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We study non-linear processes in the frequency range close to the lower hybrid frequency W L . For 
sufficiently short-wavelength oscillations (kvr;> wm) the main one of those is, for a wide temperature 
range, Tc~ Ti , induced scattering by electrons. We study the non-linear stage of the parametric instability 
in the frequency range W ~ WL' We show that if one is just above criticality plasma wave turbulence 
becomes strong. We obtain the equations describing the strongly non-linear regime. We study their 
properties. 

PACS numbers: 52.35.Gq, 52.35.En, 52.35.1s 

INTRODUCTION 

The study of the possibility of plasma heating by a 
high-frequency electrical field and by powerful laser 
radiation pulses has recently excited a large amount of 
scientific and applied interest. [1-3] The choice of the op­
timum conditions for such a heating presupposes an 
understanding of the physics of the processes which take 
place as the result of the action of a powerful pumping 
wave on the plasma. Anomalously strong absorption of 
the energy of the external field is caused by the excita­
tion and dissipation of a large number of plasma waves. 
Usually the characteristics of such a turbulent heating 
are determined by their non-linear interactions and at 
the present time only a start has made with its study. 

Langmuir wave turbulence in an isotropiC, isothermal 
plasma has been studied in most detail. [4~] Recently 
we[7,8] have considered the excitation of plasma waves 
in a magneto-active plasma with frequencies much higher 
than the lower-hybrid frequency WL =WPjWH/(W;+w~)l/2 
(WH, wp are here the electronic cyclotron and plasma 
frequencies). Thanks to induced scattering of plasma 
waves by ions the ionic component of the plasma is in 
this case very strongly heated; this heating can for suf­
ficiently strong pumping be comparable to the heating of 
the electrons. We showed in[7,8] that the conditions for 
such a heating become more favorable at the limit of 
applicability of the theory-when the pumping frequency 
Wo approaches the lower-hybrid frequency WL' From 
this point of view it is very important to study non-lin­
ear effects in the immediate vicinity of the lower-hybrid 
resonance. A detailed study of this region is also of 
great independent interest because of the anomalously 
small thresholds for the excitation of the turbulence and 
the relative ease of introducing energy into the plas-
ma. [9,10] This fact was just the reason why experiment­
ers have paid so much attention to it. 

The present paper is devoted to a theoretical study of 
the turbulence of hf plasma waves with frequencies W 
?,WL' We derive in , 1 the equations which describe the 
evolution of hf Wl!.ves when the non-linear interaction 
with the low-frequency motions in the plasma are taken 
into account. We Show, in particular, the Hamiltonian 
nature of the interaction of the hf waves with the ion­
cyclotron oscillations of arbitrary order and we deter­
mine the Hamiltonians for such an interaction. We also 
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elucidate the role played by the various non-linear pro­
cesses. For sufficiently short-wavelength hf waves 
(kVTj»WHj) the main non-linear effect near the lower­
hybrid resonance turns out to be induced scattering by 
electrons. This circumstance is' also retained in a non­
isothermal plasma (Te» T j). 

We consider in I 2 the non-linear stage of the paramet­
ric instability near the lower-hybrid resonance (WO-WL)' 
Before we study it we consider briefly the linear theory. 
We show that when we are sufficiently close to and 
above the threshold for the instability of the oscillations 
due to scattering by electrons there is a transfer into 
the range of angles e = oj: k, Ho close to 7r /2 at the same 
time leading to a condensation in the short-wavelength 
region of the spectrum Nt -N(e)6(k-ko). When we are 
further above threshold, when the oscillations reach the 
range of angles 

the efficiency of the transfer in angle decreases steeply. 
The strong effect on the scattering processes simulta­
neously starts to show thermal corrections to the disper­
sion law for the hf waves. The direction of the spectral 
transfer then changes and after that it proceeds both in 
angle e and in absolute magnitude of the wavevector. 
The weakening of the effiCiency of the transfer leads to 
an accumulation of wave energy in the long-wavelength 
region of the spectrum (k < ko) analogous to the condensa­
tion of Langmuir plasmons in the small-k region. The 
limits for the applicability of weak turbulence theory are 
then rapidly violated. 

We obtain in § 3 the equations which describe the be­
havior of the strongly non-linear hf wave spectra. They 
turn out to be very different from the equations obtained 
by Zakharov[ll] for the description of the Langmuir wave 
collapse in an isotropic plasma. We study several prop­
erties of these equations. The results of the present 
paper were published as a preprint. [12] 

§1. NON-LINEAR PROCESSES NEAR THE 
LOWER-HYBRID RESONANCE 

We consider Short-wavelength (kc» wp) potential plas­
ma oscillations which propagate almost at right angles 
to the magnetic field so that x = cose « 1: 
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(1) 

This formula does not take into account the effect of the 
thermal motion of the plasma on the dispersion law; this 
can be very important for z < 1. We shall take this into 
account in what follows for actual cases. When the 
wavelength increases the oscillations become non-poten­
tial and as k - 0 we shall have wk - O. On the other hand, 
in the large-wavenumber region they are subject to 
strong damping due to collisionless dissipation mech­
anisms. 

The evolution of the hf waves considered here due to 
non-linear interactions is adequately described by the 
equations from two-fluid hydrodynamics. If the non­
linearity is sufficiently small, so that the change in am­
plitude is small during a period of the oscillations it is 
convenient to change from the density and velocity vari­
ables to the normal wave amplitude 

ak=~ 00.', (2n,m(~"+wH') )'1'6n,' 
WH (I)p( k uh. no 

(2) 

(here (ini is the variation in the ion density in the hf os­
Cillations). The total energy of the oscillations is then 

W= J W k dk= J w,la.I' dl" 

while the hydrodynamical equations reduce to the form 

(3) 

where (in is the variation in the ion density (and also in 
the electron density as in what follows krd = kvTe/wp « 1) 
in the slow motions for which we can not apply a hydro­
dynamical description. 

Equation (3) thus describes only the interaction with 
the low-frequency plasma motions, i. e., decay pro­
cesses involving If oscillations and the induced scatter­
ing of hf waves by particles. Only the decay processes 
involving long-wavelength non-potential oscillations 
drop out of consideration in this case. Their probabil­
ity contains, however, a factor small in the parameter 
vT/c« 1 and is considerably smaller than the probability 
for the non-linear processes considered below. 

To close Eq. (3) it is necessary to take into account 
the effect of the hf waves on the evolution of If perturba­
tions. Taking this effect into account requires, in gen­
eral, a kinetic description. 

We consider to begin with decay processes involving 
If plasma eigenoscillations-ion-cyclotron (Ie) and ion­
acoustic (IA) oscillations. In that case we can obtain 
(for details seel: 7,lSl) 

(4) 

The Green function 
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(5) 
(here E is the longitudinal permittivity, Ee the electronic 
contribution to it, while IA = IA (K~~ i/W~i) is a Bessel 
function of an imaginary argument) has poles G = G~ (X 
= 0, 1, 2, .•• ) corresponding to a resonance interaction of 
the beats produced by the hf waves with the ion-cyclo­
tron and acoustic oscillations of the plasma. We can 
put Eqs. (3) to (5) in a simple form if we introduce the 
normal amplitudes of the If waves b~ (the index X = 0 will 
refer to ion sound, and the indexes X = 1, 2, 3 will num­
ber the ion-cyclotron modes): 

(jiix" A'" ).. n;;-= ~I, (b. +b_,), /.1/= (Res G'ln,T,)"'. (6) 

In these formulae Res GA is the residue of the Green 
function in the point n = G~, while (in>- is the density vari­
ation in the X -th oscillation. 

One can easily verify directly that the equations of 
motion for the at and b. can be written in Hamiltonian 
form: 

6H 
lh.=-i--, 

6a' 

u= J wkla,l'dk+ E J O:lb:I'dx 
'_0 

~ 

-+-~ f (V ,\,k.b.'a.,a.; + c.c.) 6,+,,_,. dx dk, dk,. 

The interaction matrix elements 

V''',k,= (V x"'k,k,)· j..L./I. WH :! k t (k ) 
2( '+ ') -k ',Uk, 

Wp {i)u 2. 

contain complete information about three-wave decay 
processes involving the If oscillations which we have 
considered. 

(8) 

The interaction with IA is very simple to construct. 
In this case the normalized coefficient is 

/.I,"'" (Q"l2noT,,) 'f,. (9) 

In the small-wavenumber region 

sound of shorter wavelength must be considered to be . 
unmagnetized, GO= G ... 

As far as the interaction of hf waves with Ie is con­
cerned, simple expreSSions for its matrix elements can 
be obtained only in the limiting cases of magnetized 
(KVT i« WHi) or unmagnetized ions when the frequencies 
G~ are close to the corresponding harmonic of the ion 
gyro-frequency lOA - XWHI 1« WHI. Then 

,_ ( 10/-Aw",1 ) 'I, 
/.I, - . 

noT" 
(10) 

A more detailed description of decay processes involving 
Ie requires the application of numerical methods. 1) 
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One should note that the IC and IA considered above 
exist only in the range of angles xzvTe» O~» X"VTI and 
do not account for all If potential oscillations. It is 
possible also in the opposite limiting case O~ » x"vTe 
that weakly damped ion-cyclotron waves with frequen­
cieS£141 0o:2WHb 3WHb'" can propagate; they corre­
spond to the dispersion equation 

However the matrix element for the interaction between 
them and the hf oscillations turns out to be small com­
pared to (8). 

We now estimate the time for the non-linear transfer 
due to the processes considered above. 

Let the hf waves form a packet with characteristic 
wavevector ko• The non-linear transfer due to the de­
cay 

(oJ,~(,), +Q,'. k"~k+,, (f.~(). I. 2 .... ) (11) 

then occurs with a growth rate 

(12) 

The whole of its wavevector-dependence is determined 
by the last two factors. If we talk about the excitation 
of IC, the first of these factors reaches a maximum 
-1/x in the region XtlTI-WHI' We can thus at once state 
that the processes involving the first ion-cyclotron 
modes with wavelengths of the order of the Larmor ra­
dius of an ion, r HI = VT 1/ W H" and ion sound are the fast­
est. The second factor determines the way the non­
linear transfer velocity depends on the characteristic 
size of the hf turbulence. It is clear from (11) and (12) 
that the effective interaction of hf waves and IC is pos­
sible only in the case kOVT I - Xmu,vT I - W Hi. If, on the 
other hand, ko» x mu, the characteristic growth rates 
i'~;2""(kO> are small with a factor (x/ko)2« 1. 

It is important to note that the concentration of hf os­
cillations just in the short-wavelength region of the spec­
trum as follows from the results of [7,8] is very typical 
of plasma turbulence in the frequency range considered. 
The characteristic turbulence scale is then determined 
by the maximum possible wavevector kmu for which the 
considered hf waves still exist. In the case wp ?'WH this 
condition is kmu.rH < 1. In that case, clearly xmu - kmax 
is possible only in a strongly non-isothermal plasma, 
Te/TI~M/m. If, however, wp «WH, the condition that 
the hf oscillations are not damped has the form 

kL'r,.<min{w,. (T)T,)" " ("")' 

In the opposite limit Landau damping occurs, either 
on unmagnetized ions or on electrons. We see that kmax 

-xmax is possible then only in very strong magnetic 
fields, WHI>Wpi. Such situations will not be considered 
here by us. The conclusion that the interaction of IC 
with short-wavelength hf waves is weak gives us grounds 
for assuming that the main non-linear process for the 
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latter will be the decay involving Short-wavelength (XVTi 
>WHI) sound. This statement is, however, not always 
true. The fact is that unmagnetized IA exist only in a 
non-isothermal plasma and in the range of angles z 
= (x,,/x)..j M/m» 1. If, however, the hf waves are con­
centrated in the region z« 1, it follows immediately 
from the conservation law (11) that the decay must pro­
ceed in a modulated form, i. e., in such a way that k 
o:ko• Its characteristic growth rate then acquires a 
small factor - Z2« 1: 

0" (J)P~COH2. WO 
1", -z- (W;+WH')'WL noT. 

(13) 

We see at once that in this situation the processes of the 
induced scattering of hf waves by particles turn out to be 
faster. Turning to describing them we shall assume that 
the characteristic frequency of the If motions 0» W HI 

and that the characteristic scale of the If density modula­
tion is much smaller than the ion Larmor radius (XVT I 

»w H J. Under those conditions the action of the mag­
netic field on the ions can be neglected and one can ob­
tain for the Green function 

T,L,L, 

T,L,+T,L, 

(14) 

In a non-isothermal plasma in the range XlI/X »..j m/M 
it has a pole corresponding to the interaction with ion 
sound which has already been studied by us: G 0: O~/ 
(02 - G!). In the range of angles z :sIC are strongly Lan­
dau-damped, but even in that case the Green function has 
close to the surface O/X"VTe 0: 1 a pronounced maximum 
1m G -1 corresponding to scattering by electrons. Close 
to the surface 0/X"VTI-1, however, the Green function 
G «1. Changing from the dynamical variables at to 
phase averages 

we get from (3) and (4) the following equation which de­
scribes the induced scattering of hf waves by electrons: 

(15) 

This equation remains valid also in an isothermal plasma 
(Te-T j ). In that case it is valid also for angles k,,/k 
»..j m/M where it describes already the scattering by 
ions (for details see[71). The region kll/k -..j m/M is a 
transition region; electrons and ions give here contri­
butions to the scattering of hf waves which are of the 
same order of magnitude.2 ) 

One can easily understand that for hf oscillations which 
propagate at angles z < 1 the scattering by electrons 
proceeds in such a way that the angle a = 1: k, ko - ± 'IT /2. 
A characteristic growth rate for this process is 

e (i)1·~6)Jl2 IVo 

'Y nl - WL (w/+w,,')' noT, 
(16) 
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It is larger by a factor zoe than the decay growth rate 
')'~, (in a non-isothermal plasma) or the growth rate for 
scattering by protons (if Te - T J which, as we saw, pro­
ceeds such that 

k.-k.'~l'm/Mlk-k'l· 

The scattering of short-wavelength (kVTI»WHI) hf os­
cillations by electrons close to the lower-hybrid reso­
nance is thus in a wide temperature range, Te ~ T I, the 
main non-linear process. We note also that the fre­
quency range corresponding to the angles z::'1 is, as can 
be seen from (1), already very wide: Wt - wL ~WL' 

f2. PARAMETRIC EXCITATION AND WEAK 
TURBULENCE OF hf WAVES 

We consider the generation of hf waves under the ac­
tion of a variable electrical field Eo(t) = Eo coswot with 
frequency WO~WL' For not too large amplitudes of the 
external field when the growth of the waves ')'p is less 
than the characteristic frequencies {2 of the slow mo­
tions, one speaks of first and second order decay pro­
cesses. They develop, respectively, near the surfaces 

6l,,=6lo+Q-o, 

200,=000+ 00 _0. 

(17) 
(17a) 

These processes are also often called the decay and 
aperiodic instabilities. [2] If the low-frequency mode in 
(17) is strongly damped, we must understand by the de­
cay instability the conversion of the external field into a 
plasma wave through the scattering by ions or electrons, 
depending on the angle 9 p at which the oscillations are 
produced. The magnitude of this angle is determined 
with great accuracy by the equation wo=w(cos9p) =w(zp). 
We easily getfor the growth rate of the decay instability 
the following general relation: 

[ 00' ]' ( )' f = cos tl COS)( - ~sin )(COS cp + sin)(sincp ~ . 
ron IDu 

(1S) 

Here X = -« Eo, Ho and the azimuthal angle ({J of the wave­
vector is reckoned from the plane through Eo and Ho• 
The threshold value of Eo is determined from the equa­
tion ')'p = y,,, where Yt is the damping of the hf waves. In 
the range of angles z» 1 

when z« 1 

If the plasma is isothermal, Te - T i, and the If com­
ponent of the decay is strongly damped sound, [1m G ]maz 
-1. The threshold value of the field can be seen from 
(18) to decrease when Wo approaches WL and reaches a 
minimum when 0 < zp < ../2, depending on the orientation 
of Eo and Ho: 
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()(=O) , ()(=i-) . 
(19) 

When Te/T j increases the minimum threshold is realized 
in the range of somewhat larger frequenCies, zp» 1, 
where decay is possible involving sound eigenoscilla­
tions, [1m G ]mu: - (M /m)1/2. Its magnitude is then even 
further diminished: 

(20) 

In the case of sound excitation Eq. (1S) for the growth 
rate of the parametric instability is true only in the 
near-threshold region (')'p -')'.) <y $' where ')'. = (1Tm/ 
SM)1/2{2. is the ion sound damping. When one is further 
above threshold one finds easily that on the decay sur­
face (17) at a: exp(')'pt/2) and 

We now consider the parametriC excitation of IC. In 
that case [1m G]mu: -(W - ">tWHj)/y). and it is clear from 
(IS) that the smallest excitation threshold occurs for os­
cillations with a long wavelength k-J.- rHI: 

We consider briefly the aperiodiC instability. It is 
independent of the characteristics of the If motions and 
close to the decay surface (17a) it is described by Eq. 
(1S) in which we must replace 1m G by Te/(Te+TJ. 
What we have said is valid up to amplitudes for which 
')'p« {lotVT I; lotVTe}' The ratio of the thresholds for the de­
cay and the aperiodic instabilities is thus 

[E~l j[E.'].=T,/ (T.+T.) [1m G 1m ... 

In the case when the decay instability is a conversion 
through scattering by particles this ratio is - 1; if, how­
ever, for the If motions ')'). « W, the minimum threshold 
occurs, usually, for the decay instability. 

We go over to a study of the non-linear stage of the 
parametric instability of Short-wavelength (kVTj»WHj) 

hf oscillations. If the frequency wo- wL ::'WL' according 
to what we considered above they will be generated at 
angles z:S 1 and afterwards will be transferred into the" 
low-frequency region, mainly through scattering by 
electrons. 

It will become clear in what follows that the region of 
excesses for which the plasma turbulence is weak is very 
small. Notwithstanding this a study of the general and 
very rough properties of weakly turbulent spectra is im­
portant for an understanding of strong turbulence. Pur­
suing henceforth just this goal in the present section we 
shall, to simplify the exposition, assume that the tur­
bulence spectra are axially symmetric and put W H - wp. 
EXCitation, non-linear transfer, and the damping of 
waves are then described by the kinetic equation 
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( f)) OOH' ,/-;;;S "( 00,,-00,,' ) 
o;+l'-lp n.= 4noT" f Jf n(k,z)n(k,z )ImG Ikx-k'x'i dk'dz', 

n(k, z) =2nk'N.. (21) 

In the region z» krH the transfer proceeds, as one can 
see easily, in such a way that in a single scattering pro­
cess I z - z' I « z. This gives a basis for changing in 
(21) with respect to the variable z to the differential ap­
proximation, putting 

(kz-k' z')' Dr.' iJ 
ImG""-n , " --6(lzl-I:'I) 

Izz 1 OOH' a 1 z' 1 

(details of such a transition can be found in[7]). Equa­
tion (21) then becomes 

( iJ ) ,/-;;; Dr/n(k, z) S ( a n 1/' a ) 
at'+lh-1p n.=nf I. k'z--+--nz dk'. 

. Jlf ·JI!oT" iJz z z {)z 

(22) 
In its form it is similar to the equations or£7.8] which 
have been studied both analytically and using a com­
puter. It is clear from the results of these papers that 
oscillations generated close to z = zp afterwards are 
transferred, due to scattering, to the region of lower 
frequencies and at the same time are stored rapidly in 
the large-k region forming there stable solutions in the 
shape of jets 

n=n(x)6(k-k,) . (23) 

The location of a jet ko is such that collisionless damping 
which increases fast in the large-k region is still small 
compared with collisional damping. In typical situations 
kOrH .. t to t and depends weakly on the plasma param­
eters. 

The physical reason for the energy accumulation in 
the short-wavelength region of the spectrum is, as was 
shown for the analogous situation in[7.8], the increase of 
phase volume of the oscillations with increaSing k. 

If we use (23), Eq. (12) becomes one-dimensional. 
For excesses 'Yp/Y» 1 its stationary solution is concen­
trated mainly outside the generation region and is in­
dependent of the finer details of the growth rate i'p: 

2,IM 1noT" 
n(k,z)=-r --(k )' (z-zo), Z,=:,-'1, 

1t m OVTt' 

(24) 

Knowing the turbulence spectrum one can easily deter­
mine the energy flux in the plasma: 

(25) 

(One must state that the formula given here remains 
valid also when WH~WP') This energy is almost com­
pletely transferred to the electrons as a result of scat­
tering and taking electron-ion collisions into account. 

We now note that the solution (24) obtained here, like 
Eq. (12) itself, is applicable only in the range of angles 
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z > kOrH which is filled already for relatively small ex­
cesses above the threshold: 

For smaller z the transfer along the spectrum occurs 
in a non-differential way. It is then noteworthy that at 
the same time as taking into account the fact that the 
transfer is non-differential it is necessary to retain the 
thermal corrections to the dispersion law (1): 

( 1 + z' + Y') . k'R" k" ( 3 T, ) Wk=ffiL' - -, Y-='- -='- -+~~-. r1I 2• 

2 2 4 T, 
(26) 

How does allowance for the thermal disperSion affect 
the nature of the transfer into the range of angles which 
are non-differential in z? It is clear that oscillations 
which are concentrated for zp > Y > z, in the variable y 
again will be scattered in a differential way and are now 
stored in the region of even larger z until we have y - z. 
For z« kOrH the oscillations wil~ thus be concentrated 
mainly close to y = z, so that we can put in (21) 

n{k, z)=n(z)6(k-lzIR-') 

and change again to a one-dimensional equation 

1 = 4::':' C;)'" S n(z')ImG [s(;:~:::) ]az', s= (J +3~f'/i 
(27) 

We further note that the kernel 1m G is an odd function 
of its argument and is mainly concentrated in the range 
[- 1, 1] of its values. This makes it possible to put for 
smooth solutions of (27) 

The equation obtained has an exact solution 

( Jf )'" 4noT, z n(z)= - ---In-. 
m wII21n 62 z\ 

(28) 

The location of the end of the jet Zl and with it also the 
characteristics of the turbulence must, as in (24), be 
expressed in terms of the excess 1/. To do this we 
evaluate the energy flux along the spectrum p(z) which 
we define as 

In the differential region (z > kOrH) 

In the opposite limit 

Equating these fluxes in the transition region z-kOrH we 
determine Zl «kOrH: 
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We study now the distribution of the energy over the 
spectrum. If we let z approach kOrH from the side of 
small and large z we get, respectively, 

( M) 'I. 'fn,T. 
n+- - ---1']. 

m (k,vT<) ' 
(29) 

The energy of the oscillations accumulates therefore in 
the region of small k, z forming a long-wavelength core 
in the turbulence spectrum with a relative height n_/n+ 

-TJ/kOrH» 1 which increases steeply with increasing ex­
cess above the instability threshold. The reason for 
such a condensation of energy in the small z, k region 
consists in the steep weakening of the efficiency of the 
transfer along the spectrum. 

We elucidate the limits of the applicability of the re­
sults given here. The kinetic Eq. (15) is valid as long 
as the non-linear growth rate ')Inr is less than the char­
acteristic frequency of the lf motions. In our case n 
-X.VTe-WL(krH)2. This means that the condition for the 
applicability of (15) is the same as the random phase 
criterion in the weak turbulence theory (see[11,17]). Ex­
pressed in terms of the parameters of the problem this 
condition gives 

...!..!.~ - ~(k )' ~ (m )'1 • 
M . orH • 

1 '" 
(30) 

For larger excesses the parametric turbulence turns 
out to be strong (such excesses can easily be reached in 
experiments ,on the hf heating near the lower- hybrid 
resonance[1S-20]) • 

One easily sees that the situation described here turns 
out to be very close to the one ariSing when Langmuir 
waves are parametrically excited in a plasma without a 
magnetic field. [4,5] The accumulation of the oscilla­
tions in the long-wavelength region of the spectrum leads 
in that case, as was shown in a number of pa-
pers, [11,21,22] to their collapse-a strongly non-linear 
energy dissipation mechanism in a plasma. 

§3. STRONG TURBULENCE EQUATIONS 

We state the problem of describing hf waves in the 
strongly non-linear regime. In the simplest case one 
can judge the evolution of the strongly non-linear spec­
tra using the instability of a large amplitude wave. The 
basic set of Eqs. (3), (4) have an exact solution: 

w:J• 
a = -'I exp{-iw •• t+ik,r}, 6ii=O. 

00':' 

Linearizing it on the basis of this background we can 
easily get for perturbations proportional to e- j",t+ j".r the 
dispersion equation (zo:s 1) 

1 + W, fG ,., [ (k,+x)-' + (k,-x)-' ] - 0 
- XIIIK sin a. . - . 
noTf/ -CO+Wko+x-Wko -W+WkD-x-Wko 

(31) 

Here a=-(ko,x; r=M(WLw~)/m(w~+w~), while the dis­
persion law for Wt in the case of a strong magnetic field 
(WH »WI» has the form (26) with ~ = 3 T jd/Te. 

In our problem there does not enter a detailed analysis 
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of Eq. (31). We consider the most important case of 
perturbations with x » k o• In the static limit, X.vTe» W, 

the Green function G"", "'- Te/(Te+ T j ). Putting a=1T/2 
in (31) we get 

The wave is unstable when 

T, Wo 
w.-wL<--f--. 

T,+T, 2noT, 

The maximum growth rate 

T, W. 
"{mar---f­

T,+T, noT. 

is reached when 

(32) 

We note now that the condition for the static approxima­
tion in the maximum of the growth rate can be fulfilled 
only when we have the condition y - z; in the opposite 
case the magnitude of the growth rate is Significantly 
less than ')1m",,' 

Therefore, the instability with 

, M W, ( 
x2rn ,..",-- tJ)H~lJ)P)' 

m noTe 

22M CiJ p 2 Wo 
X rd - --, - (Wn>OI p ). 

m WH noTe 

(33) 

proceeds fastest. We see that even for very small am­
plitudes, 

Wo {m moon'} --max -'--
noTe M 'M Cit/ ' 

the oscillations in the region krH -1, krd -1 are excited; 
it is then important to take into account collisionless 
dissipation and the non-linear effects. 

Knowing the characteristic times and scales of the 
development of the instability we can obtain equations 
describing the evolution of long-wavelength plasma os­
cillations. The description of strongly non-linear wave 
processes, including coherent effects, can in a natural 
way be performed in the r-representation. Splitting off 
the slow time-dependence in the hf electrostatic poten­
tial, 

'Pel =¢ exp (-iwLt) +c.c., 

we get for the potential l/J from (3) and (14) in the static 
approximation the equation 

( R') WL M ,,2 i¢,+wL2 t.¢ -T-;;-t;,¢ 

_ e'w.' div([VI/IXvI/I*) [hXVI/I])=O. (34) 
2mwL(T,+T,) (w.'+wn') Z -

The condition for the realization of the static approxima­
tion in the r- representation means that the second and 
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third terms in (34) are equal. The non-linear term con­
tains only differentiation in the direction at right angles 
to the magnetic field. The equation obtained is thus es­
sentially two-dimensional. Changing to the dimension­
less variables 

"' .... 2 CIlL ~[In(CIl.'+Cllll') (T,'+T,) r'¢, 
Cll p e 

we can write it in the form 

vI(i1/l, + VI 1/1) -2 div([V1/I X V1/I"'lz [h X V1/I]) = 0 (35) 

(we shall drop the index 1 in what follows). Similarly to 
the equations describing the collapse of Langmuir 
waves[l1,19] (35) can be written in Hamiltonian form 

(36) 

It follows immediately from this way of writing the equa­
tions that the Hamiltonian :J6 is conserved, It is also 
easy to prove that the conservation laws for the total 
number of quasi-particles 1= f I Vl/J 12dr, for the total mo­
mentum 

P, = ~ S (V,,~··V,v.¢-c.c )dr 

and its moment, which are valid in the case of the Lang­
muir wave collapse[l1,241 also are valid in the frame­
work of (34), (35). Notwithstanding the above-mentioned 
Similarity, the problem of the collapse and its criterion 
(in the case of the Langmuir wave collapse, as a rule, 
a sufficient condition for the production of a singularity 
is the fact that the Hamiltonian becomes negative) is 
very complicated and, possibly, not susceptible to an 
analytical approach. One can, however, use very gen­
eral considerations to reach an important conclusion 
about the properties of the solutions of (35). To do this 
we consider its stationary states l/J(r, t) = l/J(r) exp(icfot). 
One shows easily that, as in[22], for such solutions we 
have always :J6 = O. An arbitrary initial condition can 
therefore as the result of evolution never reach a sta­
tionary state. On the other hand, it follows from the 
conservation of the Hamiltonian that when :J6 < 0, l/J(r, t) 
can not spread out without limits. 

We note that the solution of (35) cannot be spherically 
symmetric as its non-linear part vanishes. We can, 
however look for l/J in the form 

t=1]> (r)e l "' •• 

We then get for the function .p(r) the one-dim~nsional 
equation 

K(ic1l'+~Kfl»+21n'c1l~~~lc1ll'=O, 
r Dr r Dr 

• a fJ m' 
K=-r-c---. 

lir Ur r 

(37) 

The high order of this equation makes it very difficult 
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to study it analytically. However, one can reach some 
general conclusions about the behavior of the solution 
as a function of the number m. Indeed, we introduce a 
characteristic amplitude of .p and a scale for its change 
6r. For sufficiently large m(m» r /~r) we can neglect 
the differential part in the operator K. One sees easily 
that there is no collapse in the framework of the equation 
which one then obtains, On the other hand, for a suffi­
Ciently high level of non-linearity (m < r.p /6 r) we have 

11]>1' (iJ )'] dr 
:J6=2nm'S[-r-- iJr1c1ll' -;:-<0. 

For the collapse the first modes of (37) are thus the 
most dangerous. 

A numerical experiment, recently performed in Ref. 
23, has shown that within the framework of Eq. (37) col­
lapse occurs for m = 1, 2. Confirmation of the idea of a 
collapse is also provided by the recent experiments[20] 
in which the formation of regions where the field is 
localized and which are stretched out along Ho as well as 
their self-compression was directly observed. The 
heating of the plasma was, in agreement with what has 
been said above, accompanied by the appearance of an 
appreciable number of accelerated particles. 

The existence of a strongly non-linear energy dissipa­
tion mechanism at the lower- hybrid resonance must 
show up in a strong effect on the nature of the plasma 
heating. From that point of view it is important to have 
a comprehensive study of the lower-hybrid collapse; 
first of all, a study of it at large intenSities, 

when powerful dissipation mechanisms must be included. 

In conclusion the author thanks V. E. Zakharov, S. L. 
Musher, and A. M. Rubenchik for their interest in this 
work and for useful discussions. 
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Electromagnetic waves with a discrete spectrum in metallic 
ferromagnets 

L. M. Gorenko, Yu. I. Man'kov, and R. G. Khlebopros 

L. V. Kirenskil Institute of Physics, Siberian Department, USSR Academy of Sciences 
(Submitted December II, 1975) 
Zh. Eksp. Teor. Fiz. 71, 627-634 (August 1976) 

The spectrum, attenuation, and polarization of electromagnetic waves with a discrete spectrum in an 
isotropic metallic ferromagnet are investigated theoretically as functions of the external magnetic field H, 
the wave vector k, and the angle between Hand k. Such waves can exist because, in the case of a definite 
ratio of the wavelength to the cyclotron radius of the conduction electrons, the absorption of the 
electromagnetic wave energy by the electrons as a result of Landau damping becomes small The 
interaction between the electromagnetic wave in the ferromagnet with the magnetic subsystem alters the 
character of the wave propagation as compared with that in a normal metal. In particular, in a weak 
external magnetic field, the Landau damping of the wave at points far from the points of the discrete 
spectrum becomes less than unity. This fact is important for the excitation and experimental observation of 
electromagnetic waves with a discrete spectrum. 

PACS numbers: 75.30.-m 

INTRODUCTION 

It has long been assumed that electromagnetic waves 
with a frequency much smaller than the plasma frequen­
cy cannot propagate in metals to a depth greater than the 
skin depth. Konstantinov and Perel' tll were the first to 
show that this is not the case under certain circum­
stances. The existence of electromagnetic oscillations 
in a metal is due to the presence of a strong magnetic 
field (l» R), which localizes the electrons in a region 
with dimensions of the order of the cyclotron radius R; 
l is the free path length of the conduction electrons. Lo­
calization of the electrons makes the electromagnetic­
wave damping connected with dissipative currents small. 
In addition to this damping, there are resonance mech­
anisms of absorption of energy of the electromagnetic 
wave by electrons in the metal. This includes cyclotron 
absorption and Landau damping. The resonance damp-
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ing of the wave is determined by the electrons for which 
the phase relation 

k,v,+NQ=w, N=O, ±1, ±2, ... (1) 

is satisfied. Here w is the frequency of the wave, n 
=eB/mc is the cyclotron frequency, e and m are the val­
ues of the charge and the effective mass of the conduc­
tion electron in the direction of B. The Landau damp­
ing turns out to be most important for short waves, 
whose length is much less than the cyclotron radius. t21 

The electron interacts most effectively with the field of 
such a wave on those portions of its trajectory where it 
moves almost parallel to the planes of equal phase of 
the wave. In Fig. 1, this is in the vicinity of the points 
A and B. The value of the absorption of energy of the 
wave by the electron will change as a function of the 

Copyright © 1977 American Institute of Physics 329 


