
tric filler. This is possibly due to the nonmonotonic 
change of coefficient of electron penetration through the 
barrier corresponding to the dielectric filler, which 
should lead to oscillations of the effective mean free 
path of the electrons. 
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Turbulent mixing at contact surface accelerated by shock 
waves 

V. A. Andronov, S. M. Bakhrakh, E. E. Meshkov, V. N. Mokhov, 
V. V. Nikiforov, A. V. Pevnitskil, and A. I. Tolshmyakov 
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Zh. Eksp. Teor. Fiz. 71, 806-811 (August 1916) 

Turbulent mixing at a contact surface between two gases of different density which is accelerated by plane 
stationary normally-incident shock waves is observed experimentally. A system of equations describing the 
nonstationary turbulent flow of the compressed gases is proposed. Results are presented of numerical 
calculations of the experimental data on turbulent mixing of the contact surface between gases of different 
density following mUltiple passage of shock waves through the surface. Satisfactory agreement between the 
calculations and experiments can be attained by suitable choice of the empirical constants. 

PACS numbers: 4S.30.Jm, 4S.40.Nx 

It is known that the boundary between gases having 
different densities is unstable to small perturbations if 
the pressure and density gradients on the boundary are 
directed oppositely (the so-called gravitational instabili
ty), or else if a shOck wave passes through the boundary. 
The development of small perturbations can lead to the 
onset of turbulence in the vicinity of the boundary, and 
accordingly to turbulent mixing of the gases. [1,2] 

1. MODEL OF TURBULENT MIXING 

To describe gasdynamic flow with allowance for the 
possible onset of turbulence and the ensuing turbulent 
mixing, we used the following system of equations: 

dpldt=-p div v, 

dv 1 1 a 
-= -- v (P+P,)+-- [(v+v,)pcr .. l. 
dt p pax. 

dE Pdp 1 av, ( VP)VP 
-=----divq,+\'cr,,--D, xVP-- -

dt p' dt p ax, p p 

( V) ,,' +k, l:tk,- -' , 
\"/ 'V, 
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(1) 

(2) 

(3) 

.!!2= -~divj". 
fit p 

(4) 

de, 1 avo 
Tt=pdivpDIVel-pP,diVV+vlcr" aX" 

( VP)VP ( ")£1' +D, xVP-- --k, l+k,- -. 
p p \', r, 

(5) 

Here 

v is the coefficient of kinematic viscosity, Vt is the co
efficient of turbulent viscosity, D t is the coefficient of 
turbulent diffUSion, 

q,=-pD,V (E+ :) 

is the turbulent heat flux, Cf is the concentration of the 
i-th component, ju = - pDt 'Ve, is the turbulent mass flux 
of the i-th component, I:: t is the kinetic energy of the 
turbulence, Pt = ~ pI:: t is the pressure increment due to 
l't, 

Copyright © 1977 American I nstitute of Physics 424 



where 

1 iJp I A""--
II OP ",T' 

k1 and ka are constants. 

Equations (1)-(4) are obtained from the widely used 
assumption that the turbulent flow is analogous to the 
flow of a viscous multi component liquid with certain ef
fective turbulent coefficients of diffusion and viscosity. 
Equation (5) can be obtained from energy consideration 
(in analogy withU ]) and differs from the equation for ef 

in[1] by terms that take into account the non-isothermy, 
the inertia of the turbulence, the compressibility, and 
the diffusion of the turbulent energy. The expression 
for the rate of dissipation of the turbulent energy 

( V) e,' k, 1+k,- -
\', 'VI 

is similar in form to that used in[3,4]. In the presence 
of shock waves, the value of the expression ('K~p- vp/p) 
in (3) and (5) must be taken ahead of the shock-wave 
front. 

To make the system (1)-(5) a closed one, we must 
determine Vf and Dr' The simplest method, used in[l], 
is to define Vt in the form 

(6) 

where L is the width of the mixing zone, and 0 is a con
stant. A shortcoming of this definition is that 0 is dif
ferent for different problems. Experience in the study 
of shear flow (see[3,41) has shown that good agreement 
with the experimental data is obtained in a large class 
of problem by using more complicated differential equa
tions for Vf' Starting from semi-qualitative considera
tions, we can obtain for Vt the equation 

dv, 1 v,' iJu, v,' ( V P ) V P v 
-=-divpD,Vv,+a,-cr .. -+a,- xVP-- --O.3k,-E" 
dt P Il, iJx. Il, P P II 

(7) 

where 01 and 02 are constants; the coefficient 0.3 in the 
last term ensures satisfaction of the correct laws for 
the damping of the isotropic turbulence. As to Dr' it is 
assumed that Dt = Vt /Sc' where Sc is the Schmidt number. 

2. EXPERIMENTAL STUDY OF THE INSTABILITY 
OF A CONTACT SURFACE 

Turbulent mixing on the boundary between two gases 
having different densities (the contact surface), when the 

A Sec.AA 
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FIG. 2. 

boundary is accelerated by plane stationary shock 
waves, was observed experimentally in the case of nor
mal incidence of the waves. 

The experiments were performed with a shock tube 
described in[S], where a description of the experimental 
technique can also be found. The end of the shock-tube 
channel (see Fig. 1), with transparent side walls, con
sisted of two contiguous blocks 1 and 2, separated by a 
thin organic film 3 of thickness 0.3-0.5 IJ. and specific 
mass (3-4)x lO-s g/cm 2• The end of the channel was 
sealed with a stopper. The closed volume 2 was filled 
with helium, while the remaining end of the channel was 
filled with air at atmospheric pressure. A plane sta
tionary shock wave 5 with Mach number M = 1.3, pro
duced in the shock tube, passed through the boundary 3 
and accelerated the latter. Mter reflection from the 
rigid wall 4, the shock wave passed again through the 
contact surface in the opposite direction, was reflected 
from the contact surface, was again reflected from the 
wall, etc. Thus, a series of shock waves of decreasing 
amplitude, passed through the boundary, and alternatively 
accelerated and slowed down the boundary in pulsed and 
jumpwise manner. The flow picture was registered 
by an IAB-451 shadow instrument combined with a high
speed SFR moving-image camera operating in the time
magnifier mode. The result of each experiment was a 
series of Schlieren photographs for different instants of 
time. 

The experimental results show that immediately after 
the start of the motion the boundary becomes distorted, 
as a result of the instability, [5,6] under the influence of 
small-scale perturbations that increase with time. The 
initial cause of the perturbation is made up of the fol
lowing: 

a) irregular pressure perturbations in the shock wave, 
as a result of the non-one-dimensional character of the 
rupture of the diaphragm of the shock tube and the dif
fraction of the shock wave by irregulatiries on the 
shock-tube wall. 

b) small-scale wrinkles and variations in the film 
thickness (± 5~ of the average thickness). . 

The boundary perturbations gradually smear out to 
form a turbulent zone that increases with time and has 
uneven edges. Figure 2 shows, for the instant of time 
t = 700 IJ.sec after the start of the boundary motion, a 
Schlieren photograph of the zone of turbulent mixing on 
the air-helium boundary (a), and a photograph of a con
trol experiment in which air was present on both sides 
of the film (b). Here I-zone of turbulent mixing, 2-

Andronov et al. 425 



FIG. 3. 
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film, 3-rigid wall at end of channel 4-structure ele
ments located outside the tube channel, and 5-"loop" 
(see beloW). In photograph 2a the zone of turbulent mix
ing has a cellular structure typical of Schlieren photo
graphs of turbulent flows (see, e. g., [7]). The control 
experiment (Fig. 2b) does not show turbulent mixing, 
and the film moves as a unit with slight distortions. 

The results of the measurement of the position of the 
zone of turbulent mixing and of its width L in one of the 
experiments, and the calculated r-t flow diagram (r is 
the distance from the rigid wall) are shown in Fig. 3. 
Here I-boundary, 2-shock waves (calculated); 3,4,
front and rear boundaries of the turbulent mixing zone; 
5-L- L(t). The data of Fig. 3 show that the zone of 
turbulent mixing broadens asymmetrically relative to the 
calculated position of the boundary. In the initial stage 
(t'" 300 J,Lsec) the value of L increases at an accelerated 
rate. The acceleration of the growth of the zone of tur
bulent mixing through which a shock wave passes can be 
attributed to the following factors: a) ins tability of the 
type considered in[S,6]; b) generation of vortices under 
situations when the shock wave passes through regions 
having a density gradient in a direction normal to the 
direction of motion of the shock wave; c) passage of the 
shock wave through a light inclusion in the heavier gas, 
or conversely, by the fact that this inclusion is ac
celerated to a velocity larger (smaller) than the mass 
velocity of the surrounding gas. 

The presence of the film cannot influence to any ex
tent the dynamics of the motion as a whole, in view of 
its relatively small mass, but does apparently influence 
the development of the zone of turbulent mixing. One 
can therefore not exclude the need for refinements of 

turbulent mixing zone remains at the channel walls in the 
form of a "loop" (Fig. 2a). The presence of the "loop" 
under certain conditions may make it difficult to visual
ize the rear boundary of the turbulent mixing zone. 

3. NUMERICAL CALCULATIONS OF THE 
INSTABILITY OF THE CONTACT SURFACE 
AND COMPARISON OF THE CALCULATIONS WITH 
EXPERIMENT 

The system of Eqs. (1)-(5) together with (6) or 
(7) was solved numerically on the basis of the two-di
mensional procedure described in [9], by the method of 
separation on the basis of the physical processes. 1) The 
experiment described above was calculated numerically. 
We used Eq. (6) for lit. The geometry of the calcula
tion was similar to the experimental one and is shown 
in Fig. 1. On the left boundary we specified a constant 
pressure Po such that a shock wave with a Mach number 
M = 1. 3 was produced. The boundary condition on the 
right was the presence of the rigid wall. The substances 
were regarded as ideal gases with parameters corre
sponding to a pressure P= 1 atm and to T= 20 °e. The 
programs for calculating the turbulent mixing were 
turned on at t = 200 J,Lsec. The constants used in the 
calculationswerekl=0.4, ka=O, andSc=0.5. These 
values of the constants are of the same order as the ex
perimental values obtained in experiments on flow with 
shear and over a boundary layer. The value of a in (6) 
was chosen such as to obtain the best agreement between 
the zone width and experiment. This value turned out to 
be 0.10. A close value of a, obtained on the basis of an 
analysis of the experiments on stationary flow, was 
used in[l]. Figure 3 shows the r-t diagrams of the sepa
ration boundary between air and helium (solid curve) 
calculated without mixing, the r-t diagrams of the shock 
waves (dash-dot), and the boundaries of the mixing zone 
(dashed) calculated by using a mixing value based on a 
0.5% deviation of the air concentration from the initial 
value. Figure 4 shows profiles of the density (curve 1) 
and of the air concentration (curve 2) in the mixing zone 
at t = 660 J,Lsec. It is seen from Fig. 3 that at a = 0.10 
the agreement between calculation and experiment (the 
horizontal segments mark the width of the mixing zone) 
is satisfactory. Some deviations at the initial stage of 
the processes are most likely due to the fact that im
mediately after the passage of the first shock wave 
through the boundary one observes in the experiment 
not turbulent mixing but the growth of the initial per
turbations. 

We note in conclusion that the choice of the values of 
all the parameters that enter in the model, and the 

the foregoing measurement results, namely, the film p,g/liter C 

may exert a stabilizing influence in the initial stage of 
motion, and in the later stage (t'" 900 J,Lsec), the esti
mated mass of the pieces of film mixed with the zone of 
turbulent mixing amounts to only 1. 5-2% of the film, but 
these pieces can serve as an additional source of per- I 0,5 

turbations and contribute to the growth of the zone of 
turbulent mixing. 

Let us note one more peculiarity. The edge of the 
10 
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choice of the equation for Vt' can be made only after 
more complete experimental data on the structure of 
the mixing zone become available. 

The authors thank V. Bashurin and V. Zhmailo for 
useful discussions. 
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Dependence of the magnetic moment of a layer magnet 
on the magnetic field 
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The dependence of the magnetic moment of a layer magnet on the magnetic field is found in the leading 
logarithmic approximation. 

P ACS numbers: 85.70.Nk 

The magnetic-moment measurements Of[l] show that 
in layer magnets with ferromagnetic intraplanar inter
action and weak anisotropy there is a region of fields in 
which the moment is a linear function of the logarithm 
of the external magnetic field. At the same time, the 
explanation of this fact, based on the spin-wave approxi
mation, cannot be regarded as satisfactory, since this 
approximation is not valid in the two-dimensional case. 
It has been shown by Polyakov[2] that in the two-di
mensional case the interaction of spin waves turns out 
to be extremely important and determines the dependence 
of the physical quantities on the logarithm of the char
acteristic lengths (in [2] the question of the behavior of 
the correlation functions was considered). He also pro
posed a method of summing the leading logarithmic 
terms of the low-temperature expansion. Here we shall 
apply this method to determine the dependence of the 
magnetic moment on the external magnetic field. 

In the problem under consideration there are several 
characteristic lengths: first, the correlation length Rc 
due to the magnetic field; secondly, the length scale as
sociated with the intraplanar anisotropy; thirdly, the 
distance between the layers in which the magnetic atoms 
are situated, and, finally, the distance a between mag
netic atoms in the plane. The magnetic moment has dif
ferent dependences on the external field, depending on 
the relative sizes of these length scales (cf. [3]). The 
results of the work of POkrovskit and Utmin[3] pertain 
to the case of very weak fields, when the correlation 
length due to the magnetic field is much larger than the 
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length scale associated with the intraplanar anisotropy. 
In this paper we consider the case of sufficiently strong 
fields (the criterion will be given below), which are, 
nevertheless, much smaller than the saturation field. 

In the following we shall consider a generalized 
Heisenberg model with an N-component "spin." We 
shall call the generators of the group of rotations in N
dimensional space a spin operator (in the Heisenberg 
model, N=3). We shall be interested in the dependence 
of physical quantities on the logarithm of the magnetic 
field, and therefore we can neglect the noncommutativity 
of the spin operators and the difference between lattice 
sums and integrals. The problem of calculating the 
thermodynamic averages then becomes classical, and it 
is necessary to replace the spin operators by N-com
ponent unit vectors. The Heisenberg Hamiltonian then 
'acquires the form 

(1) 

where J is the exchange integral, B is the external mag
netic field, n is a unit N-component vector, and a is 
the dis tance between magnetic atoms in the lattice. In 
(1) we have neglected the interplanar interaction and 
the anisotropy. It can be seen from the Hamiltonian (1) 
that the correlation length is related to the magnetic 
field: Rc = a(J / B)1/2. 

We define the magnetic moment M by the formula 
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