
(3) with q = 5, P = 1, inasmuch as the term with the third 
derivative vanishes for this direction. [11] Another ex­
ample of interest for applications is the propagation of 
capillary-gravitational waves in shallow water, for 
which the realization of solitons with oscillations and the 
formation of bound states are also possible (cf. [9]). 

The authors are grateful to E. N. Pelinovskil for use­
ful comments. 

tlThe possibility of such an interpretation of the interaction of 
solitons has already been noted previously. [41 

2 lIn the following we consider solitons each of which is deter­
mined by only one phase, of the type x - vt; this excludes "en­
velope solitons" (e. g., Langmuir solutions) from consideration, 
although, in principle, the given approach appears to be per­
fectly possible for these also. 

3lThis possiblity has now been confirmed by means of a numeri­
cal investigation of E q. (3). 

4 lWeakly bound states in which the solitons are coupled by os­
cillations further from their maxima have also been observed 
experimentally. In this case the characteristic period of the 
oscillations is substantially Increased, too changes in the 

amplitudes and velocities turn out to be considerably smaller, 
and the oscillograms are less revealing. 
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targets 
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An analytic stationary model of the "corona" of spherical laser targets is considered with account taken 
of the major physical processes, viz. hydrodynamic processes, laser radiation absorption in the vicinity of 
the critical point, and electron thermal conductivity. Exressions for the "corona" parameters are derived as 
functions of the laser pulse parameters (radiation flux and frequency) and of the target (radius and 
thermophysical properties). 

PACS numbers: 79.20.Ds 

1. As follows from a number of studies, Cl,2] all the 
known schemes for laser initiation of thermonuclear re­
actions consist of three physical stages: evaporation, 
compreSSion, and thermonuclear combustion. These 
stages are governed by different physical processes and 
exert different influences on the set of final parameters 
characterizing the laser-induced thermonuclear fusion 
process as a whole. 

The initial stage of the interaction of the laser radia­
tion with the target material consists of evaporation and 
heating of a definite fraction of the medium, i.e., forma­
tion of a "corona," which is a hot plasma of relatively low 
density that expands in a direction opposite to the incident 
radiation. During this stage, a pressure pulse is gener­
ated at the boundary between the corona and the dense 
cold material and accelerates the unevaporated part of 
the target towards the center. The prinCipal parameter 
characterizing the evaporation stage is the hydrodynam-
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ic efficiency, (3) i. e., the ratio of the energy of the un­
evaporated part of the target to the total laser-emission 
energy. The magnitude of this ratio determines both 
the energy balance in the system, i. e., the temperature 
of the central region of the target, and the maximum . 
value of the thermonuclear-fuel mass that can be com­
pressed by the radiation to a high density at a given en­
ergy. [1] Moreover, the degree of the compression of 
the target material also depends on the shape and am­
plitude of the pressure pulse. 

The indicated quantities-the hydrodynamiC efficiency 
and the pressure amplitude-depend essentially on the 
physical state of the corona, a state determined by the 
parameters of the laser pulse (flux density, duration, 
radiation frequency) and of the target (radius and ther­
mophysical constants of the evaporated layer). 

It should be noted that the process of formation and 
expansion of the corona as well as the compression pro-
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cess can occur simultaneously[2] and can be separated 
by a stage of inertial motion of the accelerated matter 
towards the center. [1] In all cases, however, the ve­
locity of the material in the corona is much higher than 
the velocity of the compressed material, so that the hy­
drodynamics of the corona can be regarded indepen­
dently of the compression process. 

We describe in this paper an analytic model of the 
corona produced under conditions when spherical laser 
targets are symmetrically irradiated, with account 
taken of the decisive physical processes. 

2. We consider the main physical factors that deter­
mine the state of the corona. It follows from both the 
experimental data[4] and numerical calculationsCl•2] that 
'. ' m all the cases of mterest in which laser radiation acts 
on a spherical target, the plasma manages to expand 
during the time of action of the pulse to a distance ex­
ceeding the initial target radius. This means that the 
problem should be treated in a spherical geometry. 

As the next step it is natural to introduce some mech­
anism whereby the laser radiation is absorbed. The 
mechanism hitherto considered in theoretical investiga­
tions of the interaction of laser radiation with matter 
(see, e. g., [5.6]) was prinCipally inverse bremsstrah­
lung, an approach valid at relatively low flux densities 
q _1010 _1011 W / cm2, when the plasma produced has a 
relatively low temperature. An investigation of the 
mechanisms whereby laser radiation is absorbed by a 
high-temperature plasmaC7J shows that the radiation is 
most effectively absorbed in the plasma region near the 
critical density Pcr=~Mim/41TZe2, where Wo is the cy­
clic frequency of the radiation, M j and m are the masses 
of the ion and of the electron, and z is the ionization 
multiplicity. The most justified assumption is conse­
quently the condition that the absorption of the incident 
flux be 6-like at the point P = Per' Besides the radiation­
absorption mechanism, a decisive process in the corona 
is the heat transfer via the electronic thermal-conduc­
tivity mechanism. Thus, it is assumed in the problem 
under consideration that the plasma moving towards the 
radiation is fully transparent at P < Pcr> whereas at the 
point P = Per the light flux is transformed into electron 
thermal-conductivity fluxes that travel both into the re­
gion with p> Per and into the region P < Per' In this for­
mulation, obviously, it is easy to include in the analysis 
the reflection of the radiation from the plasma at the 
point P = Per' 

The equations describing the stationary flow of the 
plasma take in this case the form 

pvR'=p'u'R"; 

d , 2pv' R' 2pv' 
df{ (p+pv)= -T' p+pv'=p'+p'v"+ J dR--"Jl' (1) 

R 

( v' P ) dT { Q •• pvR' e +-+- -R'x.T'I._= 
2 P dR O. 

where Qo is the radiation flux in a unit solid angle, p, 
v, and p =pzT/Mi are the density, velocity, and pres­
sure of the material, e = 3p/2p is the specifiC internal 
energy, T is the electron temperature, and )tOT5/2 is 
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the coefficient of the electron thermal conductivity. The 
quantities 

p·=p(R'). v'=v(R'). p'=p(R') 

are referred for the time being to an arbitrary but fixed 
cross section. It is natural to consider the problem (1) 
under the assumption that the initial radius Ro remains 
constant and is assumed to be a known parameter. The 
latter is valid if the state of the corona "follows" the 
change (decrease) of the radius of the unevaporated part 
of the target. Formally, the condition Ro = const leads 
to the condition Po =00 (Po is the density of the unevapor­
ated part). The boundary conditions then take the form 

v(R.) =T(R.) =0. (2) 

Furthermore, it is physically obviOUS that at R - 00 and 
v - v .. :;: const we have T5/2dT / dB - 0 and, as follows now 
from (1), we have p, p, and T - O. As a result we have 
an addition to (2) 

v(oo)=v.. T(oo)=O. (3) 

Furthermore, 

(4) 

Thus, the posed problem (1) with conditions (2)-(4) con­
tains five specified parameters: )to, Qo, R o, Per> and 
M;/ z. It is required to determine the coordinate Rcr of 
the critical point, the velocity v .. of the matter as R - 00, 

and the scales of the hydrodynamiC quantities p*, v*, 
and T* together with the coordinate R *. 

As shown by analysis, it is convenient, in analogy 
with Nemchinov's demonstration, [6] to choose as the 
reference coordinate R * the Jouguet point, i. e., the 
point at which the velocity is equal to the local speed of 
sound. In this case, owing to the non-adiabatic charac­
ter of the motion, the reference is to the isothermal 
speed of sound CT = (zT/Mj)1/2, As a result we have zT* 
=MiV*2 at R =R*, i. e., the sought scales of velocity and 
temperature are related. 

IntrodUCing furthermore the dimensionless functions 
()=T/T* and 11=v2/v*2 and the variable x=R*/R, we 
ultimately rewrite the problem (1) in the form 

L=~ X~(1-~) +2x::!. + 46=0 
~~. ~ TJ ~ • 

'I d6 1 ( ) 5 X,T"I, 
1>.6 'dx =-2 CP-TJ --26, 1>."' __ ' .. .. p'v"R" 

(1') 

{ o. 
CP'" cp.=2Q./p'v"R" 

The conditions (2)-(4) become 

8 (x.) =TJ (x.) =0, 8(0) =0. '] (0) =CPo=v.'/v". 
(2' ) 

In addition, we now have 
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8(1)=T](1)=i. (5) 

When the problem is formulated in terms of dimension­
less variables, the unknown parameters are {3, CPo, xc., 
and xo. If these quantities are obtained by solving Eqs. 
(1) with conditions (2) and (5), then the relations 

2Qo 
<po = p'v"R'" zT'=M,v", 

(6) 

can be used to determine Rer, R*, v*, T *, p*, and v 00' 

3. We consider now the general scheme for solving 
the problem (1) and (2). As will be shown below, there 
exists a characteristic dimensionless parameter 

on which the qualitative picture of the state of the corona 
depends. At 1'0>102 we have xcr<l (Rer>R*>Ro), i.e., 
the coordinate of the critical point is strongly displaced 
towards the incident radiation in comparison with the 
position of the Jouguet pOint. In this case Eqs. (1') in 
the region X> Xcr (R <Rer) are universal with a singular 
pOint x = 1. Indeed, from the condition that there be no 
infinite acceleration at the Jouguet point (x = 1) we ob­
tain with the aid of the second and third equations of the 
system (1) 

d8/dx=-2. dT]/dx=-Cy13+ 1) at x=l, p ... i.5. (7) 

Next, integrating the equations in the region x E [1, xo] 
(going out of the singular point x = 1, 8(1) = 1/(1) = 1 with 
the aid of (7» we obtain the quantity (8(xo) = 1/(xo) =0). 
As shown by a simple numerical calculation, Xo = 1. 2, 
i. e., R* = 1. 2Ro. It is possible to integrate similarly 
the universal equations at x < 1 (but X> xer ). In the re­
gion x<xer the problem contains, at 1'0>102 only one pa­
rameter CPo, which can be determined together with the 
value of xer from the condition that the functions 8(x) 
and 1/(x) be continuous at the point x =xcr> i. e., as a re­
sult of joining the solutions in the regions X> xer and 
x<xer • 

Thus, in the region 1'0>102 the problem (1'), (2') turns 
out to be closed within the framework of the considered 
formulation, with a solution corresponding to a contin­
uous transition through the Jouguet point and the critical 
point. There exists in this case a universal connection 
between the coordinate of the Jouguet point and the tar­
get radius R* = 1. 2Ro, while the critical point is super­
sonic. It should also be noted that Yo> 102 the deriva­
tives dp/dR, dv/dR, and dT/dR experience a finite dis­
continuity, this being due to the need for introducing a 
discontinuity in the electronic thermal conductivity flux 
by virtue of the IS-like character of the energy released 
at P = Per' As a result, the maximum temperature is 
reached in our problem at the critical point. With de­
creasing Yo, however, the point with P = Per approaches 
the Jouguet point, and at a certain finite value Yo = yt 
-102 the two points coincide, i. e., xer = 1. As shown 
by analysis, at Yo < yt one can no longer construct a 
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solution that is continuous at the point x =Xcr = 1 with a 
finite discontinuity of the derivatives under the condi­
tion of a jumplike change in the dimensionless flux cP 
from CPo to zero at x =xcr = 1. We indicate that formally, 
as Yo - yri, the derivative of the velocity tends to infinity 
at the point x =xer = 1. In this case it becomes necessary 
to construct a new solution, different from the solution 
corresponding to Yo> yt -102 • As will be shown below, 
a physically correct solution in the region Yo < yri can be 
constructed by introducing the distributed energy re­
lease in the vicinity of the critical point. Within the 
framework of the foregoing formulation of the problem, 
this reduces to replacement of the relations cP =CPo, x 
<xer; cP=O, x>xer by 

<p= {
<po. 

0, 
X,,;;;xcr-0=1-0 
x;;'xcr+0=1+0' 

(8) 

The solution in the region Yo < yt, with allowance for 
(8), then corresponds to the conditions xer = 1 (ReT =R*) 
and Xo - xer = 1 as Yo - 0, i. e., the universal connection 
between the target radius and the coordinate R* = 1. 2Ro 
of the Jouguet point no longer holds. Accordingly, the 
parameter {3 * 1. 5 and tends to zero as Yo - O. 

4. We present now a formal solution of the problem 
(1'), (2'). 

A. We consider first the case xer < 1, i. e., ReT> R*, 
which corresponds to large values of the parameter Yo. 
In the region Xo ~ x ~ xer (Ro ~R ~Rer) Eqs. (1') are uni­
versal ({3== 1. 5) and their approximate solution is 

T]=1-6.4 In x=1-6.4 In (R'/R); 

8=[ 1+15.4(1-x) +6.4x In X]'/, 

( R' R' R' 'I, 
= [ 1+1.1.4 1 - R) +6.4 R In R] . 

Expressions (9) satisfy the conditions 8(1) = 1/(1) = 1, 
8(xo) = 17(xo) = 0, or Xo = 1. 2. 

(9) 

The solution of (1') at x < xer (R > Rer) can be repre­
sented in the form 

8=Ax'/·. T]=<p0-5Ax'f', (10) 

where A is an arbitrary constant. Relations (10) were 
obtained under the condition that at x - 0 (R - 00) the flux 
of the electronic thermal conductivity is a quantity of 
higher order of smallness than the hydrodynamic part 
of the flux. This physical condition makes it possible' 
to go out of the singular point x =0 of the equations. 

It should be noted that as x - 0 there exists formally 
also the solution 8=x 2I5 , 1/=CPo _x 2I5 , which corre­
sponds to an equal order of smallness of the thermal 
and hydrodynamic fluxes. The use of this solution, how­
ever, makes the problem overdetermined. 

Using next the condition for the continuity of the func­
tions at the point x =xer =R* /Rer = 1. 2Ro/Rcr> the first 
equation of the system (1 '), and the relations CPo = 2Qo/ 
p*v*3R*2, i =xoT *712/ p*v*3R*, we obtain a system of 
algebraic equations for the critical radius and for the . 
plasma parameters at the Jouguet point and at the crit­
ical pOint: 
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1-6,41n 1,2R, = qJ,-5A ( l.2R, ) "', 
R.,. R« 

[ 1+15.4 (1- 1,2R,) +6,4 1,2R'In 1.2R,] 'I, =A ( 1.2R.) '/, , (11) 
Ra, Rer Rcr Rcr 

·2Q. 3 K,T"" 
'P)t = p·v·'(1.2R,)" 2 p'v" (1.2R.) , zT'=M,v", 

Per=p, (lR·2R,) '(1-6.41n 1.2R. )-'1: 
cr Rei 

The system (11) constitutes six equations for the deter­
mination of six parameters R cr, A, <Po, p*, v*, and T * 
as functions of the quantities Qo, 'Ko, Ro, Pcr and M/ z. 
The approximate solution of (11) yields 

R 0 "'( '/1 '/ 
cr= .5R,,,(. 1+6.41n(,,(, 14»-"'''O.3R.,,(.', 

v·'=O.56 -', .. (~) '/' 
"(. PerR.' ' 

Mv" T·=-'-, 
z 

'I' 
ve"=v"( 1+6.41n';-), 

M,v" 
Ter=2--, 

z 

v.'=v·'[ 11+6.41n("(;"/4)], p'=1.nO-' Pery,:f', 

A=O.641:,n (1+6.41n(1:"/4»-"'. 

(12) 

The spatial distribution of the quantities in the region 
Ro';;R ';;Rcr takes accordingly the form 

v'=v" (1-64 In 1.2R.) 
. R' 

T=T:( 1+15.4 ( 1 _ 1.~.) + 7.:R'In l.!R.) "', 

( l.2R, ) 2 ( 1.2R. ) --", 
p=p' Il" 1-6.4 In 1'l' . 

In the region R > Rcr we have 

L"=V"[1l+6.411l~· <1.2"(:'" (1.2R.IR)'f,] 
4 (1 +6.4 In (1'::/4» 'I, ' 

(13) 

'. (I 2R ) 'f, 'to -', 
T";O.64T·y,'" ~ (1+6.4In+), (14) 

3.2"(:'" (1.2R,1 R) 'I, ] 

(1+6.4In ('f'~'1 4)) 'I, • 

Formulas (12)-(14) are valid at Rcr/R* '" O. 25'Y~n > 1, 
which leads to the condition 'Yo> 'Yci '" loa. 

Thus, formulas (12)-(14) solve our problem at 

which corresponds physically to the action of large light 
fluxes with low radiation frequency on a target with rel­
atively small dimensions. 

B. Inasmuch as the coordinate of the critical pOint 
decreases with decreasing parameter 'Yo, the radii of 
the critical point and of the Jouguet point coincide at a 
certain value 'Yo'" 'Yci -loa. In this case, as already in­
dicated, a singularity arises in Eqs. (1') at the point 
x = xcr = 1, and is removed by introducing a distributed 
absorption in the vicinity of x = 1. 

Assuming xcr = 1 and stipulating, as before, that the 
transition through the Jouguet point x =xcr = 1 be contin­
uous, we obtain with the aid of the second and third 
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equations of the system (1'), with (8) taken into account, 
the relation 

(15) 

From the relations 

{J= 'KOT~~2 I Pcrv~rRcr> <Po = 2QoI Pcrv~rR~r 
it is easy to verify that at 'Yo < 'Yci we have {J- 'Y~!3, since 
p* = Pcr' V* =Vcr ' T * = T cr' and, as will be shown below, 
Rcr-Ro as 'Yo-O. 

In the region 1 + 0 .;; x .;; Xo (Rcr - 0 .;; R .;; Ro) the solution 
of (1') can be obtained with the aid of the planar approxi­
mation 

[ 15 ] 'I, e.. 1- 2~ (x-1) , (16) 

Hence xo=l +2{J/15 or, taking (15) into account, 

x,=1.2-'/ .. <p(t) . (17) 

It follows from (15) and (17) that the limiting value of 
<p(l) as {J-O ('Yo-O) is <p(l)=6. Consequently, accord­
ing to (8), <Po - 6 as {J- O. As a result, at small values 
of 'Yo, with the aid of the relations 

<po=6=2Qo/Pcrv~rR~r and {J='KoT~2/Pcrv~rRcr' 

of formulas (15) and (17), we obtain 

( Q ) ." ( 2 )-". 
v"=vcr '= 3Pcr~.' 1 + 15 ~ , 

(18) 

The approximate solution of (1') in the region x < Xcr = 1 
(R > Rcr =R*) then takes the form 

(19) 

Formulas (18) and (19) solve our problem at small val­
ues of 'Yo. Thus, as 'Yo - 0 the critical density "lies" on 
the target, i.e., Rcr"'Ro. If 'Yo-O because Ro-oo, but 
in such a way that Qo/R~ - qo = const, then a hydrodynam­
ic discontinuity takes place on the target boundary, 
namely: 

at - R=Rcr+O. 

at R=Ret-O. 

The result means, in principle, that in an almost plane 
geometry Ro - 00, Qo/R~ - qo there can exist a stationary 
layer which is heated by electronic thermal conductivity, 
with the conditions P=Pcr' v2=(zT/M j ) on the outer 
boundary. Adjacent to the stationary layer should be a 
nonstationary "tail, " e. g., an isothermal rarefaction 
wave. 

This circumstance was not taken into account inC91 , 

where it was assumed that the acoustic point has a den­
sity P = Po (where Po is the initial target density). As a 
result, the coefficient of the transformation of the in­
cident-radiation energy into kinetic energy of the ma­
terial, calculated inC91 , was strongly underestimated. 
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5. We present now some significant consequences of 
our results. As shown inC3J, the hydrodynamic effi­
ciency for laser targets is determined by the heat flux 
Q* introduced into the discontinuity. At Yo> yci, accord­
ing to the model considered in(3l, the quantity Q* is 
equal to the heat flux in the section R*. Using the rela­
tion (12), we easily obtain 

Q·"'O.31Qo. (20) 

and the transfer coefficient 7) is equal, consequently, to 

(21) 

According to (18) in this case, the analogous quantities 
are equal, at Yo < yri 

Q'=Qo[ 1~'/" ('/,10)''']' 

1] =1]m •. , [ 1-'/" ('/'10) '" J. 
(22) 
(23) 

Thus, the coefficient of the transformation of the radia­
tion energy into kinetic energy of the target increases 
on going to larger target radii and to higher-frequency 
radiation. 

The second important consequence is connected with 
the position of the critical radius as a function of the 
parameters of the problem. As shown above, the crit­
ical denSity is far from the target at Yo - yri and ap­
proaches the latter as Yo - O. The latter means that in 
the case, for example, of low-frequency radiation the 
radiation energy input to the plasma subtends over sev­
eral radii, thus facilitating the focusing conditions at 
small initial target radii. For the investigation of some 
nonlinear processes, [7J a very important role is played 
by the state of the plasma in the region of the critical 
density, and particularly by the quantity a=(pv2/p). 
According to (12) a =0. 5(1 +6.4ln (y~I7/4)) at Yo> yci and 
a = 1 at Yo < Yci. The temperature at the critical point is 
determined by the following relations, according to (12) 
and (18): 

(24) 

As follows from (24), the temperature at the critical 
point at Yo> Y6 is practically independent of the critical 
denSity. 

A similar situation obtains also for the pressure Po 
applied to the target: 

(25) 

We indicate one more circumstance that follows from 
the analysis of our problem. It can be shown that in the 
case when distributed absorption with a finite radiation 
mean free path lo in the vicinity of the critical pOint is 
introduced, the maximum of the temperature does not 
COincide with the critical denSity and shifts towards 
lower density, by a distance -lo' This means that a 
noticeable contribution to the radiation of the corona it-
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self in the x-ray band can be made by a region lying 
ahead of the critical dens ity. 

In our problem it was assumed that the main contribu­
tion to the pressure is made by the electronic compo­
nent, i. e., zTe > T i • For a number of applications of 
our results, however, interest attaches to the profile 
of the ion temperature Ti(r). Within the formulation of 
this problem, the function T i (r) can be obtained from 
the equation 

dT, T.(R) -T, 
v dR = -T-:;:-(T" p) • 

(26) 

where Tei =aT~/2p-l is the time of the electron-ion relax­
ation, and a = (i ffi)M~(ml/2e4Az3tl. The solution of 
(26) takes in this case the form 

R dR R n' dR T (R') 
T;(R)=exr{-J-. } JdR'exr{J-. }-<.-. 

VTci t,Tul ~ Td 
(27) 

Ro H(l ft" 

Estimates show that in the experimental situations of 
practical interest(4l we have Yo <;; yri. Using next the 
relations (18) and (14), we obtain near R =Rcr with the 
aid of (27) 

T; (R) "'Te< r l-exp (_ Ro'-RoR)] 
... RV.crTcr 

(28) 

We consider next the limits of applicability of theory 
developed in this paper. Obviously, the results will de­
scribe correctly the parameters of the corona if the 
time Ts. in which the steady state is established is much 
shorter than the characteristic time of variation Tvar of 
the external parameters, such as the flux Qo• The time 
TgB is of the order of the time required to heat the co­
rona by thermal conductivity, i. e., T. s - (Rcr -Rot 
X ('KoT~;2Pcr Z/Mi)-l. The condition T. B « Tvar, both at Yo 
>yri and at Yo<yci, is equivalent to the relation 

qo=QoIRo'::t>p·(Ro/Tv.,) '. (29) 

For problems in which the duration Tvar and the dimen­
sion Ro of the target are matched, (i. e., the compres­
sion of the target takes place at the end of the pulse), 
the inequality (29) in a sufficiently slowly varying flux 
Qo has a simple physical meaning: the velOCity of the 
dense layers of the target is much smaller than the.ve­
locity at which the corona expands. 
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Propagation of a microwave discharge in heavy atomic 
gases 

V. M. Batenin, I. I. Klimovskil, and V. R. Khamraev 

Institute of High Temperatures, USSR Academy of Sciences 
(Submitted February 26, 1976) 
Zh. Eksp. Teor. Fiz. 71, 603-612 (August 1976) 

Results are presented of an experimental investigation of the parameters of a moving microwave discharge 
in argon, viz., the velocity, geometry, temperature, and electron density. It is found that at pressures 
exceeding a certain critical value diffusion of resonance radiation plays the main role in the discharge 
motion. At low pressures, electron diffusion exerts an additional effect on the discharge velocity. 
Satisfactory agreement between the experimental results and the theory of a microwave discharge set in 
motion by resonance·radiation diffusion I [V. r. Myshenkov and Yu. P. RaIzer, Zh. Eksp. Teor. Fiz. 51, 
1822 (1972) [Sov. Phys. JETP 24, 969 (1972)ll can be obtained by taking into account the dependence of 
the excited-atom ionization constant and the fraction of the microwave energy consumed by excitation of 
the resonance levels on E I P. The motion of the ionization front in argon is accompanied by contraction 
of the discharge and the formation of shock waves. Addition of molecular hydrogen or nitrogen gas 
reduces the discharge velocity considerably, the quenching of the argon resonance levels by the molecular 
impurities playing a major role in the velocity reduction. 

PACS numbers: 52.80.Pi 

Earlier investigations u,2] of the mechanism whereby 
a microwave discharge propagates in air or nitrogen 
have demonstrated the exceptional usefulness of the idea 
of the analogy between the propagation of a discharge 
and the process of slow combustion; this analogy is 
based on the decisive role played by the thermal con­
ductivity of the gas. [3] However, the very first experi­
ments on the motion of microwave discharges in inert 
gases at high pressure U ,4,5] have led to the conclusion 
that their speed, 104_106 cm/sec, can apparently not be 
conp.ected with atomic thermal conductivity. 

On the other hand, the use of the energy equation dem­
onstrates that at such velocities of the discharge front, 
the gas behind the front remains practically unheated, 
i. e., we are dealing with a non-equilibrium-ionization 
wave, which is not connected with the motion of the gas 
as a whole. 

From an analysis of the published data it is seen that 
to describe the propagation of microwave discharges in 
inert gases one can invoke the following mechanism [6-8]: 

microwave breakdown on the discharge front, diffusion 
of the resonant radiation, and diffusion of the charged 
particles. 

A theoretical analysis of microwave breakdown[6] 
would call, in the course of the solution of the problem, 
for far-reaching assumptions, principal among which 

316 Sov. Phys. JETP, Vol. 44, No.2, August 1976 

are constancy of the electron temperature during the 
course of the development of the ionization by the direct 
electron impact, a Maxwellian type of distribution func­
tion of the electrons, and the use of the geometrical optics 
approximation. It has turned out that the result of the 
solution depends strongly on the form of the initial dis­
tribution of the electron density in the plasma cluster, 
while typical values of the discharge velocities agree in 
order of magnitude with those observed. 

Calculations of the process of the motion of the ioniza­
tion wave as a result of diffusion of the resonant radia­
tion[7] were made under the assumption that this process 
determines the density of the excited atoms, which are 
then ionized by direct electron impact. Recombination 
and diffusion of the electrons proceed slowly and are in­
significant in the energy-release zone. The discharge 
velocities are large and close to those typical of micro­
wave breakdown. 

Finally, the influence of the diffus ion of the charged 
particles was analyzed by Bulkin, Ponomarev, and 
Solntsev, [6] who studied the motion of an ionization front 
in long tubes at pressures - O. 1 mm Hg. They have as­
sumed that during the second stage of the discharge de­
velopment the ionization wave constitutes an electron­
density wave whose motion is due to diffusion. The elec­
tron losses are also determined by their diffusion to the 
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