
~T =N-2 T • 
I}~ R 2nl R, 

(14) 

I} N-1 
-lnZM=---T 
I}~ 4nl R. 

(15) 

These equations are easily solved, and we find 

[ N - 2 R ] (K-I)/2(N_" 

Z,,= 1---Tln-
2nl a ' 

(16) 

where Z M is the renormalization factor for the magnetic 
moment. 

The solution of Eq. (14) is the renormalized tempera­
ture (7). With logarithmic accuracy, we can substitute 
Re in place of R in (7) and (16). It can be seen from (10) 
that in the renormalizations the magnetic moment is 
renormalized multiplicatively, i. e., MIl. = zilM. The 
renormalized moment MII.e = 1, and therefore 

M=ZM(RJa). 

We shall explain the equality MII.e = 1. The integrations 
carried out above can be imagined as amalgamating 
groups of spins into effective spins. It is clear that the 
effective spin of a region with characteristic size of 
the order of Re is directed parallel to the magnetic mo­
ment, i. e., MII.e "" 1. Therefore, with logarithmic ac­
curacy, we have 

M= 1+--Tln-[ N - 2 B ] (.Y_1)/2(N_') 

4nl I . (17) 

We note that in the case N = 3 (the Heisenberg model) 
the magnetic moment becomes a linear function of the 
logarithm of the external magnetic field. In the limit 
N = 2 (the XY -model), (17) goes over into the result ob­
tained by BerezinskiI. [7] It is clear from the derivation 
of formula (17) that it is valid so long as TII.e «J. 
Therefore, we caIUlOt consider very weak fields, and 
the formula given in (17) is true in the region 

exp{-4nll (N-2) T} <B<T. (18) 

In conclusion I wish to thank V. L. Pokrovskil and 
A. A. Migdal for useful comments and discussion of the 
work. 

lyU. S. Karimov, Zh. Eksp. Teor. Fiz. 65, 261 (1973) [SOY. 
Phys. JETP 38, 129 (1974»). 

2A. M. Polyakov, Phys. Lett. 59B, 79 (1975). 
3V. L. Pokrovskir and G. V. Urmin, Zh. Eksp. Teor. Flz. 

65, 1691 (1973) [SOY. Phys. JETP 38, 847 (1974»). 
4V. L. Berezinskir and A. Ya. Blank, Zh. Eksp. Teor. Fiz. 

64, 725 (1973) [SOY. Phys. JETP 37, 369 (1973»). 
5N. N. Bogolyubovand D. V. Shirkov, Vvedenie v teoriyu 

kvantovannykh poler (Introduction to the Theory of Quantized 
Fields), "Nauka," M., 1973 (English translation of earlier 
edition published by Interscience, N. Y., 1959). 

6K. G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1974). 
TV. L. Berezinskir, Zh. Eksp. Teor. Fiz. 59, 907 (1970); 61, 

1144 (1971) [SOY. Phys. JETP 32, 493 (1971); 34, 610 
(1972»). 

Translated by P. J. Shepherd 

Parametric excitation of antiferromagnetic modes in strong 
magnetic fields 

V. I. Ozhogin, V. L. Preobrazhenskil, M. A. Savchenko, and 
A. V. Stefanovich 

Moscow Institute of Radio Engineering. Electronics, and Automation 
(Submitted February 7, 1976) 
Zh. Eksp. Teor. Fiz. 71, 816-819 (August 1976) 

One of the magnetic oscillation modes of an antiferromagnet with "collapsed" sublattices (the so-called 
antiferromagnetic, or spin-flip, mode) is not connected linearly with the alternating magnetic field but can 
be excited by parallel pumping with a threshold amplitude inversely proportional to the anisotropy field. 

PACS numbers: 7S.30.Gw 

In an antiferromagnet (AF) in a strong magnetic field 
equal to double the value of the exchange field between 
the sublattices Wo = 2HB = He), the sublattice magnetiza­
tions Ml and Mz collapse (a spin-flip transition takes 
place). [1-5J At Ho~ 2HB the equilibrium value of the 
antiferromagnetic (AF) vector vanishes: Ls= (M1 - Mz). 
= 0, and for the ferromagnetic (F) vector saturation is 
reached: Ms = (M1 + Mz) = 2Mo• The sublattice structure 
thus vanishes, but the system nevertheless remembers 
its AF origin: besides the ordinary (ferromagnetic) 
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resonance mode there exists a pure antiferromagnetic 
(spin-flip) sf-mode with frequency 

where HA is the anisotropy field, which retains the AF 
vector in the "easy plane" of the crystal Wo is parallel 
to the easy plane). In the first of these modes, the sub­
lattice moments precess about the magnetic fields, re­
maining parallel to each other. In the second, the mo­
ments Ml and M2 precess about the fieldS over an ellip-
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tic cone, lagging each other 180 0 in phase. 

It follows from the Landau- Lifshitz equations that in 
the linear approximation the sf mode is not excited by 
an alternating magnetic field h of any polarization, so 
that its existence has sometimes been neglected. [8] It 
is shown below that the corresponding ~f mode· wZk of the 
spin-wave spectrum can be excited parametrically. It 
lends itself therefore to an experimental investigation, 
so that other processes in which it takes part become of 
interest. 

The calculations were performed for the Simplest 
model of a two-sublattice AF with anisotropy of the easy 
plane type. The magnetic energy of the crystal, with 
allowance for the Dzyaloshinskii field HD (the z axis is 
along the crystal axis and xII Ho) is written in the form 

d€=2M. J dV {H"m'+t/,HA1.'+t/,HA'm.'+HD(mxl.-m.l,) 

-mH+-'=- (~)' +~(~)'}, 
2 ox, 2 ox, 

m'" (Mt+M,)/2M.=m.+,,(t), I ... (Mt-M,) /2M.=I.+1(t) , 

IMd=IM,I=M., H=H.+h(t), H", HA, HD, Gt>O. 

(1) 

Denoting the equilibrium angle between Ml and Ho by 
71/2 - 1/1, we obtain for 1/1 the equation 

H" sin 21/1=Ho cos 21/1+H.cos 1/1, (2) 

and for the resonance frequencies 

(3) 

(Uh.;.y)'= (2HE cos 21/1+2HD sin 21/1+H. sin 1/1) (HA+H. sin 1/1 
+HD sin21/1-2H"sin'1/1). (4) 

Plots of w"o(Ho) for different d= HD/2HE are shown in 
Fig. 1. 

The value of wzo(2HE) is very sensitive to the quantity 
H [7]. 

D • 

so that its measurement can serve as a means of deter­
mining very small HD • 

It follows from (2) that at HD * 0 no collapse is possi­
ble: 1/1* 71/2 in any field. On the other hand if HD = 0, 
then the spectrum of the sf mode is of the formes] 

I 

(ro,,/'y)'=(H.-2HE +ak') (H.-2HE+ak'+HA ). 

It is easily seen that the sf mode is the limit of the 

0 .. 05 

430 

FIG. 1. Dependence of the 
antiferromagnetic resonance 
frequencies on the magnetic 
field intensity (d=Hd2H~. 
Curve I-asymptote <n = 1, 
d=O), curves 2,3, 4-atn=2 
respectively for d=O, 0.0004, 
and 0.0068 (MilCOs). 
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FIG. 2. Diagrams that determine the contribution to the sf­
mode relaxation frequency from scattering processes in which 
four magnons take part. 

quasi-antiferromagnet mode WZt _at Ho?:' 2HE and as 
HD - O. Only the variables ~~ and~. take part in the os­
cillations of this mode, and these variables are not con­
nected linearly with the alternating magnetic field h(t), 
since I. = 0 (at Ho < 2H E' the linear excitation of the· 
quasi-antiferromagnetic mode by a field h II Ho is weaker 
the closer Ho is to 2HE). 

Since anisotropy of HA leads to ellipticity of the pre­
cessions of Ml and Mz in the sf mode, one can expect its 
parametric excitation to be realizable by parallel pump­
ing (h II Ho) if HA * O. Indeed, calculation of the thresh­
old amplitude he by any of the known methods leads to 
the expreSSion 

(7) 

where w, is the pump frequency and 11zt is the frequency 
of the relaxation of the sf:"mode waves. For a biaxial 
crystal characterized by two anisotropy fields for the 
AF vector, the denominator of the expression for he will 
contain one of these fields or their difference-depend­
ing along which of the principal axes of the crystal ho is 
oriented. 

For a concrete estimate of he it is necessary to calcu­
late the sf-magnon relaxation frequency. At tempera­
tures T that are small in comparison with the Nllel fre­
quency TN' the sf-mode relaxation is determined by the 
scattering of the spin waves by one another. Magnon­
phonon interactions are either absent by virtue of the 
symmetry properties of the mode oscillations (process­
es with partiCipation of one magnon and two phononsj 
processes with participation of three magnons and one 
phonon), or, in the case of practical interest when TN 
is small in comparison with the Debye temperature, 
make a vanishingly small contribution to the damping 
(processes with participation of two magnons and one or 
two phonons). The decisive role in the onset of damp­
ing of the sf-magnon mode is played by processes with 
participation of four magnons of this mode, which are 
due to exchange interactions. 

In the calculation of the relaxation frequency 112t by 
the self-consistent-field method, [5-8] their contribution 
is taken into account by the diagrams of Fig. 2, which 
correspond to second-order perturbation theory. In the 
diagrams, the block of order n, in this case of fourth 
(a, b) and th~rd (b, c) order, is represented by a point 
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with n outgoing lines, each of which corresponds to a 
definite frequency and momentum satisfying the conser­
vation law in each block. The blocks of the first and 
second sublattices are shown by solid and dashed lines, 
respectively. To each point relating the solid or dashed 
lines there corresponds an effective interaction tensor 
A1ZQ (w, - w). The summation is carried out over all the 
internal frequencies and momentum. 

The expression obtained for 'I1Zt by summing the trans­
formed diagrams takes the form (we neglect exchange 
inside each sublattice, i. e., 01.' = - 01.) 

1'],. = 8~N,n;~ ~ {(l.+J.+J._.+Jo_.)'n .. n,.[ 1 +n'.H-'] 
,,0 

X Il[£ .. +£,.-e, p+.-o-e,.] +2 (J.-J.+Jo_.-J._.) , 

X n"n,.[ 1 +n, .H-O]ll[e,,+e,.-e, PH-O-e,.]}. (8) 

where nl.2I: is the Bose distribution function for spin 
waves with energies tlk and tzt; J t is the Fourier com­
ponent of the exchange integral, see[S]. At low tem­
peratures (T« TN) and at small quaSi-momenta «eZt/tzo 
- 1)« 1) we obtain 

=_1 (~)'41H"( kBT )'F(~) 
fj.o 4n' fl.' s· 2f1.BH" k.T' 

(9) 

where (voiR g) 2 = 1/27 when account is taken of only the 
interaction between the nearest neighbors. We have 

F ( e" ) ( e" ) {£" } e" -k T ~ .1 and F -- "" exp - -- at --» 1. 
B kBT kBT - kBT 

It is realistic in practice to obtain a state with col­
lapsed spins in AF with small TN' At 2HE - 50 kOe (TN 
- 10 OK) and T- 1 OK we obtain 'I1zt/Y - 1 Oe. It follows 
then from (7) at HA - 3 kOe and wp/y-13 kOe (the 8-mm 
microwave band) that h-10 Oe, which is perfectly at­
tainable. We note in conclusion that a curious feature 
of the sf mode is that it has no linear connection with 
the phonons. 
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Effect of hydrostatic pressure on the magnetization of the 
alloy MnSb 
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(Submitted April 2, 1976) 
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Variation of the magnetization of an MnSb alloy, induced by hydrostatic pressure up to 8 kbar, is 
measured at temperatures of TJ = 83"K and T2 = 294"K. It is shown that the magnetization decreases 
under pressure: t::..u/t::..p = -(O.34±O.13) G-cm3/g-kbar and t::..u/t::..p = -(0.45±O.13) G-cm3/g-kbar 
respectively for each of the temperatures. The temperature dependence of the spontaneous magnetization of 
MnSb measured in the range between 83 and 358'K and at atmospheric pressure is satisfactorily described 
by the Stoner quadratic law. The experimental results obtained are analyzed on basis of the theory of band 
ferromagnetism. 

PACS numbers: 75.30.Cr, 75.1O.Lp, 62.50.+p 

INTRODUCTION 

The question of the nature of exchange interactions in 
the MnSb alloy has not been answered to this day. To 
describe the exchange mechanisms in MnSb, models 
were proposed based on the concept of interaction of 
localized spins (Lotgering and Gorter, [1] de Gennes[2]). 
Edwards and Bartelu •4J have recently attempted to apply 
the model of collectivized electrons to a description of 
the pressure-induced change of the Curie temperature 
of the alloys MnSb and MnS~_"As". 
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The Stoner theory of band ferromagnetism was de­
veloped by Wohlfarth[5] for the particular case of com­
pounds having close values of the Curie temperature and 
of the magnetization. A classical example of such weak 
band ferro magnets is Z rZ n2' Within the framework of 
Wohlfarth's theory of weak band ferromagnetism, rela­
tions were obtained between the pressure-induced change 
of the Curie temperature and the change of the magneti­
zation. These relations were confirmed by experiment. 

Edwards and Bartel, [3] following Wohlfarth's theory, 
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