our examination of the evolution 
of a hot universe we shall ignore the time derivatives 
of the classical fields. In this case, the determination 
of the Gibbs expectation of the scalar field reduces to 
finding the minimum of the thermodynamic potential O. 
The explicit expression for 0 also enables one to find 
the effective masses of the particles and determine the 
energy of the matter which occurs on the right-hand 
side of the evolution equation (1.18). 

2. Phase transition in a hot, charge-asymmetric 
universe 

At a nonzero temperature, the density of the thermo­
dynamiC potential of a system including a scalar and a 
massive vector field and also y rays and neutrinos has 
the form. 

- ;~, J dx x'{ In [ 1 + exp ( - x + ; )] + In [ 1+ exp ( - x -; ) n, 
(II. 12) 

where 0. is the thermodynamic potential of the interact­
ing fields cp and A ", and TJ is the chemical potential of 
the neutrinos determined from the condition of constan­
cy of the fermion excess 
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N. = 4~~;) j dx x'{ [ exp ( x - ; ) + 1] -1- [ exp ( x + ~ ). + t ] -I} 
o 

(II. 13) 
(we have borne in mind that the temperature is related 
uniquely to the y density by (11.1». 

The matter energy density in the gravitational equa­
tion (1.18) is determined from 0 in the standard manner; 

aQ iiQ 
e=Q-T--tj-

aT all' 
(II. 14) 

The potential 0. for neutral matter was calculated 
inL20,21l. In gauge theories, the final expression for 0. 
depends on the choice of the gauge. As was shown ear­
lier, L20,22] the correct expression for the thermody­
namic potential is obtained in renormalizable gauges 
that contain only physical particles. 

Near the phase transition, the masses of the elemen­
tary excitations are small compared with their values 
at T =0 and at the transition point T = To they vanish. L3] 

In the limit of small deviations K; =m;!T, the equations 
for the expectation values of the fields; 

aQlap=O, aQlaAo=O (II. 15) 

do not depend on the choice of the gauge for certain re­
normalizable types of gauges (Feynman, Coulomb, and 
a number of others). .. 

In the single-loop approximation, Eqs. (II. 15) graph­
ically have the form shown in Fig. 1. The solid and the 
dashed lines correspond to the components of the scalar 
field CPI and CP2 (I. 24), and the wavy line to the vector 
field a" (I. 25). As has been shown by one of the authors 
(A. L.; detailed calculations will be published else­
where), calculation of the diagrams under the assump­
tion4) g4«,\ and T« 1 gives 

(II. 16) 

'A(' T2) 2g 0 P +-- + gn.=O. 
12 

(II. 17) 

where To is the temperature of the phase transition of 
the second kind to charge-symmetric matterLZO,2I,23]; 

To'=12~'1 (3g'+4J.). (II. 18) 

If nv *0, the phase transition temperature Tc is de­
termined in accordance with (II. 16) and (II. 17) by 

T/[ (To'ITo') -11 =36n;/Il'. (II. 19) 

With allowance for (11.1), Eq. (11.19) can be written in 
the form 

T. -'=To -'- [ 12~ (3) In'1l1' (n.ln,) '. (II. 20) 

We see that in a charge-asymmetric universe, there 
exists a maximal ratio Q=nv/ny at which a phase tran­
sition is still possible; 

(X,=n' (3g'+4J.) '''/24·3'''~ (3). (II. 21) 
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FIG. 2. 

The dependence of the expectation value of the scalar 
field on the radius of curvature of the universe for dif­
ferent values of 01. is shown in Fig. 2. The dashed 
curves in Fig. 2 correspond to the cases of cold charge­
asymmetric model (01. =00) and a hot universe filled with 
neutral matter (01. = 0). The masses of the particles are 
nonzero in the region p '* 0 and repeat the profile of the 
curves for the expectation value of the scalar field. 

For 01.> Ole, when a phase transition does not occur, 
the expectation value of the scalar field in the limit of 
small radii (a« ae, where ae =a(Te); see (11.1» de­
creases monotonically with the expansion of the uni­
verse, p - a-1 • In this case, the evolution of the uni­
verse is qualitatively similar to the case T =0 consid­
ered earlier. In accordance with (11.16) and (11.17), 
the dependence p(a) in the limit of small a and 01. > Ole 
has the form 

(II. 22) 

where f3 is a positive root of the equation 

{ +(~) 'I. (~) "'}'{ + (3g'+4A)'" (~) 'I'}= 
~ 3g'+4A a ~ (21..)'/, a 1. (II. 23) 

Equations (11.16) and (11.17) are qualitatively correct 
if the parameters K j =m;/T are small. Using the ex­
plicit expressions for the masses and the expressions 
(11.1) and (11.22), we find that the applicability of Eqs. 
(II. 16) and (II. 23) is restricted to the ;region of 01. values 

a<a,-aJA.(3g'+4A.) . (II. 24) 

For 01.» Olb' the temperature corrections to the expres­
sions obtained for T = 0 are always small. 

In connection with the existence of a critical neutrino 
density above which a phase transition does not occur, 
it is of interest to estimate the contemporary value of 
Olo-the ratio of the neutrino density to the y density. 
We point out immediately that a small value of 01.0 com­
pared with Ole (n. 21) does not by itself indicate that there 
was a phase transition to a hadronic era of evolution. 
As was pOinted out above, the contemporary number of 
y's may be appreciably greater than the number during 
the early stages of evolution, when pairs of different 
species of massive particles were excited. Allowance 
for these particles can however appreciably change the 
temperature of the phase transition and thus increase 
the value of Qle (II. 21). Although these effects, which 
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work in different directions, increase the accuracy of 
our treatment insofar as certain particle species have 
been ignored, they do not permit us to make a unique 
estimate for the critical ratio njny • 

At the present time, there are not sufficiently accu­
rate experimental data on the value of Qlo. The main 
restriction on the density of the neutrino-antineutrino 
excess is given by the measured rate of expansion of 
the universe (the Hubble constant)5): 01.0 < 105• A more 
stringent restriction follows from the assumption that 
an appreciable fraction of the He4 observed in the uni­
verse has a primordial origin. In this case, Qlo < 10 
(see, for example[161, in which restrictions on the ex­
cess of both electronic and muonic neutrinos is found). 

In our simple model for A-g 2 -0.1, the critical ratio 
njny at which a phase transition does not yet occur is in 
order of magnitude 0.1. Therefore, the existing re­
strictions on the contemporary value of 01.0 do not enable 
us to establish uniquely whether there was a phase tran­
sition during an early stage of the evolution. In this 
connection, a more accurate experimental value for the 
lepton charge of the universe would be of great interest 
for the reconstruction of the main stages of evolution to 
the hadronic era. 

The large masses of the elementary particles during 
the early stages in the expansion of the universe could 
lead to new consequences for the abundances of massive 
primordial particles, in particular, free stable quarks. 
In the absence of a phase transition, the ratio 

m.,lT""K,- (h,lA.'I.) (n.ln,) 'I, (II. 25) 

(m. is the quark mass, m. =h.p) for quarks interacting 
with the scalar field (with constant h.) in the region 
(I. 20) does not depend on the time. Using Eqs. (II.1) 
and (11.6), we can readily find that in this region the 
ratio of the quark density n. to the y density for K.» 1 
is in order of magnitude 

(II. 26) 

If at the time the universe left the region (1.20) the 
number of quarks in accordance with (11.26) was small 
compared with the "freezing" density, [16] then Eq. 
(11.26) in the presence of thermodynamic equilibrium 
determines the abundance of quarks not only during 
early but also late stages in the expansion of the uni­
verse. The traditional hot universe model predicts a 
relative abundance of stable primordial quarks equal to 
n./ny _10-19, which appreciably exceeds the experimen­
tal bounds. [26] 

In our model, a small abundance (which does not con­
tradict experiment) of quarks is obtained for large val­
ues of K. (K.» 10). By virtue of the existing restric­
tions on the ratio njny (see above) large values in ac­
cordance with (II. 25) are possible however only if there 
is a strong interaction between the quarks and the sca­
lar field (h. > 10). 

We are aware that this model may be far from the 
definitive version of a model of unified field theory. 
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However, if the main features of models with sponta­
neous symmetry breaking are preserved in the defini­
tive model, our conclusions will be qualitatively cor­
rect. During the evolution of the universe, two mech­
anisms will compete: symmetry breaking with increase 
in the density of the fermion charge and restoration of 
symmetry through the variation of the temperature. 

We are grateful to A. I. Akhiezer, D. V. Volkov, 
Ya. B. Zel'dovich, R. E. Kallosh, D. A. Kirzhnits, 
L. B. Okun', V. M. Pyzh, and P. I. Fomin for numer­
ous discussions and helpful advice. 

APPENDIX 

In unified models of weak and electromagnetic inter­
actions there are, in addition to massless n!,!utrinos, 
massive fermions-Ieptons and hadrons. During the 
early stages in the expansion of the universe, the num­
ber of neutrinos is not conserved because of 11= e tran­
sitions in the reactions lin - pe. The total lepton, L, 
and baryon B, charges are conserved. We shall also 
assume electrical neutrality of the universe. Since a 
weak charge Jo of fermions interacting with a neutral 
vector field Z II- cannot be constructed from conserved 
charges, it must be found from a condition of minimum 
of the thermodynamic potential. Thus, in thermody­
namic equilibrium, the ratio of the number of leptons 
and hadrons with different helicity for given L and B is 
determined. We consider Weinberg's SU(2) ® U(I) mod­
elC1l ) with the inclusion of hadrons. (24) For such a mod­
el, in the limit of a high density of fermions at T =0, 
the effective potential of the electrically neutral matter 
in the quasiclassical approximation in the unitary gauge 
has the form 

k(i) 

+" f ~ (k' + hB'p')'/' 
B~ n ~ (2n)3 ' 

(A. 1) 

j=I,1' 

where g , / g = tan Ow, Ow is Weinberg's mixing angle, 
hL.BP are the masses of the leptons and hadrons (hy=O, 
hI> = hn = h), the indices 1 and r are appended to fermions 
with helicity 'f 1; k<£/B are the Fermi momenta of the 
degenerate leptons and hadrons with different helicity: 

(A.2) 

where n¥,)B are their densities. The neutral weak charge 
of the fermions is determined by the expression 

'2 2 ? '2 

J ("+ "".{ ("+ g -g [(" ("]+ -g [(" ("]} 0= g g)' nv-nn g'2+g:! lle -np g'2+gZ tie -np 

(A.3) 
The first four terms in (A. 1) correspond to the effec­

tive potential in the tree approximation; the last terms 
are the energy density of the degenerate gas of left- and 
right-handed fermions. Note that in the presence of a 
P-parity breaking interaction of fermions with the mas­
sive gauge field Z II- the Fermi surfaces of particles with 
different helicity do not coincide. In the equilibrium 
state, their densities can be found from the condition of 
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the minimum of n under additional conditions: electri­
cal neutrality 

(A.4) 

conservation of the lepton charge: 

(A.5) 

and conservation of the baryon charge: 

(A.6) 

Varying n with respect to all independent variables, 
we readily obtain a system of six equations that, in 
conjunction with (A. 4)-(A. 6), determine the dependence 
of p, Zo, and n¥.lB on L and B. The investigation of this 
system shows that in the case of compression of matter 
with lepton-hadron ratio in the interval 

(A.7) 

there exists a critical density above which symmetry of 
the vacuum is restored. (Note that the numerical coef­
ficient ~ in (A. 7) is due to the particular way in which 
the weak interaction of hadrons is taken into account.[24l) 

If the opposite inequality holds, a phase transition 
does not occur in cold matter. In the limit of a high 
density of fermions, n» (1J./h)3, the expectation value of 
the scalar field increases monotonically with increasing 
density. For a universe with large neutrino excess, 
L '" ny» B, the form of the dependence p(ny ) agrees with 
the result of the simple model investigated in detail in 
the paper. 

OWe do not consider here the Hagedorn model with infinite 
number of particle species, which encounters a number of 
serious objections. 1191 However, the qualitative results re­
main the same in the Hagedorn model. (251 

2lThroughout the present paper we assume that in the absence 
of particle creation effects by the gravitational field the total 
entropy of the universe is conserved. This is the case if 
matter viscosity can be ignored. 

3lBecause of the existing restrictions on the constants A and g, 
the analogous time for vector mesons does not differ sig­
nificantly from ts. 

4lIn this case the phase transition is of the second kind. Note 
also that when g4 >A the quantum corrections to the effective 
potential lead to instability of the vacuum with (cp) =0 (seeI15 !). 

5)The presence of a degenerate neutrino gas with such a density 
may explain the difference between the mass of the universe 
determined from the Hubllle constant and from the mean 
density of baryons in the universe. 
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For nonabelian gauge theories with the Higgs mechanism of mass generation the scattering amplitudes 
have been calculated in the muitiregge kinematics in the leading logarithmic approximation. The 
reggeization of the vector particle is proved in this approximation. 

PACS numbers: 1J.JO.Np, 1J.60.+c, IJ.80.Cr 

1. INTRODUCTION 

The hypothesis that all observed hadrons are reggeons 
turned out to be so fruitful that it gave the possibility of 
constructing a phenomenological theory of hadron inter­
actions at high energies, based on Gribov's reggeon 
diagram technique. [11 Testing this theory in the frame­
work of a local field theory presents great interest. As 
is known, in an abelian gauge theory-quantum electro­
dynamics (QED)-the spinor particle reggeizes, [2l but 
the vector particle remains elementary. [3l More real­
istic models for the strong interactions will probably 
be based on nonabelian gauge theories with Yang-Mills 
vector mesons. [4] In such theories the interaction van­
ishes at small distances, so that in distinction from 
QED[Sl they exhibit approximate scale-invariance. [6l 

Moreover, the Higgs mechanism[7l allows the vector 
mesons in nonabelian gauge theories to acquire a mass 
without destroying the renormalizability of the theory.[al 
In a spontaneously broken theory which arises in this 
manner the necessary conditions for the reggeization of 
the vector meson are satisfied. [9l One of the authors 
has shown by direct calculation of the scattering ampli­
tudes to sixth order of perturbation theory that for the 
gauge group SU(2) the reggeization of the vector meson 
does indeed take place. [10l Later this result was gen-
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eralized to other models. [l1l In our preceding short 
note, based on calculations up to eighth order of per­
turbation theory, we have shown that the hypothesis of 
reggeization to any order is self-consistent and have 
also determined the form of the Pomeranchuk singu­
larity. [12l 

In the present paper we give the details of these cal­
culations to eighth order for the group SU(2). Our com­
putation method which is based on the dispersion theory 
approach, also allows one to obtain the inelastic ampli­
tudes in the multiregge kinematics (Eq. (55)). Making 
use of the expression (55) for these amplitudes we ob­
tain an equation of the Bethe-Salpeter type for the 2 - 2 
partial wave amplitudes with isospins T =0, 1, 2 in the 
t-channel, Eq. (64). The solution of the equation with 
T = 1 is the Hegge pole (66). The Appendix contains a 
generalization of these results to the group SU(N). 

2. THE MODEL AND THE RESULTS OF 
CALCULATIONS OF THE TWO-PARTICLE 
AMPLITUDES IN LOWEST ORDERS 

Following[l0l, we consider the simplest nonabelian 
gauge theory whose Lagrangian, after spontaneous sym­
metry breaking and removal of the unphysical degrees 
of freedom by means of a gauge transformation has the 
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