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The supercritical current state in a "pure" superconducting channel is investigated. The existence of such 
a state is due to the difference between the responses to the nonequilibrium electric field of the 
superconducting condensate and of the excitation gas. The inhomogeneous longitudinal field distribution in 
the channel is formed by elastic scattering of the excitations. Equations are proposed which describe the 
resistive structure in a "pure" superconductor. The equations are used to determine the asymptotic 
behavior of the current·voltage characteristics. 

PACS numbers: 74.30.Hp 

A current exceeding the critical value je flowing 
through a thin superconducting channel can produce in 
the channel a peculiar state characterized by simulta
neous existence, on the one hand, of an energy gap in 
the excitation spectrum and a resultant superconducting 
current, and on the other hand a normal dissipative cur
rent producing a voltage drop in the channel. The mi
croscopic theory of such a resistive state was devel
oped in[1-3] for the case of dirty superconductors. The 
present communication is devoted to an analysis of the 
supercritical current state of a pure superconductor. 
Interest in this case is due in part to publication of re
ports of experiments on the measurement of the cur
rent-voltage characteristics of whiskers under super
criticality conditions (see, e. g. ,[4]). Principally, how
ever, the investigation of a pure superconductor is of 
interest because of the more lucid manifestation (com
pared with the case of an alloy) of the mechanisms that 
cause the response of the superconductor to a none qui
librium electric field. This lucidity is due to the possi
bility of representing a pure superconductor, over a 
sufficiently long time, in the form of a combination of 
two subsystems-a superconducting condensate and a 
gas of quasi-particle excitations. The difference in the 
responses of these subsystems to the longitudinal field 
plays the crucial role in the understanding of the nature 
of resistive states. [2] At the same time, the close for
mal analogy between the kinetic equation for the excita
tion in a superconductor and the kinetic equation of the 
normal metal makes it possible to compare in detail the 
character of the perturbation of their distributions by 
the electric field. 

The process of separating the condensate and forming 
the spectrum of the excitations in the superconductor, 
described by the kinetic equation for the electron-hole 
denSity matrix 9 [5]: 

(1) 

reduces to an asymptotic (over times that are large in 
comparison with 1/~) diagonalization of y in the repre
sentation of the locally homogeneous matrix 

(2) 
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The approximation (2) corresponds to a transition to an 
"abbreviated" description of the superconductor in 
terms of a two-component excitation distribution func
tion fa' Under the influence of the small perturbing 
terms, the distribution of the excitations changes slow
ly. The kinetic equation that describes this relaxation 
with allowance for the weak spatial dispersion and scat
tering by the impurities has been derived a number of 
times in preceding papers[5-S] and is of the form 

. ae, a/a 
la+-iJ V!a-Vea-=la(f), 

p iJp 
(3) 

where IaU) is the integral of the collisions with the im
purities. [7] The applicability of (3) is restricted by the 
following conditions: the time of formation of the con
densate must be short in comparison with the time of 
elastic relaxation: ~T» 1, and the characteristic spa
tial inhomogeneities determined by the depth of penetra
tion of the electric field must be large in comparison 
with the coherence lengths: liE» ~(T). As shown in[BJ, 
the second condition is satisfied in the region of weak 
supercriticality, j ~je' 

Near the critical temperature Te , the only region 
where it is meaningful to study the supercritical re
gime, the current flowing through the channel is weak, 
and consequently the electric fields produced in it are 
weak. This raises the question of identifying the stage, 
(1) or (3), at which it is necessary to take into account 
the perturbation of the system by the nonequilibrium 
longitudinal field. An analysis of the process (1) and 
(2) shows that a longitudinal field should be taken into 
account already during the stage of condensate forma
tion. In the opposite case, the off-diagonal (in the f 
representation) corrections to the matrix 9(0) (2) intro
duced into the macroscopic quantities (e. g., in the par
ticle-number density) a contribution that is comparable 
with the contribution of y(O) itself. PhYSically this 
means that the condensate adjusts itself rapidly to the 
longitudinal field, and a resultant appearance of a poten
tial .p in the spectrum of the excitations ea: 

(4) 

In formula (4), .p and Ps denote the gauge-invariant 
scalar potential .p = ecp + X/2 and the superfluid mom en-
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tum Ps = - eA + VX/2, where curl A = 0 and X is the phase 
of the superconducting order parameter. 

Thus, the response of the condensate to a longitudinal 
electric field of arbitrarily small amplitude is general
ly speaking nonlinear (in fact ~ is of the order of A). 

In contrast to the condensate, the relaxation of the 
excitations is much slower and is described by Eq. (3). 
To analyze this equation it is convenient to change over 
(with quasi-classical accuracy Te« £F) to new vari
ables[7J: p, <1-£=£", n=p/p, a=sign(~+~). Interms 
of these variables, taking into account the one-dimen
Sional character of the problem, Eq. (3) becomes 

. a/e • " 1 
/a+ a;-(cxvlll+/lL1 +'jV,p,) +cxv.jvda' ~ -{<po-u,!,,+CXv¢-/e « 1>-u<u»}. 

T 

'j~(n,p.)lp" u ~ ---, u'+v'~ 1. 
e-l]VFp. 

(5) 

In the right-hand side of (5), the angle brackets denote 
averaging over the angles: 

J do 
<. .. >~ 4,;""8«e'-ljVFP,)'-L1') Ivl-' .... (6) 

The functions (/>0' (/>1' and l/!, which enter in (5) are iso
tropic and are expressed in terms of the even part I. 

1 
<po~</+>, <pt~(ul+>, f+~ 2" '2./e, 

and the odd part I-

i 
1jJ=(v/-> , f-=z2.cxfa, 

of the distribution function. 

From the point of view of effects connected with the 
even part of the distribution function I., the behaviors 
of the excitations in a superconductor and in a normal 
metal are closest to each other. An electric field 
causes the distribution of the excitations to deviate from 
equilibrium, and this deviation can be calculated by 
perturbation theory. The principal term in the corre
sponding expansion of I. is the homogeneous isotropic 
function (/>6°), which is determined by the inelastic
scattering processes unaccounted for in (3): 

(7) 

This function is not at equilibrium, since the· field ~ en
ters in £. Accurate to terms quadratic in ~, the equi
librium distribution function (/>p is connected with (/>6°) 

by the relation 

(0) Ill' , a''!'o (0) 

<p,,=<po - -<v> --. 
2 ae' 

(8) 

The noted singularity «(/>p* (/>6°) is not peculiar to super
conductors. It is connected with the change of the sys
tematics of the electron-hole states (shift by ~) when 
the field is turned on, a change that can be realized as 
well also in a normal metal. However, whereas in the 
normal metal this change of the systematics is purely 
formal in character, meaning in fact only a redefinition 
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of the chemical potential, in a superconductor it re
flects a real physical process, the restructuring of the 
condensate, and manifests itself in a change of the val
ue of the energy gap A. The self-consistency equation 
for A in the quaSi-particle approximation (2) is[5J 

, IgI S d'p ~ (1 . 

'~2 (2n)' ~ ~t,. 

Substituting in this equation the equilibrium distribution 
function (8) (ideal heat removal) and expanding near Te 
in terms of the small A, we obtain 

The difference between the function (8) and the exact so
lution of (3) for the isotropic part of 1+ is connected, 
just as in a normal metal, with the release of Joule 
heat. This effect is proportional to E2 - ~2fii2 and near 
Te , owing to a large depth of penetration fiE of the elec
tric field into the superconductor, makes a contribution 
of higher order than ~2 to Eq. (9). These considera
tions enable us to separate the problem of calculating 
the resistive structure from questions connected with 
allowance for thermal effects. 

The behavior of the odd part of the distribution func
tion 1- in a superconductor is more distinctive. The 
point is that Eq. (3), while close to the kinetic equation 
of a normal metal, differs from the latter in one essen
tial aspect: the integral of the elastic colliSions (5) is 
made to vanish in the general case not by an arbitrary 
isotropic function, but also by a function that is even in 
a. Its application to an odd {asymmetrical in ~) iso
tropiC distribution function in the form la = al/! yields 

,,' <vL(cx¢) >= - -.p, "'=<u'><v>-<u><uv>. 
T 

(10) 

The function X differs from zero at P.* 0 and takes near 
Te the form 

,,~~/ 1 L1p.vP . 
'f 3 • e 

(11) 

Relation (10) shows that when the condensate moves the 
process of elastic scattering in the superconductor, be
sides making the distribution isotropic, equalizes also 
the asymmetry between its electronic and hole branches. 
This "branch mixing" (in accordance with the termi
nology of Tinkham and Clarke[9J is characterized by a 
time 

T. ~ -;. ~ T (..!l......)' . 
A L1p,vp 

(12) 

It is easily seen that the function l/! is resp<msible for 
the formation of the particle-number denSity fluctuation 
in the system: 

(jN~{j J~( 1-~ 6+<1) I.) ~-(jS ~ ~ s+!D ~O) - mpF S dE . 
(2n)' ..:::.., cr, (2n)'~ cr, <p n' IjJ . , 

(13) 
It follows therefore that relation (10) should introduce a 
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contribution, which is peculiar to superconductors, to 
the detaUed-balance equation of the charge; this con
tribution characterizes the accumulation of a self-con
sistent charge density in the channel. As a result, the 
distribution of t~e electric f~eld becomes inhomoge--

- neous. . As sbowft by further calcul.ations, the ~haI'ac
teristic -length of this inhomogeneity, which has the 
meaning of the depth of penetration of the electric field 
into the superconductor, is given by the estimate 

(14) 

At 1-10-3 cm and T - O. 9Te , the length OE is of the or
der of OE - 10-2 cm. 

The connection between the function I/! and the density 
fluctuations ON (13) makes it possible to examine the na
ture of the onset of the charge distribution in the super
conductor during the branch mixing from a different 
point of view-as the manifestation of the fact that the 
elastic-collision integral has the property of not con
serving the total number of particles. We recall that 
the kinetic equation (3) does not include the continuity 
equation[5-7): 

e}~'+div j=O. (15) 

The particle source that appears in this approximation 
in the right-hand side of (15) is made up, besides elas
tic collisions, also of convective terms and inelastic
scattering processes, 1. e., it consists of those parts 
of the kinetic equation which. violate the symmetry be
tween the electron and hole states (in the case of elas
tic scattering, this violation occurs precisely at Ps* 0). 
Conservation of the particle number (15) is ensured by 
the self-consistency equation for the phase X, which in 
the approximation (2) degenerates into a trivial identity 
and becomes meaningful only when account is taken of 
the corrections to the matrix y(O) (2) which are not di
agonal in the € representation. 

Thus, in the principal approximation (2), the con
servation law (15) is an independent equation, which 
jointly with the Poisson equation V E = 41Te15N determines 
the distribution of the fields «I> and P.. In a metal, ow
ing to the high denSity of the electronic states, these 
equations can be replaced by electroneutrality equation 
ON = 0 and by the condition that total current be con
stant: 

d'p ( ) ep; J j=e.Vv,+evF J -(? l" 'l I - ~ j, =eN,L', - -, de('lf+)= COilS!. 
... ;1 ~ ;t 

(16) 

Using formula (13) in the linear approximation in «1>, the 
electroneutrality condition takes the form 

lIt + J de1j>=O. (17) 

Before we proceed to find the functions I/! and f+ from 
(5), we note that the inelastic scattering processes, as 
is clear from the foregOing, also give rise to a non-uni
form distribution of the field. [9) However, owing to the 
low frequencies of the energy relaxation, these pro
cesses are not very effective in comparison with the 
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elastic processes, if the latter exist. In the problem 
of supercritical current states, where P. is of necessity 
different from zero, the elastic mechanisms assume 
the leading role. An example of an independent mani
festation of "inelastic ~ixing" may be the Singularity 
observed in[8) of the second-viscosity coefficient of a 
superfluid Fermi liquid near Te' 

The kinetic equation (5) was formulated in a patently 
gauge-invariant form with the aid of the functions «I> and 
P.. The appearance in (5) of these gauge-invariant func
tions, which is connected with the procedure of expan
sion in the gradient in the course of its derivation, in
troduces Singularities into the equation, inasmuch as «I> 

and Ps are singular. Indeed, in accordance with the 
main idea of [1.2), the phase of the parameter of the su
perconducting ordering in the resistive state contains 
discontinuities. In an infinite channel it is given by 

x(.r, t)=r.(x)+21It,t [~ ++], (18) 

where X(x) = X(x+ d) is a continuous periodic function, 
while the square brackets denote the integer part. 

The Singularities connected with these discontinuities, 
although playing a role in the intermediate stages of the 
calculations, do not manifest themselves in the formu
las for the observed quantities. In the normal terms 
(which do not vanish in the limit 11 =0), the correspond
ing terms combine into an electric field intensity: 

(19) 

In the superconducting terms, the singularities are sup
pressed by the factor 11, which vanishes at the point 
where the potential is discontinuous. This behavior of 
11 follows from an analysis of the resistive structure in 
small [- ~(T)] vicinities of the Singular pOints, which is 
presented in[3) (where the nOn-stationary Josephson ef
fects connected with the time dependence of the phase 
(18) is also discussed). The condition 11 = 0 can be re
garded as an effective boundary condition for the large
scale equation (3). The magnitude of the jump of the 
potential «1>0 is given by the total current j, and the peri
od of the structure d can be determined from the addi
tional condition that the entropy production be minimal. 

To solve Eq. (5) we use the smallness of the ratio 11 
OE (14). Confining ourselves to the case of a static 
structure, we omit from (5) all the derivatives with re
spect to time, with the exception of the ternfpropor
tional to P., which is not equal to zero by virtue of (18). 
We then solve the equation for fo" by inverting the op
erator 

d 
dx + «l>-ll(n»/GtljL'l. 

In the obtained integral equation, we expand the slowly
varying integrands up to terms - V/OE) 2. .The subse
quent averaging of (8) leads to a system of differential 
equations for the determination of the functions CPo, CPI' 
and I/! (the diffusion approximation). In the approxima
tion that is linear in «I> and is of lowest order in 11, this 
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system reduces toa single equation 

" '),} 8C:Vg., 
11' - <TJ')I.lP=a;p,. (20) 

In the same approximation, the connection between the 
anisotropic even part of the distribution f., which 
causes the appearance of the dissipative current, and 
the function l/J is given by 

a (0) 

i+=TJI (",' - a:o p,). (21) 

Substituting (17), (19), and (21) in formula (16) for the 
current and taking into account the smallness of ~, we 
obtain 

. n(3) eN A'p, 
] = TnZ-;;;-F + oE = canst. 

ep,'l 
o=3,T' (22) 

From (22), with allowance for the order of the gradients 
determined by Eq. (20), we obtain for the potential the 
estimate ~ - .:1. 

The derivation of Eqs. (20)-(22) is essentially based 
on an expansion in terms of .:1, the correctness of which 
in the nonequilibrium terms of these equations calls for 
explanation (in fact, the parameter is .:1/e). The possi
bility of this expansion is ensured by the behavior of the 
functions l/J at low energies, namely l/J(e) - exp(_l/eZ), 
which cuts off all the power-law divergences connected 
with the singularity in the density of states. As a re
sult, the characteristic energies assume an "equilibri
um" order e- Te' 

Equations (9), (17), (20), and (22) constitute a com
plete system, that describes the resistive structure in 
a pure superconductor. These equations are analogous 
to the corresponding equations for an alloy[2l and differ 
from the latter essentially only in the character of the 
ene@:dependence of the coefficient in the equation (20) 
for;l?~ 

In the dimensionless variables 

us ~ (3) Ao'eN. 4n' T;l 
, I. 

Bn' T, PF 
x-+-=-~ 

7l'3W) 

Ao ()cp.(') 
11'-+-=--11'. Ao'=gn'T,(T,-·T)I7~(3) 

l'2 as 

Equations (9) and (22) take the form 

A'+p,'+4lI'=1. j=A'p,-d4ll/dx. 

In the equation for l/J, it is convenient to transfer the 
singular inhomogeneous term to the boundary condition: 

Equation (7), which makes the system closed, takes in 
terms of the dimensionless variables the form 

411 = - f de 11' ch-' e. (24) 

The solution of the obtained system of equations is a 
very difficult task, principally because of the non-local 
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connection between l/J and ~ (or, equivalently, between 
~ and E). The dependence of the coefficient of Eq. (23) 
leads to a "floating" length scale in this equation, which 
hinders an effective construction of asymptotic solu
tions. Nonetheless, qualitative information on the be
havior of the current-voltage characteristics in the lim
iting cases of small (j -jc «je) and large (j» je) cur
rents (but still far from the current je/1,Zl) can be ob
tained from these equations. 

At large currents j» je, as shown in[Zl, the period of 
the resistive structure decreases. A Simple analysis 

. shows that the characteristic energies that determine 
the deviation of the potential from the linear spatial dis
tribution ~ = - ~o x / d + cp(x) also decrease in this case. 
This makes it possible to omit from the integral with 
respect to the energy, which determines cp, the factor 
cosh-2e. An investigation of the group properties that 
the solutions acquire in this case establishes the follow
ing asymptotic relations: d - r2, ~o·-rl; .:1, Ps-1. 

From the obtained formulas follows a connection be
tween the current and the average field intenSity E = ~o/ 
d in the form 

j=oE ( 1 + canst· :i)' 
In the immediate vicinity ofje, whenj -je«je' the 

period of the structure increases[2l and becomes much 
less than the depth of penetration of the electric field. 
The functions .:1 and Ps are significantly altered near the 
singular centers (over distances on the order of DE) and 
assume constant values in the interior of the period. 
The distribution of the potential in this internal region 
of the period can be obtained in elementary fashion and 
it is easy to calculate from this distribution the (mini
mum) value of the electric field intensity at the midpoint 
of the period, Em(d). The use of the minimum-entropy 
production principle reduces to a phySically obvious 
conclUSion: at the point where the field intensity is min
imal, the value of the superconducting current should 
be maximal and equal to je' The foregoing conSidera
tions determine the current-voltage characteristic in 
the form 

j-j, ( ( j, ) 'I. ] T - exp - canst· oE . 
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