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The character of phase transitions occurring on excitation of quasi-particles in the ordered phase by an 
external field is investigated for three models: an ordinary superconductor, an excitonic insulator (or 
structural transitions of the Peierls-transition type) and a superconductor with electron-electron repulsion. 
The structure of the ordered phase depends essentially on the form of the distribution function n (E) of the 
nonequilibrium quasi-particles. If the magnitude of the gap I:!. in the single-particle excitation spectrum is 
less than the energy of the Debye phonons, the distribution function n (E) ditTe~s strongly' fro~' the qu~si­
Fermi function. For this reason, the uniform state of superconductors with pumping can be stable. In the 
opposite case of a large gap I:!., a quasi-Fermi distribution of the nonequilibrium excitations, with a nonzero 
chemical potential, is possible. If the ordered phase in this case is a consequence of attractive interaction, 
the uniform state in the ordered phase is unstable. For the example of an excitonic insulator the 
dependence of the period of the nonuniform state on the pumping intensity is found. But if the ordered 
phase is a consequence of repulsive interaction, so that its existence is possible only in conditions of 
pumping, for a quasi-Fermi (inverted) distribution of the excitations the uniform state is stable. 

PACS numbers: 64.60.Bm, 74.20.Ef 

1. INTRODUCTION 

Great interest has recently developed in the study of 
the character of the phase transitions in systems situ­
ated in the field of an external source. Particular in­
terest in this problem has arisen in connection with the 
search for possibilities of raising the critical tempera­
ture of the superconducting transition. 

Most types of phase transition are connected with col­
lective effects. As the temperature is raised, excita­
tions (quasi-particles) appear, leading to a decrease of 
the degree of order (because of the collective charac­
ter of the latter) and to the existence of a critical tem­
perature. 

The action of an external source can be reduced to an 
increase of the number of quasi-particles as compared 
with the equilibrium number, and to a change in the 
character of their energy distribution. The magnitude 
of the order parameter in nonequilibrium conditions can 
be determined by the equation for the equilibrium case, 
in which, in place of the equilibrium quasi-particle dis­
tribution function, we must substitute the solution of the 
kinetic equation. [1a) Usually, the electron-collision 
times over which the quasi-particle distribution func­
tion changes are long compared with the characteristic 
times of the variation of the order parameter. 
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In the kinetic equation the time dependence of the or­
der parameter must be neglected, it being assumed that 
it has time to reach its stationary value for the particu­
lar quasi-particle distribution function n(e) at the given 
moment of time. The form of the function n(e) depends 
essentially on the magnitude of the order parameter 11. 
The diagram technique of Keldysh[1b) turns out to be 
convenient for the description of such systems. 

The properties of the system in the ordered phase 
turn out to be very sensitive to the form of the function 
n(e). For example, if n(e) >t in a certain energy inter­
val, a superconducting state is found to be possible for 
a repulsive electron-electron interaction. [2) Instead of 
perfect diamagnetism, a system in a superconducting 
nonequilibrium state can possess perfect paramagne­
tism. In systems of the excitonic-insulator type, [3) in 
which the dielectric gap arises as a consequence of col­
lective effects, magnetic ordering is possible on pump­
ing. (4) 

In the present paper we shall investigate the possi­
bility of the appearance of nonuniform states on pump­
ing, for three modelS: a normal superconductor (Sec. 
2), an excitonic insulator (Sec. 3), and a superconduc­
tor with repulsive electron-electron interaction (Sec. 
4). Similar problems have been investigated for a num-
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ber of models in equilibrium conditions. For example, 
in superconductors in the presence of an exchange field 
the concentrations of electrons with opposite spins can 
be unequal. Therefore, in the superconducting state 
unpaired electrons remain present even at T= O. It was 
shown in[5,6] that in these conditions a nonuniform state 
of the superconductor arises. Analogously, in the case 
of a doped excitonic insulator, unpaired electrons exist 
above the gap even at T = 0, and this also leads to the 
existence of charge-density or spin-density waves of 
large period. [7] We note that in both these cases[5-7] 
the distribution function of the unpaired particles is a 
Fermi function. 

Unpaired particles also arise under the action of a 
pumping source, both in a superconductor and in an ex­
citonic insulator. But, unlike in the above-mentioned 
equilibrium cases, here quasi-electron and quasi-hole 
excitations already exist simultaneously at T = O. The 
form of their distribution functions can differ substan­
tially from the Fermi form, depending both on the mag­
nitude of the gap in the electron spectrum and on the 
pumping intensity. 

For normal superconductors, in view of the small 
magnitude of the super conducting gap as compared with 
the Debye energy of the phonons, n(e) <!- for any pump­
ing intensity. [8] The deviation of n(e) from the quasi­
Fermi function leads to the result that, even with pump­
ing, the uniform state of the superconductors turns out 
to be stable (cf. Sec. 2). 

In the case of excitonic insulators (which include sys­
tems in which the dielectric gap is a consequence of the 
appearance of charge- or spin-density waves), the mag­
nitude of the gap can be greater than the Debye energy 
of the phonons. Therefore, the distribution function of 
the quasi-electrons and quasi-holes can be of the Fermi 
type. Then the uniform state. is found to be unstable, 
and long-wavelength denSity modulations should exist in 
the dielectric phase (cf. Sec. 3). 

In the case of superconductivity with repulsive inter­
action (cf. Sec. 4), the superconducting state arises 
only when n(e) >!-, and this is possible only for a large 
magnitude of the gap .1. [2] Below it will be shown that 
the uniform state is stable, despite the Fermi charac­
ter of the distribution of the quasi-particles excited by 
the pumping. Formally, the mathematical description 
of all the models considered below is the same. We 

I write the Hamiltonian of the system in the following 
form: 

H=Ho+g S 'I' '" + (r) 'I' ;,+ (r) qr,,(r) 'I' ,.(r)dr, (1) 

where Ho is the Hamiltonian of the noninteracting parti­
cles; i, j are band indices. 

For an excitonic insulator the scattering of an elec­
tron from one band by a hole from another band pos­
sesses a singularity, and therefore in the Hamiltonian 
(1) we keep the term with i* j and g > 0, which corre­
sponds to electron-hole attraction. 

We shall treat superconductivity in a one-band model 
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(i = j), both for the case of electron-electron attraction 
(g< 0) and for the case of repulsion (g > 0) between the 
electrons. Since we shall be interested in a nonequi­
librium state of the system, it is necessary to write 
down a system of equations for the normal (G) and 
anomalous (F) Green functions, using the Keldysh tech­
nique for nonequilibrium processes. Db] The solution of 
the system for the nonuniform case, when 

D. (r) =±igF+(r, r) =D.e"'· 

(the plus sign in (2) corresponds to a superconductor 
and the minus sign to an excitonic insillator), has the 
form 

u Z Vp2 
G (p, (0) = p + --,--:---:-:::----0-

oo+pq!m-E+iO oo+pq!m+E-io 

+2ni{ npu?o (00 + : -E) -n_"v:o (00 +: +E)}, 

-D. 
F+(p, (0) 

(oo+pq!m-E+io) (oo+pq!m+E-io) 

(2) 

(3) 

nD.i { ( pq) (pq ) } -E npo oo+-;n-E +n_po oo+-;n+E , (4) 

where 

E=l's'+D.', up', vp'=t!,(1±~!E), 

and np is the quaSi-particle distribution function, obey­
ing the kinetic equation. [la,8] 

Substituting the expreSSion for F+ from (4) into (2) 
we obtain the equation for A: 

The plus sign in the equation corresponds to the exci­
tonic insulator and the minus Sign to the superconductor, 
N(O) is the denSity of states at the Fermi level, and w 
is the characteristic cutoff energy, equal to the Debye 
energy tiWD of the phonons in the case of a normal su­
perconductor and of the order of the energy of the plas­
ma oscillations in the cases of the excitonic insulator 
and the superconductor with repulsion. 

2. INVESTIGATION OF THE STABILITY OF THE 
UNIFORM STATE OF A SUPERCONDUCTOR WITH 
PUMPING 

On irradiation of a superconductor with a light of fre­
quency n greater than the magnitude of the gap A (tin 
> 2.1), breaking of the Cooper pairs occurs, as a result 
of which quasi-particles in excess of the equilibrium 
number appear above the gap. Together with the usual 
heating of the system, this should lead to suppression 
of the superconductivity, as was indeed observed in the 
experiments Of l9 ,10]. To explain these experiments, a 
model was proposed in[11] in which the distribution func­
tion of the nonequilibrium quasi-particles was assumed 
to be a quasi-equilibrium function with a nonzero chemi­
cal potential JJ.: 

(6) 
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In this case, the phase transition to the normal state 
with increase of pumping intensity I turns out to be a 
first-order transition. However, in [8J it was shown 
that the distribution function of the non equilibrium 
quasi-particles differs substantially from the Fermi 
form (6) and cannot exceed the value! for any energy e. 

The reason for this restriction is that, for A« HWD 

(which is fulfilled for all known superconductors), the 
processes of scattering and annihilation of quasi-par­
ticles proceed at an apprOximately equal rate (if we do 
not assume that n(£)« 1), since they are due to one­
phonon processes. As a result, with increase of the 
pumping intensity the gap A vanishes when n =! . [8] The 
parameter f3c characterizing the critical pumping inten­
sity I is defined by the following expression: 

where Ec is the amplitude of the field with frequency n, 
T is the electron-momentum relaxation time, and Ao is 
the gap in the absence of pumping. Precisely such a 
smooth transition to the normal state was observed, ap­
parently, in the experiments of [12.13]. 

In the experimental work of Cl2-14J, a smooth increase 
of resistivity with increase of pumping intensity was ob­
served at sufficiently high pumping intensities. On this 
baSiS, the hypothesis that a non equilibrium intermediate 
state was being observed in the experiments was put 
forward. 

In the theoretical papers[15,16J it was stated that in­
stability of the uniform state of a superconductor with 
pumping is possible under the condition 

ii>2T/I'1., (7) 

where n is the dimensionless quasi-particle concentra­
tion, defined below. Again, the quasi-Fermi function 
(6), which goes over for small pumping to the Boltz­
mann function 

( I-t-e) n(e) ... exp T . (8) 

was used for the quasi-particle distribution function 
n(e). Starting from a comparison of the terms describ­
ing scattering and annihilation of quasi-particles in the 
kinetic equation, one can show that the function (8) is 
valid if the condition 

ii4:'/,,(T /1'1.),". (9) 

which contradicts the condition (7), is fulfilled. There­
fore, the question of the stability of the uniform state 
of a superconductor with pumping must be solved using 
the distribution functions obtained from the solution of 
the kinetic equation. For small pumping levels, the 
form of the function n(e) was obtained in[17J. 

As was noted above, the uniform superconducting 
state goes over into the normal state at nc =!, which 
corresponds to a certain value of the dimensionless 
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pumping-field amplitude ffc. To solve the question of 
the stability of the uniform state (with total pair mo­
mentum q = 0) relative to states with q* 0, it is neces­
sary to investigate the dependence of the quantity "7J; 
on the wave vector q. [8] If a state with q* 0 is more 
favorable, the magnitude of f3c should increase with q, 
reaching a maximum value at a certain qo. 

To find f3c(q) we shall make use of Eq. (5) with A = 0, 
and for the quasi-particle distribution function we shall 
use the expression[S] 

1 ( E ) 
n(e)=z 1- e'+4.1.,"n')'" ' 

and the condition 

1 ~ 

ii=-Jn(e)de 

"'" • 

1 1 OCI OCI 

-, JdX JdE JdE' n(e+qvx)n(e'-qvx)=~" 
2.1.. 

_1 0 0 

ii'=~, .. 

(10) 

(11) 

(12) 

The condition (11) is obtained by integrating the kinetic 
equation and describes the balance of the numbers of 
quasi-particles being created by the source and being 
annihilated. Substituting (10) into (11) gives (12). 

After integration, we find from (5) 

1 vq_ 1 'I, (>I'H) '''+1 
- In >l'+ln--l-- (>1'+1) In (+1)' , 
2 1'1. 2 11' "-1 

¢==Ij"(q)= ( 2.1..ii)'. 
L'q 

(13) 

(14) 

In the limit of small q (l/'_oo), from (13) and (12) we ob­
tain 

- 1 (Vq)' 21'~,=1-3 ~ , 

i. e. , the quantity ffc decreases with increasing q 
(d.f7J;,/dq<O). If we can show that the expreSSion d.flf;,/ 
dq does not have extrema for any q, then this will mean 
that d"7J;/dq is negative everywhere and a state with 
q* 0 is unfavorable. 

Calculating the derivative from (13) ,and equating it to 
zero, we obtain the following equation: 

..!..In (.p+1)'''+1 (.pH),/=O. 
2 (1jJ+1) '/'-1 

(15) 

It is not difficult to show that for O<q<oo (0<1/'<00) this 
equation has no solutions. Consequently, d"7J;/dq<O, 
1. e., the uniform state is stable for 0 < f3 < f3c' 

The analysis performed shows the sensitivity of the 
criterion for stability of the uniform state to the form 
of the distribution function of the nonequilibrium quasi­
particles. According to the criterion (7) for instability 
of the uniform state, obtained in[15,181 for a quasi-Fermi 
excitation distribution function, a nonuniform state at 
T = 0 should arise at arbitrarily low pumping levels. 
However, the investigation we have performed at T=O 
with a distribution function that is the self-consistent 
solution of the kinetic equation shows that the uniform 
state of the superconductor is stable even at high pump­
ing levels. 
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It is possible that, by virtue of the specific conditions 
of the experiments of m ,14], the function n(E) differs 
from the function (10) investigated by us. It is difficult, 
therefore, to reach a definite conclusion about the char­
acter of the superconducting state investigated in the 

. t f[1314] A . experunen so'. nonuniform state of a super-
conductor with pumping could, in particular, be a con­
sequence of inhomogeneity of properties of the samples 
investigated. 

3. LONG-WAVELENGTH MODULATIONS IN THE 
NONEQUILIBRIUM STATE OF AN EXCITONIC 
INSULATOR 

In an excitonic insulator, the plasma frequency, 
whichJs of the order of the Fermi energy EF , appears 
(in place of WD for the superconductor) in the expres­
sion for ~, and therefore the quantity 2~ can be greater 
than the Debye energy nWD of the phonons. Then there 
are no one-phonon annihilation terms in the kinetic 
equation and the quaSi-particle distribution function can 
be described by the quasi-Fermi function (6). At T = 0 
this is a step, i. e., the states in the conduction band of 
the excitonic insulator are filled by quaSi-particles up 
to a certain level J.l., and the states in the valence band 
are filled by quasi-holes to the level - J.l.. 

H, however, 2~<nwD' all the results of the preceding 
section are applicable to the excitonic insulator, 1. e. , 
a uniform state (q = 0) is realized in this case. 

We shall assume that 2~ > nWD; then, for q = 0, the 
results for the excitonic insulatort4l coincide with the 
results[U] for a superconductor with a quasi-Fermi dis­
tribution function. The dependence of the quantity ~ on 
the concentration n of non equilibrium excitations is 
shown in Fig. 1 (curve 1). The phase transition with 
respect to the pumping intensity is a first-order transi­
tion. 

As was shown in[15], when the excitations have a 
quasi-Fermi distribution function, at a sufficiently low 
temperature the uniform state of the system is unstable 
against spatial fluctuations of the concentration of ex­
citations. The criterion for instability of the system 
is the relationship[15] 

ol1/on<O. (16) 

It is easy to show that at T = 0 

(~o is the magnitude of the gap in the absence of pump­
ing), and, since on the stable branch of the curve ~(n) 
the quantity ~ > t~o, the relationship (16) is fulfilled for 
the whole of the stable branch. 

Thus, at T = 0 it is favorable for the system to go 
over to a nonuniform state. These nonuniformities are 
in a certain sense analogous to the electron-hole drop­
lets in an ordinary semiconductor, in which the mag­
nitude of the gap E, is assumed to be independent of the 
concentration of excitations, and the interaction of 
electrons and holes is responsible for the appearance 
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of the droplets. But in the case of an excitonic insula­
tor with pumping the nonuniform state arises because 
of the effect of the excitations on the magnitude of the 
gap ~. 

We can convince ourselves that the relationship (16) 
is also fulfilled in the equilibrium state of an excitonic 
insulator in the presence of doping-to be precise, aJ.l./ 
an = -1. Therefore, in this case too, it is favorable 
for the system to go over to a nonuniform state. An 
analogous conclusion was reached in[7] by solving the 
equation for ~ with q* 0 and finding the minimum of the 
thermodynamic potential n. 

We assume that in the doping the positive charge of 
the ions is distributed uniformly and, therefore, the 
Coulomb interaction between the impurity ions and the 
electrons hinders the appearance of a nonuniform dis­
tribution of electrons. In the presence of pumping, 
however, the number of electrons is equal to the num­
ber of holes. H the electron concentration is increased 
in a certain region, then the hole concentration is also 
increased in the same region, and, consequently, the 
local eledroneutrality condition is preserved. 

The criterion (16) for instability of the uniform state 
of the system can be obtained starting from the follow­
ing considerations. As is well known, the Debye 
screening radius r D is given by 

, 4tte' on 
rD- =--

e, all 

and for aJ.l./an <0 the quantity rD becomes purely imagi­
nary. This indicates that the Coulomb potential of the 
charge is oscillating. Thus, a uniform distribution of 
charge is unstable. 

We turn now to the quantitative description of the non­
uniform state for an excitonic insulator with pumping 
To determine the dependence of the period of the non­
uniform state on the concentration of excitations we 
shall seek solutions for ~ in the form (2). In the pres­
ence of pumping, coexistence of singlet and triplet pair­
ings is poSSible, and this leads to magnetic ordering in 
the system. [4] We shall assume that the singlet elec­
tron-hole interaction constant gs > 0, and the triplet con­
stant gt <0. In this case stable compatible solutions for 
the singlet and triplet order parameters do not exist. 
Moreover, just as for an excitonic insulator with dop­
ing, [19] super conducting pairing of excitations is possi­
ble if the effective superconducting interaction corre­
sponds to an attraction. We shall assume the opposite 
situation, i. e., we shall assume that superconducting 
pairing of excitations is impOSSible. 
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Thus, our system will be described by the Green A/Au 

functions (3), (4). The energy spectrum of the excita- 1.0 k-------.."...::..:...... 
tions, which is determined by the poles of the Green 
function, has the form 

oo,.,=pq/m± l't'+ d '. 

Consequently, although the absolute value I A(r) I of 
the gap is a uniform and isotropic quantity, the excita­
tion spectrum of the system becomes anisotropic. For 
q greater than a certain critical value, this anisotropy 
leads to "overlap" of the bands of the excitonic instila­
tor and to redistribution of the electrons between the 
valence band and the conduction band. 

Substituting 

n(e)={O for e>J1 
1 for e';;J1 

into Eq. (5) and performing the integration, we obtain 
an equation for A: 

d d 
-In-=- {G(r+)-G(r_)}, 

do Q 

where 

r±= J1:Q, G(x)=8(x-l) {xln(x+l'x'-l)-l'N}, 

Sex) ={ 1 for x>O 
\0 for x";;O' 

(17) 

AO = 2we-11 ~N(O) is the dielectric gap in the absence of 
pumping for q = 0, and Q = PFq/m. 

Equation (17) differs from the corresponding equation 
for the case of a doped excitonic insulator(1J by the ab­
sence of the factor 2 in front of In(A/ Ao) and by a slight­
ly different definition of the function G(x). (In[1J the fac­
tor e(1 xl -1), as distinct from e(x-1) in our case, ap­
pears in the definition of G(x).) These differences 
arise from the fact that in our problem we have, at the 
same time, quasi-Fermi levels for the electrons (+ /J.) 
and for the holes (- /J.), whereas in the case of doping 
there is a single Fermi level /J.. 

We shall investigate Eq. (17) for a given concentra­
tion n of excitations. For this it is necessary to have a 
relation connecting the pOSition of the quasi-Fermi lev­
el /J. with the excitation concentration n. 

From the function Gu , defined by formula (3), and 
G22 , which has a form analogous to Gu , we find the num­
ber of electrons in the conduction band of the excitonic 
insulator: 

~ = S doo dp{G II (p, 00) _Gil' (p, 00)+ G" (p, 00) -G,,'(p, oo)}, (18) 

where V is the volume of the system and G~l and Gg2 

are the Green functions in the absence of pumping. Sub­
stituting the expressions for Gu and G22 into (18), we 
obtain 

N (19) 
n,= 4N(O)Vd, 
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where N(O) is the denSity of states at the Fermi level, 
and 

'Y(x)=8(x-1) {xl'x'-1-1n(x+l'x'-1)}. 

For Q > A the overlap of the bands leads to redistribu­
tion of the electrons. The number Nl of electrons in 
the conduction band as a result of the overlap is given 
by 

N, 
nl = -;4""N;-;(0"')-=v:-:,'1-, (20) 

The number of electrons thrown into the conduction band 
by the external source is equal to the difference be­
tween the total number of electrons in the band and the 
number due to the overlap. ThUS, the relationship of 
interest to us between n and /J. has the form 

(21) 

We note that the concentration of excitations, like 
IA(r) I, is uniform over the sample. The system of 
equations (17), (21) determines the dependence of A on 
n for different values of the parameter Q. This depen­
dence is depicted in Fig. 1 (curve 1 corresponds to the 
uniform state, i. e., Q = 0; for curves 2-9 the param­
eter Q/ Ao is respectively equal to: 2) o. 1; 3) 0.3; 4) 
O. 5; 5) o. 7; 6) 0.9; 7) 1. 0; 8) 1. 1; 9) 1. 3). As can be 
seen from Fig. 1, for small n the nonuniformity has a 
weak effect on the dielectric pairing so long as Q < Ao. 
An interesting feature of the nonuniform solutions is the 
fact that there exists a region of concentrations of exci­
tations (0. 19<n/Ao<0. 22) in which there are nonuniform 
solutions while the uniform state is no longer possible. 
In analogy with the case Q = 0, the lower branches of the 
curves A(n) for Q'* 0 correspond to unstable states. 

Figure 2 shows the dependence of the quantity A on Q 
for different excitation concentrations n. (The param­
eter n/ Ao is respectively equal to: for curve 1) 0; 2) 
0.05; 3) 0.10; 4) 0.15; 5) 0.19; 6) 0.21.) The lower 
branches of the curves A(Q) correspond to unstable 
states. As can be seen from the figure, for small Q 

the quantity A increases with increase of Q, and the 
rate of increase increases with increase of n. At a cer­
tain Q the quantity A reaches a maximum (at the point 
of the maximum, A - Q) and then decreases, dropping 
to zero from finite values of A. For n > O. 19Ao (such 
concentrations of excitations suppress dielectric pair­
ing in the uniform state), the solutions for A start out 
from finite values of Q. Thus, nonuniformity favors 
pairing. 
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. 

From the whole region of Q in which solutions for A 
exist for a given n, the state that is realized is that 
with Q = QoPtJ corresponding to the minimum of the free 
energy F. 

To find this value of Q we shall calculate the dif­
ference of the free energies in the dielectric and metal­
lic phases from the formula 

Minimizing t::..F with respect to Q, we obtain an equation 
for the optimal value Q opt: 

r_'(r_ ~+3)e(r_)-r+,(r+ ~-3)-3h(r+)+1("-)1 
~ 

+2 Q [6(r+)-6(r_) 1=0, 

where y (x) is defined in (19) and 

6(x) =e(x-I) ['I,x1(x) - (x'-I)'/'l. 

(22) 

Equation (22) differs from the corresponding equation 
in(7) by the presence of the factor e(r_) in the first term 
and by a slightly different definition of the functions y (x) 
and O(x). 

Solving Eqs. (17), (21) and (22) jointly for each n, we 
find Qopt. In the (t::.., Q)-plane the values of Qopt lie on 
the line 7 in Fig. 2. It can be seen from the figure that 
the quantity t::.. for Q = Qopt is greater than t::.. for Q = 0 and 
the same level of pumping. With increase of concentra­
tion of excitations, the quantity Qopt increases. 
Throughout, solutions of the form t::..(r) = t::..e Ziq .r (2) were 
investigated above. This corresponds to a spatially uni­
form distribution of electron denSity. As was shown 
in [6], for a superconductor in an exchange field the free­
energy minimum corresponds to a solution for t::.. in the 
form of a combination of solutions of the type (2), cor­
responding to a three-dimensional periodic lattice. In 
the case of an excitonic insulator, such a three-dim en­
sionallattice will correspond to a long-wavelength 
modulation of the original periodic lattice. The size of 
the period of the modulation is determined by the value 
of 1/ qopt and depends on the pumping intensity in ac­
cordance with Fig. 2 (curve 7). 

The question of the possibility of an excitonic mecha­
nism for superconductivity, in which the characteristic 
electron energy should play the role of WD in the expres­
sion for t::.., has recently been discussed (cf., e. g. , [ZO). 
In this case the relationship 2t::.. > WD can be fulfilled and 
the excitation distribution function can be of the type 
(6). All the results of this section will be applicable to 
such superconductors. 

Up to now we have considered the case of an excitonic 
insulator formed from a semimetal with band edges co­
inciding in momentum space. In this case, in the ab­
sence of pumping, the crystal structure does not change 
in the metal-insulator phase transition. But if the band 
edges are spaced by a vector w, then, in the absence 
of pumping, in the metal-insulator phase transition a 
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new period, the size of which is inversely proportional 
to w, appears in the system. 

In this case, in the presence of pumping, in place of 
(2) the solution for t::.. will be t::..(r) = t::..exp{i(2q+ w)· r}, 
and the quantity Qopt will again be determined by the 
curve 7 in Fig. 2. In the absence of pumping, instead 
of a phase transition of the type in which the period is 
doubled, a long-wavelength modulation will be super­
imposed on the doubling . 

4. SUPERCONDUCTIVITY IN SYSTEMS WITH 
ELECTRON·ELECTRON REPULSION 

As was shown in[Z,Zl,ZZl, for n(e) >t a super conducting 
state is possible for systems with a repulsive electron­
electron interaction. In[Z11 a model of a semiconductor 
was considered in which, in order to realize a regime 
of inverted population on pumping, the gap width Eg was 
greater than the energy of the Debye phonons. The pos­
sibility of realizing such a state in a metallic model 
was considered in[ZZ). 

In this section we shall investigate the stability of the 
uniform superconducting state for the example of the 
metallic model. 

We recall that the metallic state with an inverted dis­
tribution of electrons in a layer 2J.l. about the Fermi lev­
el is unstable. [Z) The magnitude of the gap t::.. in the su­
perconducting state is determined by the expreSSion 

2,,' { 1} n=-exp ---wp gN(O) , (23) 

where wp is of the order of the energy of the plasma os­
cillations and g is the effective inter-electron repulsion 
constant (g > 0). 

The difference OF of the free energies of the super­
conducting and normal states for inverted occupation is 
equal to + t::..z /2, i. e., the maximum of the function fJF 
corresponds to the superconducting state (see Fig. 3, 
curve 1) and the minimum corresponds to the state with 
t::.. = O. It was shown in[Z) that this state with the mini­
mum OF(t::..) is unstable. But the state with the maximum 
OF(t::..) is stable for g > O. [Z3] Using the approach de­
veloped in this paper, we obtain for the boundary of sta­
bility in the limit Q - 0, w/Q - 0: 

S (1-2n(E) +~~) d'p=O. 
E' E'dE 

(24) 

Substituting the function n(e) from (6) into (24), it is 
easy to convince onself that the state at the maximum of 
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OF(.1) is stable for g> O. Therefore, despite the fact 
that this state is energetically unfavorable compared 
with the state .1 = 0, it is this state which should exist as 
a stationary state, since the state .1 = 0 is unstable. 

We note that, in systems with attraction, e. g., in the 
case of the excitonic insulator considered in Sec. 3 (cf. 
Fig. 4), for n(e) >t an unstable state corresponds to 
the maximum of OF(.1). The state .1 = 0 with the mini­
mum OF(.1) is stable. At low pumping intensities the 
state at the minimum of OF(.1), with.1t- 0 is realized, 
since it is energetically more favorable than the state 
with .1= O. 

As was shown in[2Z], the superconducting state for re­
pulsive interaction with pumping possesses perfect pa­
ramagnetism, in place of the perfect diamagnetism for 
ordinary superconductors. This should lead to an os­
cillatory character of the penetration of a magnetic 
field into such a superconductor. A similar picture 
should obtain in the nonuniform state of a superconduc­
tor in a strong exchange field. [5] 

Starting just from the perfect paramagnetism of su­
perconductors with repulSion, we can conclude on the 
basis of a Maxwell equation that such a state is mag­
netically unstable even in the absence of an external 
field. In fact, to solve the question of the stability of 
the uniform state of such superconductors it is neces­
sary to solve Eq. (5) for .1 jointly with the equation ob­
tained by minimizing the free energy with respect to q, 
as we did in the preceding section. 

Before proceeding to this question, we shall find the 
amplitude r(w, q) for electron-electron scattering with 
nonzero total momentum q for a metal with inverted oc­
cupation. Carrying out calculations analogous to those 
for the case of an equilibrium metal with electron-elec­
tron attraction, [24] for the pole of r(wo, q) we obtain, 
for qvln« 1, the following expression: 

OOo=iO( i-v'l ql '/60'), (25) 

where n is determined by the expression (23) for .1. 
Thus, a system with inverted occupation possesses 
maximum instability with respect to pairing of electrons 
with zero total momentum. If pairing with qt- 0 occurs, 
such a state will be unstable with respect to pairing , 
with q = O. This is true at least for small q. 

The analogous conclusion concerning the stability of 
the uniform superconducting state against collective ex­
citations with small q follows from the condition (24). 

We shall make use of a qualitative criterion for the 
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stability of the uniform state, proposed in[15] and used 
by us in Sec. 3 for the excitonic insulator. A break­
down of the system into regions, in one of which the 
concentration n of excitations is higher than in the uni­
form case while in the other it is lower, is favorable if 
the derivative of the quasi-Fermi level jJ. with respect 
to n is negative. Using for jJ. the expression[2] 

and for .1 the ~xpression (23), it is easy to see that 8jJ.j 
an> O. That a nonuniform solution is unfavorable for 
superconductivity with repulsion is connected with the 
fact that the gap .1 increases with increase of the pump­
ing intensity, whereas for systems with attraction .1 
falls with increase of n (cf. Sec. 3). It is for precisely 
this reason that a nonuniform state is more favorable 
in superconductors with an exchange magnetiC field[5.6] 
or in excitonic insulators with doping. [7] 

If, in a superconductor with repulSion, the gap .1 has 
decreased at a certain place on account of a fluctuation, 
the concentration of excitations in this place increases 
as a result of diffusion from neighboring regions. But 
with increase of n the gap .1 in this region should, ac­
cording to (23), increase, i. e., the fluctuation does not 
grow in time, but attenuates. 

We shall now consider this question in more detail. 
If we introduce the parameter .1=2wexp(1IgN(O», the 
system of equations for .1 and Qopt coincides with (17), 
(22) for the excitonic insulator. The difference in the 
solutions for .1 in these cases consists in the fact that 
for the superconductor we must consider the solutions 
corresponding to the maximum of the free energy (the 
lower branches of the curves in Fig. 2). Numerical 
calculations (cf. Fig. 2) show that the solutions of the 
system (17), (22) for a superconductor with repulsion 
correspond to the region jJ. < Q and .1« Q. In this case, 
neglecting terms of order .121 Q 2 in the right-hand side 
of Eq. (17), after simple transformations we obtain 

In~= ~+Q In 2(I'+Q) . 
~o I' e~o 

(26) 

Formula (26) determines .1 as a function of Q for given 
jJ.. The function .1(Q) has a minimum at the point Q 
= 110/2 - jJ.. In analogy with the previous diSCUSSion, 
from (22) with the condition jJ. < Q, .1« Q we obtain an 
equation for Q opt: 

(27) 

It is obvious that jJ. + Qopt >t.1o• i. e .• the value of Qopt 

is greater than that which corresponds to the minimum 
in the curve .1(Q). We shall show that the correspond­
ing value .1oPt is smaller than the value of .1 at Q = O. 

Since jJ.«.10 and jJ. + Qopt >tl1o. we have jJ.« Qopt. The 
system of equations (26), (27) determines the value .1opt 

corresponding to Qopt. Taking into account the condition 
jJ.« Qopt. for .1opt we obtain the expression 
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It is easy to see that with the assumptions made above 
the value .6.opt is smaller than the value of .6. at Q = 0, 
which is given by formula (23). 

Thus, the dependence of 6F on .6. for Q = Qopt corre­
sponds to the curve 2 in Fig. 3. It can be seen from a 
comparison of the curves 1 and 2 that the uniform state 
of a superconductor with inverted population and elec­
tron-electron repulsion is stable. 

Because of the perfect paramagnetism[22J of such su­
perconductors an external magnetic field penetrates, 
OSCillating, into the sample, and this leads to oscilla­
tions of the gap, the amplitude of which is proportional 
to the magnitude of the field. 
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