
volume. This result may be due to the spatial inhomo
geneity of the spin density, due both to the distribution 
of the intensity of the exciting light in the semiconductor 
volume and to the possible localization of the oriented 
electrons. 

We note the strong temperature dependence of the ob
served effect when the temperature To is raised from 
77"K to - 100 "K. In this range, the electron spin-re
laxation time is Ts - To", where n=2_3. t14 ,15l If (S.)o 
is small, so that (S.)o = O. 25T/T::::< O. 25Ts/r, then {3 
- (Sz)~ - Ti/-'To6. The experimentally observed (Fig. 
7) vanishing of the structure of the p(H) curve when To 
changes from 77 "K to - 100 "K can be attributed to the 
abrupt decrease of {3. At To = 4. 2 "K, the plots of p{H) 
do not differ qualitatively from those observed at 77 "K. 

We have not considered here transient processes or 
a number of dynamic effects (excitation by intermittent 
light, application of a pulsed magnetic field, etc.) which 
indicate that the stationary values of the polarization 
take a long time to reach the steady state. A quantita
tive interpretation of these results calls for an addi
tional analysis. In particular, it is necessary to ex
plain the difference between the half-widths of the p(HJ 
curves when the semiconductor is excited with light with 
constant and alternating-sign circular polarization. 

The authors thank B. P. Zakharchenya for constant 
interest and a discussion, M. 1. D'yakonov and V. I. 
Perel' for numerous diSCUSSions, and A. V. Lomakin 
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Solutions of the Leggett equations are obtained which describe the motion of magnetization in both 
superfluid phases of HeJ located in a strong de magnetic field. Rotation of magnetization by an ac magnetic 
field is described. The results are compared with available experimental4ata. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION 

Progress in the understanding of the nature of the 
superfluid phases of He3 is due to a considerable degree 
to the study of the properties of these phases by the 
NMR method. The corresponding experiments lend 
themselves to a quantitative interpretation with the aid 
of the system of equations for spin dynamiCS in triplet 
pairing, obtained by Leggett[ll: 

S~y [S X H]+RD(d). (1) 

416 SOy. Phys. JETP, Vol. 44, No.2, August 1976 

d=[d(n) X'Y(H-ySlxl]. (2) 

Here H is the external magnetic field, S is the total 
spin of the considered amount of helium, X is its mag
netic susceptibility, y is the gyro magnetic ratio for the 
He3 nuclei, and d is a vector in spin space and charac
terizes the spin structure of the wave function of the 
condensate. Its exact determination (see[21, p. 367), 
will not be needed here. When the pairing is in the p 
state, as is the case in He3, d depends linearly on the 
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unit vector n, which determines the direction in momen
tum space, i. e., d j =Ajknk• RD is the moment resulting 
from the interaction of the magnetic dipole moment of 
the ReS nuclei: 

(3) 

gD is the dipole-dipole interaction constant, and ekl';' is 
an absolutely antisymmetrical tensor. The information 
on the properties of the superfluid phases is contained 
precisely in this additional term of Eq. (1). 

Osheroff and Corruccini(s.4l have recently investi
gated the behavior of the magnetization in both super
fluid phases of ReS by the pulsed NMR method. In these 
experiments they obtained, in particular, the depen
dence of the shift of the frequency of the transverse 
magnetic resonance on the initial angle f30 between the 
magnetization yS and the external field H. Brinkman 
and Smith(s.6l found stationary solutions of the ·system 
(1), (2), corresponding to the precession of the mag
netization with a frequency that depends on the angle in 
accordance with the laws established experimentally by 
Osheroff and Corruccini for each of the phases. It 
should be noted, however, that although the final for
mula of Brinkman and Smith[6l for the shift of the fre
quency of the transverse resonance in the B phase is 
correct, there are objections to the method used for its 
derivation, and the conclusion they drew that a relaxa
tion term must be introduced into Leggett's equations 
in order to obtain stationary solutions will be shown by 
the results of the present paper to be in error. 

In this paper we use the system of equations (1) and 
(2) to consider the behavior of the magnetization in suf
ficiently strong magnetic fields, when the second term 
in the right-hand side of (1) is small in comparison 
with the first. The known Van-der-Pol method of os
cillation theory makes it possible in this case to obtain 
solutions that are asymptotic with respect to a small 
parameter, which in this case is the square of the ratio 
of the frequency of the longitudinal oscillations of the 
magnetization to the Larmor frequency n2 =3gD/XH2. 

In the Osheroff-Corruccini experiments, n2-1/100 for 
both phases. 

Equations (1) and (2) do not describe relaxation pro
cesses, and we shall therefore not deal in this paper 
with questions for which allowance for these processes 
is essential. Allowance for relaxation should not in
fluence the stationary solution and has little effect (to 
the extent that the damping is small) on the frequency of 
the small oscillations. For processes in which the re
laxation plays an important role, the analysis of Eqs. 
(1) and (2) may turn out to be useful as the first step in 
the subsequent allowance for the damping. 

2. TRANSFORMATION OF LEVELS 
We shall consider for the time being the process of 

taking the magnetization out of equilibrium, when the 
field H is constant. To separate the effects due to RD , 

.we change over to a coordinate system that rotates with 
Larmor frequency W L = - yH, and introduce the dimen-
sionless quantities M= yS/)(}l and t' = wLt, i. e., we mea-
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sure the time in Larmor periods, while the unit of mag
netization measurements will be taken to be its value in 
the equilibrium state. The system (1) and (2) then takes 
the form 

JI"f.='/"Q'ehln[Re(A,.A;/+A'JA;n·) ], 

rl=-[M X dJ. 

(4) 
(5) 

We are interested in magnetization changes that are 
slow in comparison with the Larmor period. To solve 
(5) with slowly varying M(t'), we employ the standard 
adiabatic perturbation theory procedure (see[7l, p. 94). 
We find first the instantaneous eigenvalues and eigen
vectors of the right-hand side of (5) 

(6) 

The eigenvalues will be J.l (m) = imM, where M == I M I, and 
the eigenvectors are a (0) = M/M and two additional vec
tors, a(1) and a(-l) , which form together with a(O) a com-
plex-orthonormalized basis 

We seek the solution of (5) in the form 

Substituting this expression in (5) we obtain 

,J .. =-mM, 

am = - L, Ctna(m)·a(n) exp{i{On - Om)}. 

(7) 

(8) 

(9) 

(10) 

We note that the conditions (7) offer a freedom in the 
chOice of the eigenvectors a(l) and a(-l>, owing to the 
possibility of rotating them around a(O) through an ar
bitraryangle. This freedom is sufficient to require 
satisfaction of the following conditions: 

a(m)·it(ml=O. (11) 

When (11) is satisfied we have an = a with exponential 
accuracy in n2. As a result we get 

Ctm (t') =Ctm (0) =a(m)'(O) d(O). 

d(t')= L, a(m) (t')exp{ - im J Mdt}a(m)·(O)d(O). (12) 
m • 

It remains to express a (m) in terms of M. This can 
be done if it is noted that 

(13) 

is the rotation matrix that transforms the triad of vec
tors a(m)(o) into the triad a(m)(t'). This rotation can be 
described by Euler angles in accordance with the defi
nition 

Here Rz(a) is the matrix of rotation around the z axis of 
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the initial system of coordinates through an angle a, 
etc.; a and (J are respectively the azimuthal and polar 
angles of the vector M in the system a(m)(O). The con
ditions (11) connect y with a and (J: 

(14) 

Comparing (12) and (13), we easily see that 

d(t')=R( a.,~, y - f Mdt) d(O). (15) 

Together with (14), this formula expresses d, and 
hence also A 1k , in terms of M(t'). Substituting the thus
obtained Alk in the right-hand side of (4), we obtain a 
vector equation that contains only M. The subsequent 
transformation of the obtained equation and an investi
gation of its solutions differ somewhat for different 
phases of He3 • It will be more convenient to start with 
the B phase. 

3. THE B PHASE 

In this phase, at any instant of time, the matrix A Ik 

=..4 is the matrix of rotation about a certain direction II 
through an angle 8. To simplify the manipulation we 
assume that at t =0 the system was at equilibrium, i.e., 
1111 H and 8 = 80 = arccos( - i). Under this condition, no 
terms with Larmor frequency or its harmonics, in 
which we are not interested here, will appear in the 
course of the solution. Changing over to a coordinate 
frame that rotates with W L and with respect to the sec
ond index of the matrix A, we obtain with the aid of (15) 

A(t')~R(a.,~,'t+e,+S (I-M)dt). (16) 
, 

Using the explicit expression for the elements of the 
matrix for the rotation through the Euler angle, we can 
obtain 8(t') and lI(t'): 

1+2 cos 8=Sp A=cos ~+cos <Il+cos ~ cos <Il; 

" 
$ = <%+r+8,+ J (1-M)dt, 

• 
2\\ sin 6=-ei.l,IAIt/. (18) 

Substituting now (16) in (4) and projecting the obtained 
equations on the directions of M, MX[HXM], and HxM, 
we obtain respectively 

lIi='/"Q,,'(Hcos~) (1-2 SpA), 

,lf~=-'/"Q..' sin ~ sin <Il(1-2 Sp A). 

il1':'='/"Q,,'(l+cos <Il) (1-2 SpA). 

Using (21)-(24) we obtain an equation for <1>: 

ID='/"Q.'M-' ( J -cos ill (1+cos <1» (1-2 Sp A) + 1-1"/. 

(19 ) 

(20) 

(21 ) 

(22) 

Dividing (19) by (20), we obtain following elementary in
tegration 

M (I-cos !I) ... P=const. (23) 

The integral (23) enables us to exclude (J from (19) 
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and (22), after which these form a closed system 

M=- B 2-- sm<l> ---+ --2 cos<l> . 4 Q ,( P). [P 1 (P ) ] 
15 M M 2 M ' 

. 4 ,P [P 1 (P ) ] \Il=15 0B M' (1 + cos \Il) M -2+ M -2 coslD +1-.M. 

(24) 

(25) 

This system is of the Hamilton type (M = 8J1g/8<1>, <i> 
= - Bde/BM) with Hamiltonian 

deB(M, <Il) (M -f)' +~QB2 [(~_~) + (~_ 2) cos <1>]' (26) 
2 J5 M 2 M 

and therefore has an energy integral 

deB(M, <Il) =E=const. (27) 

The character of the solutions of the system (24) and 
(25) can be illustratively represented with aid of the so 
called phase trajectories, i. e., trajectories describing 
the representative point in terms of the coordinates M 
and <I> as the system moves. The equation for the phase 
trajectories is the energy conservation law (27). Since 
the Hamiltonian depends on P as a parameter, the pic
ture of the phase transition will also depend on this pa
rameter. We can separate three qualitatively differing 
regions: 

1) O';;'P<'/., 2) '/.';;'P<2, 3) P;;.2. 

The character of the phase trajectories is determined 
by the locations of the stationary points of the system, 
i. e., the point at which !VI =0 and ~ =0, and by the loca
tion of the separatrices, i. e., the phase trajectories 
passing through the stationary points. We will recall 
that motion along the separatrix takes place with an in
finite period. Since the Hamiltonian depends <In cos<l>, 
it suffices to consider any interval of variation of <I> with 
length 2lT. We shall assume that - IT ~ <I> ~ IT, with the 
straight lines <I> = IT and <I> = - IT coinciding. 

At p<i there are four stationary points: two centers 
(see Fig. 1) 

Mc=f, 
P_I/, 

cos <Ilc =--. 
2-P 

and two saddles 

(S,) 

Substituting the stationary solutions corresponding to 
the centers C1 and C2 in (21), we see that for these we 
have Ot =0, i. e., in an immobile coordinate system these 
solutions correspond to precession of the magnetization 
at the Larmor frequency. At small deviations of M and 
<I> from the stationary values C1 and C2 , they will execute 
small oscillations about these values, with frequency 

It may be more convenient to express this frequency 
in terms of the value of {Jc for the stationary point 

"'" '='/,(1+4 cos ~,)QR" (28) 
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FIG. 1. 

At f3c =0, these oscillations go over into longitudinal 
magnetization oscillations (cf. [11). The energies cor
respoJl(iing to the saddle points S1 and S2 become com
parable at a certain P =P1 "'!. At this value of P a 
change takes place in the character of the arrangement 
of the separatrices. 

With increasing P, the points ClI C2, and S1 come 
closer together and coalesce into one at P =i. At 1'" P 
< 2 there remain only two stationary points: S1I which 
has now become a center, and S2' which has remained 
a saddle. The solution S1 corresponds to precession of 
the magnetization at a frequency different from the Lar
mor frequency. The frequency shift is obtained by sub
stituting S1 in (21): 

(29) 

This formula coincides with that previously obtained 
by Brinkman and Smith. [61 The small oscillations about 
S1 occur at a frequency 

00,,'=- :5 QB'(1+4cos~Sl)(l+C08~Sl)' (30) 

We have left out from the last formula the terms -O~. 

At P>2M S1 the point S1 becomes a saddle, while S2 
becomes a center. This case will not be considered 
here, since the point S2 corresponds to cosf3S2 > 1. 

4. ROTATION OF THE MAGNETIZATION AND 
COMPARISON WITH EXPERIMENTS FOR THE 8 
PHASE 

The experimental results for the frequency shift of 
the transverse resonance are well described by formula 
(29) at angles f3S1 that are not too close to 11'. However, 
starting with f3s1'" 140-150°, an appreciable discrepancy 
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between the experimental points and the theoretical 
curve is observed (see the figure inm ), and when the 
magnetization is rotated through an angle large~ than 11', 

a strong scatter of the experimental data is observed. 
To ascertain the cause of this apparent discrepancy be
tween theory and experiment, it is necessary to con
sider the process of rotation of the magnetization, as a 
result of which the magnetization is inclined a certain 
angle f30 to the direction of B. This rotation is effected 
by turning on for a certain time an alternating magnetic 
field directed perpendicular to the main field H and hav
ing the Larmor frequency, 1. e., !H1eU'. The deflect
ing field is constant in the coordinate frame that ro
tates at the Larmor frequency. 

In the aQsence of a shift of the transverse-resonance 
frequency, the magnetization precesses under the in
fluence of the deflecting field in a plane perpendicular 
to this field. Owing to the influence of the aforemen
tioned shift, the motion of the magnetization will be 
more complicated and it must be determined by solving 
the equations of motion of the magnetization in the pres
ence of a deflecting field. Allowance for this field leads 
to the following changes of the system (19)-(22): in Eqs. 
(20)-(22) there will appear increments proportional to 
h =H1/2H, 

M~=hM cos a-'/"Q.' sin ~ sin ell [1-2 SpA], (31) 

Jf sin ~Cx=-hM sin a cos ~+'/"Q.' sin ~(1+cos ell) [1-2 Sp A), (32) 

MtD=-hM sin a ctg ~ (i-cos ~) +'/"Q.'(i -cos ~) 
X(Hcos ell)[1-2 SpA]+M(l-IM-hj), (33) 

and Eq. (19) remains unchanged. 

In the experiments of Osheroff and Corruccinl, h and 
O~ are of the same order of magnitude. Thus, the sys
tem written out here has two time scales. According 
to (31) and (32) we have lr- ~- h, O~, and Eqs. (19) and 
(32) describe oscillations of frequency - 0 B» h, i. e. , 
the magnetization motions described by the system (19) 
and (31)-(33) constitute oscillations of frequency -OB 
about a slowly varying equilibrium pQsiti()n. The os
cillations are excited at the instant when the deflecting 
field is turned on or off, and their energy is of the or
der of h2, with the coefficient of h2 depending on the 
actual law governing the variation of h with time. The 
oscillations will be more intense if the time during 
which the field is turned on is of the order of 1/0 B' If 
this time is of the order of unity (in Larmor periods), 
then oscillations can be excited at the Larmor frequency 
and its 'multiples, so that it is necessary to avoid in the 
experiment the two indicated regiOns. 

In the process of the rotation of the magnetization, as 
will be shown, a change takes place in the energy of the 
system by an amount on the order of h, 1. e., much 
larger than the energy of the oscillations excited at the 
instant when the field is turned on. By virtue of the con
servation of the adiabatic invariant, which in this case, 
as is well known, [81 is the ratio of the oscillation energy 
to their frequency, the energy of the oscillations will 
remain small so long as the adiabaticity condition wtr 
»h is satisfied. This means that the oscillations will 
not influence substantially the motion of the mean value 
of the magnetization. In order to find this motion it is 
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necessary to substitute the ~ and M corresponding to 
this stationary point about which the oscillation takes 
place in (31) and (32). As a result we obtain a system 
of equations describing the variation of a! and {3 under 
the influence of the deflecting field. We note that the 
small parameter in the description of the rotation pro
cess is h/ wtr - h/o, B, and not o,~ as in the preceding sec
tion, in connection with which the results obtained here 
have an accuracy on the order of h/o,B, i. e., -10%. 

At {3< 80, the stable stationary point corresponds to 
vanishing of the square bracket in the right-sides of 
(31)-(33) and (19), and as a result the system for a! and 
{3 takes the form 

~=h cos a, 

sin ~a=-h sin a cos ~. 

(34) 

(35) 

The solution of this system, satisfying the initial con
dition M II Hat t' =0, is 

~=ht', sin a=O, (36) 

i. e., at a pulse duration corresponding to angles 
smaller than 80, the angle of rotation of the magnetiza
tion is proportional to the pulse duration. After turn
ing off the deflecting field, the magnetization executes 
small oscillations about one of the stationary points, C1 

or C2 , and its mean value precesses at the Larmor fre
quency about the field H. 

When {3 approaches 80, as seen from (28), the adia
baticity condition is violated in a small region of angles 
I {3 - 80 I - (h/o, B)2 -10-2 _10-3 • Experiment revealed 
damped irregularities of the precession in a much wider 
region I {3 - 80 1-10 0 • The cause of these irregularities 
may be that at {3'" 80 the difference between the energies 
corresponding to the stationary points Ch C2, and S1 

becomes small and comparable with the energy of the 
oscillations of the magnetization, excited when the field 
h is turned off. This means that after h is turned off, 
motions along the phase transitions can occur and sub
tend over all three indicated points. Irregular preces
sion at the Larmor frequency sets in only after these 
motions are damped. The width of the region in which 
one should expect the irregularities to appear is deter
mined, by virtue of the foregoing, by the condition E 51 

-Ec -h2, i.e., according to (26) we have 80 - {3-h/o,B' 
For H1 from the paper of Osheroff and Corruccini[4] this 
yields 2_5 0 • 

At {3> 80 it is necessary to use the stationary point 
S1: ~51 =0, M 51'" 1, in which case 

~=h cos a, 
(37) 

0: sin ~=-h sin a cos ~_'/"Q.2 sin ~ (1+4 cos ~). (38) 

The system has an integral 

U~B) (~)-hM=const, (39) 

which has the meaning of conservation of the dipole en
ergy u1B )({3) and the Zeeman energy in th~ field h, with 
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(40) 

The constant in the right-hand side of (39) is deter
mined from the condition h . M = 0 at {3 = 80, and then 

sina sin ~='/30QB2h-I(1+4 cos ~)'. (41) 

This equation together with (37) describes the varia
tion of M in the course of rotation at angles {3> 80 , In 
particular, it is possible to obtain t' as a function of {3 
by integrating dt' =d{3/cosa!, where a! is expressed in 
terms of {3 with the aid of (41). In this region, the an
gle of rotation is no longer proportional to the pulse 
duration. The difference will be larger the farther away 
we are from the point 80 , It is seen also from (37) that 
there exists a maximum value Anu, which is reached 
at a! = 1T/2. Substituting sina! = 1 in (41), we obtain an 
equation for {3mu: 

(42) 

When comparing this result with experiment, we must 
see to it that the obtained values of Anu be not too close 
to 1T, for in the vicinity of 1T, as follows from (30), the 
adiabaticity condition is violated. In this case the non
adiabaticity region is 1T - {3- h/o, B and the time of pas
sage through this region coincides in order of magni
tude with the period of the longitudinal OSCillations, as 
a result of which the energy can become redistributed 
here among the oscillations and the motion of the equi
librium position. The energy transfer depends on the 
phase of the magnetization oscillations, which should be 
regarded as random. Such an energy transfer leads to 
a scatter of the experimental point after passage through 
the danger region. 

Table I lists the values of 1T - Anu for different 0, B and 
h, calculated from formula (42) and extracted from the 
experimental point. [4] The experimental values of 1T 

- Anu were obtained from the frequency shift of the 
transverse resonance assuming that the formula (29) is 
correct. 

The difference between experiment and theory is less 
than 15%, and is in agreement with the estimate given 
above for the accuracy of the described approach. The 
next to the last column of the table lists the values of 
1T - {3= Xa.! at which h = wtr ({3), i. e., the frequency of the 
rotation of the magnetization in the field h coincides 
with the frequency of the longitudinal oscillations, while 
in the last column the maximum values of the adiabatic
ity parameter is A=h/wtr(Anu)' For those h for which 

TABLE I. 

TIT c I v. kHz I HI.Oe II!I()O - ~m='118()o - ~m='1 
I expt. theory 

'ad A 

0.743 2009 7.26 25' 25' 7' 0.31 
0.743 2009 2.30 37' 44' 2' 0.07 
0.743 2009 5.0 29" 32' 5' 0.18 
0.743 2440 5.8 22" 26' 6' 0.28 
o.nl 2440 2.1 35' 42' 2' 0,07 
0.74'1 2440 3.9 29" 33" 4" 0.14 
0.5J3 2009 5.0 37" 41' 4' 0.11 
0.501 2440 5.8 32" 36' 4" 0.14 
0.503 2440 3.9 37" 42" 3" 0.09 
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A'" 0.1, no scatter of the experimental points is ob
served at large angles of rotation of the magnetization, 
thus offering evidence in favor of the proposed explana
tion of the scatter for the other h. 

5. THE A PHASE 

In the A phase the vector d(n), the motion of which is 
determined by Eq. (2), can be represented in the form 
of a product of a real vector d, which does not depend 
on n, by a complex scalar function/(n). Equations (4) 
and (5) for the A phase in a rotating coordinate system 
can be written in the form 

M=-QA' [d X l](dl) , 
d=- [M X d], 

i=- [H X I]. 

(43) 
(44) 
(45) 

Here I is a unit vector that indicates the direction in 
which the gap in the spectrum of the A phase of Hes van
ishes. This vector, when describing the precession of 
the magnetization, can be assumed to be immobile be
cause of the large inertia corresponding to the change 
of the spatial orlentation of the condensate. 

We shall assume that at the initial instant the system 
was at equilibrium, i. e., 111 d and 11 H. This limitation 
is not essential. Transforming now the system (43)
(45), as was done for the B phase, we obtain an equa
tion for M, O!, /3, and <1>, in the right-hand sides of 
which there are contained, besides slowly varying 
terms, also terms that change with the Larmor fre
quency and its multiples. The existence of such terms 
was noted by Brinkman and Smith. m Since we are not 
interested here in motions with frequencies on the or
der of 0 A and O~, we average the obtained system over 
the time interval T satisfying the inequality 1« T« l/OA' 
As a result we obtain a system of equations describing 
slow variations of the magnetization 

~1:='/8QA'(1+COS~)' sin 21ll, 

M~='/8QA:[2 cos ~+ (1+cos~) cos 21ll], 

(46) 

(47) 

M~=-'/,QA' sin ~(1+cos~) sin 21ll, (48) 

MI!>='/,QA'(1-COS ~) [2 cos ~+(1+cos ~) cos 21ll] +M(1-M). (49) 

This system has an integral P =M(l - cosf3) = const, 
which enables us to exclude {3 from (46) and (49), after 
which these form a Hamiltonian system with a Hamil
tonian 

(M 1)' Q' P)' 1 (P )'] J'6'A(M,<D)=-T"--+[(1- M +"2cos2cD 2- M . (50) 

The stationary solutions are obtained by equating to zero 
the right-hand sides of (46) and (49). There exist two 
such solutions: 

1ll,=O, 
QA ' P P 

M =1+--(4-3-)' , 8 Me' M,' 

The principal interval of the variation of <I> is in this 
case - 1T/2 '" <I> '" 1T/2. The first of the written solutions 
is a center, the second a saddle (see Fig. 2). The fre
quency of the small oscillations about the center in prin-
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FIG. 2. 

ciple or of O~ is determined. by the formula 

(51) 

At P = 0 it goes over into the frequency of the longitudi
nal oscillations of the magnetization. Substitution of 
<I> =0 in the right-hand side of (47) yields the frequency 
shift of the transverse resonance 

(52) 

The last expression coincides with that proposed by 
Osheroff and Corruccinic41 and obtained by Brinkman 
and Smith. [51 The formula describes well the experi
mental data at all angles between M and H. 

The description of the process of the rotation of the 
magnetization for the A phase can be carried out in 
analogy with the procedure used for the B phase, except 
that the frequency shift of the transverse resonance sets 
in here from the very beginning, and the dipole energy 
is of the form 

(53) 

Instead of (41) we now obtain 

(54) 

and for i3.nax we have the equation 

(55) 

The applicability of Eq. (54), and with it also (55) is 
limited, just as in the case of the B phase, by the adia
baticity condition wPr ({3)>> h. This condition, according 
to (51), is violated in the angle region 1T - /3- (h/OA )1!2 

- 30 0 for hand 0 A from CSl • All the values of i3.nax which 
are obtained with the aid of (55) for the h and 0A used 
by Osheroff and CorruccinicSl fall in this region, and 
therefore are generally speaking incorrect. It is pos
sible, however, to describe the rotation of the magneti
zation also in the non-adiabaticity regions, by using the 
fact that in this region the moment produced by the di
pole-dipole interaction for hand 0A from the experi
ment Of[Sl is small in comparison with the moment pro
duced by the deflecting field in a ratio OV4h. This pa
rameter assumed in the experiments of Osheroff and 
Corruccini values from 0.06 to 0.4. By virtue of the 
indicated smallness we can use the method of succes
sive approximations and omit in the zeroth approxima-
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tion the terms proportional to O~ in those equations 
which describe the rotation of the magnetization. As a 
result we have f3=ht', a=<i>=M=o. 

To obtain the next approximation, it is necessary to 
substitute the values M = 1 and <I> =0 into the terms pro
portional to O! of the right-sides of the aforementioned 
equations, after which it is easily seen that these equa
tions have an integral that is obtained from (54) by ex
pansion in terms of O!/4h, and for f3max we get 

For the experimental curves of[3J, plotted at T/Tc 
=0.754 and T/Tc =0. 854 we have in accordance with 
(56) 180 ° - f:\nax '" 20 0. It must be borne in mind that for 
these curves O~/4h'" 0.4, so that the emplOYed approxi
mation is not very accurate and the result should be re
garded as an estimate. For T /T" =0. 930 we get 180° 
-,8",ax"'10°, and for T/Te=0.952 we have 180° -f:\nax 
'" 4 0. In this case O~/4h is equal to 0.2 and 0.06, re
spectively, and the approximation should give good re
sults. 
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Translated by J. G. Adashko 

thin-film 

The critical magnetic fields Hel and He II of superconducting layered thin-film C-(V -C-V)-C samples, in 
which a nonmonotonic dependence of the critical temperature Te and resistivity p on the thickness of the 
intermediate carbon layer was previously observed, are investigated. It is found that IdHelidT I and 

IdH 2 Id1] also depend near T nonmonotonically on the thickness of the layer. Estimates of the 
<II h 'd I electron density of the states derived on the basis of data on Id Hell d T I and data on teres! ua 

resistivity agree qualitatively with the assumption that the nonmonotonic dependence of Tc and p on the 
thickness of the carbon layer is due to variation of the electron density of the states. 

PACS numbers: 73.60.Ka, 7l.20.+c 

An oscillatory dependence of the critical temperature 
of superconducting films of thickness d < 300 A on the 
thickness d of the dielectric coating (in the range of de 
from 0 to - e30 A) was observed in ll-41. The objects of 
these investigations were superconducting films of 
MO_C/1,21 TC/21 y, 13l and Al/41 the dielectric being car
bonU - 31 and silicon oxide. 14l Similar oscillations were 
observed in a film system with two vanadium layers, 
C-(V-C-Y)-C, l31 as functions of the thickness of the 
intermediate dielectric C layer. 

Golyanov et al. l2,31 have observed also correlations 
between T e and the resistivity in films having different 
dielectric-coating thicknesses and in sandwiches with 
different intermediate dielectric-filler layers, viz., 
the positions of the maxima of T e corresponded to the 
minima of the resistivity. It was indicated in this con
nectionl3l that this correlation can be explained by as-
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suming that the oscillations are the result of a change 
in the electron' density of states. 

The easiest way to estimate experimentally the elec
tron density of states N in film samples is to calculate 
N from data on the perpendicular magnetic fields Hel. 
and on the residual resistivity Pn • l5-61 This is the meth
od that will be used here to determine N. The investi
gations were carried out on two-layer vanadium-carbon 
C-(Y-C-Y)-C sandwiches. Samples of this type were 
chosen because they exhibited most distinctly the corre
lation of Te and Pn• 13l Besides Hel. and Pn we measured 
also the parallel critical magnetic fields Hell' 

SAMPLES AND MEASUREMENT PROCEDURE 

The C-(Y-C-Y)-C sandwiches were prepared by ion 
sputtering in an ultrahigh-vacuum installation. 13l The 
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