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Turbulence mode models in dissipative media with hydrodynamic type of ndiilinearity are considered. It is 
proposed that only one mode, viz., the decay mode, has a growth rate: By qualitative methods and a 
computer experiment it is shown that stochasticity is already possible in two- and three-mode models. In 
cases when the decay conditions are multiple-valued, the competition between various pairs produced upon 
decay of an unstable mode is investigated. Turbulence with a broad instability range is described within the 
framework of the kinetic equation for complex quasiparticles-stochastic triplets. 

PACS numbers: 45.30.-b 

INTRODUCTION 

Investigations of turbulence in dissipative media are 
called for in many problems of phYSics, such as Lang
muir turbulence in a collision-dominated plasma, acous .. 
tic turbulence in solids, investigations of thermal con
duction, of the boundary layer, etc. In the majority of 
cases, turbulence in dissipative media is not similar to 
the most thoroughly investigated turbulence in media 
characterized by the presence of a wide inertia interval 
in which both the instability and the damping can be ne
glected. The turbulence that is established within the 
inertia interval usually has a universal spectrum kS , [lJ 

is fully described by the energy flux over the spectrum, 
and is essentially independent of the cause of its excita
tion, be it the intrinsic instability outside the inertia in~ 
terval, the action of external fields, etc. In the case 
of a weak nonlinearity, such a turbulence is described 
by the kinetic equation for the waves, [l,2J which can be 
obtained by using the random-phase approximation 
(RPA). On the other hand, if the inertia interval is 
either small or nonexistent, then the phases of the in
dividual modes can no longer be regarded as indepen
dent even in the case of a weak nonlinearity, and the 
random-phase approximation cannot be used. This sit
uation, wherein the phases of the individual waves are 
interconnected in the case of multiwave interaction, is 
customarily called strong wave turbulence. [3J 

The structure and properties of the strong turbulence 
already depend Significantly on the method of its excita
tion and on the width of the instability interval. [4,5 J It 
is just these questions which are discussed in this arti
cle as applied to turbulence in which the energy flows 
towards the lower end of the spectrum. Examples of 
such turbulence are: plasma turbulence connected with 
excitation of low-frequency waves such as ion or mag
netic sound; sound turbulence in solids; turbulence of 
internal waves in the ocean when they are excited by 
surface waves, and others. The investigation is car
ried out within the framework of a traditional approach 
based on expansion in modes. We start with the equa
tions for the time-varying complex amplitudes. We 
conSider turbulence in dissipative media with a non
linearity of the hydrodynamic type, i. e., a quadratiC 
and conservative nonlinearity. It is assumed that one 
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-
of the modes has a linear growth rate and the others 
are damped. 

With the aid of qualitative methods and a computer 
experiment, it is shown that in the Simplest (2- and 3-
mode nonconservative) models, stochasticity can set in 
with properties that are different under finite changes 
of the initial conditions. This problem is of indepen
dent physical interest, since it arises in any situation 
in which a linearly amplified mode is stable with re
spect to decay into two damped modes, i. e., when it 
excites a pair of resonantly coupled modes in a dissipa
tive medium. In the more general case, when the am
biguity of the decay conditions is taken into account but 
the instability region is spectrally narrow, a discrete 
set of decay pairs is produced. The phases of the pairs 
that are close in frequency are mutually synchronized, 
i. e., k-space regions are produced in which the phase 
is constant. Such regions will be called for brevity "k
domains." Different pairs of k-domains, which produce 
a triplet as a result of coupling with one unstable mode, 
compete with one another and the turbulence is made up 
of random pulsations with varying characteristic scales. 

If the instability region in k-space greatly exceeds 
the domain width, then the coexistence of a large num
ber of stochastic triplets becomes possible. To de
scribe the turbulence in this case, a kinetic equation is 
derived for the unstable modes that generate different 
triplets. This equation is obtained by using the circum
stance that the phases of the modes from different trip
lets are not correlated because of their stochastization 
within the triplet. By way of example we conSider 
acoustic turbulence in a medium in which the spectrum 
of the damped low-frequency waves is analogous, in the 
linear approximation, to the spectrum of ion sound in a 
plasma or of helicons in a solid. 

1. MODEL OF TURBULENCE WITH SPECTRALLY 
NARROW EXCITATION REGION 

If an unstable mode exists in a nonlinear dissipative 
medium with disperSion, it is necessary in the general 
case to take into account the following nonlinear pro
cesses: 

1) Generation of harmonics of the growing mode and 
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FIG. 1. Qualitative dependence of the intensity of the unstable 
HF mode and of the damped LF modes on the time for the 
steady stabilization regime. 

the resultant synchronization of the phases of the har
monics of the nonlinear periodic waves whose waveform 
depends on the magnitude of the dispersion for the given 
type of waves. 

2) Decay of the growing wave (wo,ko) into pairs of low
frequency waves (wl,k1) and (wo - wl'ko -~) with syn
chronized phases, where the waves in each pair can be 
of different types, for example Langmuir and ion-sound 
or surface and internal. 

3) The interaction between the different nonlinear 
waves and the decay pairs. 

If the medium has a sufficiently strong dispersion for 
all the wave types that participate in the interaction, 
then no harmonics can be produced and the principal 
elementary process in the general picture of the turbu
lence is the decay of the growing mode into pairs that 
are parametrically coupled with it. 

1. Stochastic tl'iplet. Qualitative analysis 

The decay interaction of an unstable mode with a pair 
of modes that is damped in the linear approximation, in 
a medium with quadratic nonlinearity, is described by 
the equations (see, e. g. ,[6,71). 

AI. 2=-aA,A2. I sin 1])-\\. 2A I." A,=aA,A, sin I])+'I'A., 

C£=a(A,A,A,) -I (A.2A,2+A22A,'-A.'A2') cos I])-~(i). 
1])=<jl.-<jl2-<P •. 

(1) 

Here Ai and f{Jj are the amplitude and phases of the in
teracting waves, (J is the coefficient of nonlinear inter
action, vl,2 characterizes the damping of the low-fre
quency (LF) waves, :y is the growth rate of the high-fre
quency (HF) waves, and ..:1w is the deviation from syn
chronism. The system (1) has no stable equilibrium 
state. This means that in this case, in contrast to in
teraction of modes with random phases, if stabilization 
via decay is pOSSible, a periodic or quasiperiodic pro
cess will be produced. Let us explain its properties. 1) 

The character of the solutions of the system (1) is de
termined by the intensity of the interacting waves and 
the amplitude-phase relations between them. At a large 
initial energy of the damped modes A 1,a(0) - A 3 , when 
oA~ »y, v and I iI>(O) I «rr/2, the solutions can be easily 
shown to be close to the solution of the conservative 
triplet, and the instability and the damping can be re
garded as small. All the characteristics of this solu
tion can be obtained by using the method of averaging 
over elliptic functions (see[8]). On the other hand, in 
cases when as a result of the evolution of the solution 
or the initial conditions we have, for example, A 1•2(0) 
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«A3(0) at iI> - rr/2, then the solution of (1) will differ 
qualitatively from the conservative analog even at small 
v1,a and y. Indeed, at A3 sinil> > - Vl,aI (J (we assume that 
A1 - A 2 ) the damped modes, being small, prevent each 
other from growing until As, owing to its exponential 
growth that is independent of Al or A 2 , becomes so 
large that the parametric growth rates exceed the damp
ing. The duration of the "slow" stage, i. e., the time 
that the amplitudes of the low-frequency modes stay 
near zero, can be arbitrarily longer than the time of 
the "fast" motion-the nonlinear exchange of energy be
tween A 1,2 and A 3• Thus, in this case the stabilization 
regime will be of the relaxation type: A1,a(t) will take 
the form of a sequence of spikes, and As(t) will consti
tute pulses with exponential "roofs" (see Fig. 1). This 
is precisely the relaxation regime which is of interest 
from the point of view of the onset of stochasticity in a 
system of the coupled stable and unstable modes. 

An investigation of the process of interest to us can 
be Simplified by recognizing that at V1 = V2 = V 

~(A.2 -A,')= - V(A.2 -A22) 
dt 

(2) 

and the intensity of the LF modes, starting with a cer
tain time, should be regarded as equ.alA~=A~=A2. We 
then obtain instead of (1) the system 

X=Z+6Y -2Y'+yX, 

Y=-bX+2XY+yY, t=-2Z(X-H) , (3) 

where 

'l'=vt, {j=~(i)/v, y=ylv, 

X=aA, sin 1])1v, Y=aA, cos I])/v, Z=a'A'/v' 

(the dot denotes the derivative with respect to T). For 
a qualitative analysis of the solutions of (3) we investi
gate the behavior of the trajectories in phase space of 
this system, assuming y to be small (y« 1).2) We sub
divide the phase space in this case into regions of fast 
and slow motions. The latter are located near the line 
y= 6/2 and Z = 0, and are defined by the inequalities 

The system (3) has only two equilibrium states, both un
stable, of the "saddle-focus" type. One is located at 
the origin and the other has coordinates 

X=-1, Y=b!(2-y), .. 

Z=y[ 1+6'/ (2-y)'], 

and is located at the boundary of the fast and slow mo
tions. 

A. Exact synchnmism (6 = 0). The phase space of 
the system (3) contains at 6 = 0 two integral surfaces, 
which the trajectories approach arbitrarily closely but 
cannot intersect. These surfaces are the planes Z = 0 
and Y = O. At the intersection of the integral planes are 
located the cones of the slow motions-see Fig. 2. The 
phase portraits of these planes are shown in Fig. 3. 
On the plane Z = 0 the region of slow motions is bounded 
by the parabola 'Y I X I = 2 y2, while at X > 0 it is the iso
cline of the horizontal tangents. Outside this region, 
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FIG. 2. Phase portrait of the system (3) in the case of exact 
synchronism. The equilibri urn state is a saddle-node at the 
origin and a saddle-focus on the integral plane y =0. The 
steady limit cycle corresponding to a stable single-period mo
tion is illustrated qualitatively. 

the influence of the small growth rate is negligible and 
the trajectories hardly differ from the circles3 ) X2 + y2 
= const, on which the energy is conserved. The motions 
on this plane is asymptotically stable with respect to 
perturbations of Z in the region X > - 1. 

Motions on the integral plane Y = 0 are asymptotically 
stable with respect to the perturbations of Y in the re
gion X < - y/2. On this plane, the region of slow mo
tions is bounded by the lines Z = ± yX, while at X < 0 this 
is the isocline of the vertical tangents (see Fig. 3a). 
On the integral surfaces Y= 0 and Z = 0, the behaviors 
of the trajectories are very similar-they tend asymp
totically to the X axis as t _ r;:, • 

We now describe in detail the character of the mo
tions corresponding to trajectories that are not too far 
from the planes Z = 0 and Y= O. We emphasize by way 
of introduction that in the system (3) there is a strong 
nonlinear crowding together of the trajectories. In our 
case, 6 = 0, they tend asymptotically to the plane Y= 0 
at X < - y/2 and to the plane Z = 0 at X> -1. Tending in 
this half-plane to the plane Z = 0, the representative 
point moves over the circle X2 + y2 = const until it falls 
into the region of slow motions near the surface Y = 0, 

a 

x 
FIG. 3. Phase portraits of the integral planes: a) Y=O; 
b) Z=O. 
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FIG. 4. Schematic form of the mappings of narrow strips on 
the x=o plane into each other: a) onset of "simple horseshoe"· 
b) onset of "double horseshoe. " • 

(see Figs. 2 and 3b), where the amplitude of the HF 
mode increases exponentially. After leaving the region 
of slow motions, the point, remaining near the plane Y 
= 0, rises upward and goes towards increasing X-this 
is the decay stage. It then crosses the plane X = 0 and 
drops again towards the plane Z = 0; this corresponds 
to the coalescence process. After falling into the re
gion of slow motions, the point moves near Z= 0 in the 
direction of increasing X and then, crossing the bound
ary of the region of slow motions, lands on the circle 
X2 + X2 = const, and so on. 

To determine the properties of this motion, let us as
certain in which manner the points of the narrow verti
cal slit 0 < Y1 < Y < Y2 « 1 on the plane X = 0 are mapped 
by the phase trajectories at X> 0 into the paints of the 
horizontal strip 0 < Zl < Z < Z2« 1 of the same plane, and 
then, how they are mapped for the trajectories at X<O 
again into the points of the vertical strip. The construc
tion of such a point mapping-of the dependence of the 
motion coordinates Z and Y at the end of the period on 
the values of Z and Yat the start of the period-makes 
it then poSSible, by using an iteration procedure, to 
establish such qualitative features of the process as the 
existence of periodiC regimes and the onset of stochas
ticity. 

The mapping of the vertical plane into the horizontal 
one, and again into the vertical one, is shown qualita
tively in Fig. 4. This figure shows the successive 
transformations of a certain line in the vertical strip 
for two different cases, depending on the proximity of 
this vertical strip to the Z axis. 

Let us illustrate the mapping picture for the more 
complicated case shown in Fig. 4b. It follows from (3) 
that the larger the value of Z at which the phase tra
jectory crosses the vertical strip, the farther from the 
X axis it drops on the plane Z = O. The trajectory that 
begins on the plane X = 0 at sufficiently large Z, after 
dropping to the plane Z = 0, does not fall in the region 
of slow motions, but moves immediately on the circle 
X2 + y2 = R2. It is clear that in the vicinity of the same 
circle there passes also another trajectory, which, af-
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FIG. 5. Mapping of a vertical strip on the X =0 plane into it
self by mapping of points with identical Z and close values of 
Y: a) mapping of a segment into itself, corresponding to a sin
gle-period regime at 0 = 0; b) mapping in which there exists an 
infinite set of periodic motions at 0 =0; c) intermittent map
ping, obtained when the mapped segment intersects the sepa
ratrix near the plane Y=O. 

ter passing through the vertical strip at small Z, drops 
on the Z'" 0 plane in the region of slow motions and 
emerges from that region, intersecting the parabola, at 
X 2 COl R 2. Thus, trajectories that cross the vertical 
strip far from each other turn out to be along-side each 
other after crossing the horizontal strip. It is this 
which explains the appearance of "horseshoes" in the 
mapping picture. 

An analysis similar to that carried out above applies 
also to those X < 0 trajectories which go off from the 
plane Z '" 0 and hug the plane Y '" 0, but here the role of 
the parabola is as·sumed by the straight line Z'" - yX, 
i. e., the character of the mapping of the horizontal 
strip into a vertical one is similar to that described 
above. Thus, a "double horseshoe" can appear in the 
complete mapping picture. Multiple passage of the tra
jectory through the plane X", 0, corresponding to multi
ple application of the mapping, can make the picture of 
the motion very complicated and entangled. 

Assuming that the considered motions are stable, let 
us investigate their structure in greater detail. To this 
end we use a cruder model, identifying the points hav
ing equal Z in the vertical strip with points having equal 
Y in the horizontal strip. Instead of mapping a strip in
to a strip we then map the line Z into itself, i. e., the 
dependence Z (Z) of the succeeding points Z on the ini
tial points Z (see Fig. 5). At different positions of ~(Z) 
relative to the bisector Z'" Z there exists either a sin
gle stable single-period regime (see Fig. 5a), or a set 
of regimes with modulation-multiperiod regimes, to 
which closed cycles correspond on the (Z, Z) plane (see 
Fig. 5b).4) 

We now use the known result of the formal theory of 
point mapping, [9] namely, if in a system described by 
the mapping Z(Z) there exists periodic motion with an 
odd number of periods, then regardless of its stability 
there exists in the system one more denumerable set of 
unstable multiperiodic motions and a finite or denumer
able number of stable motions. As seen from Fig. 5b, 
such odd (say three-period) motions exists in our crude 
model described by the mapping Z(Z). Consequently, 
a denumerable set of unstable periodic motions exists 
in this system. 

One can expect at a sufficiently small y this set to 
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exist in a bounded region of phase space also in the ini
tial system. If there were likewise no stable motions 
in such a bounded phase-space region, to which the 
neighboring trajectories tend, then this would apparent
ly be sufficient for the onset of stochasticity.5) How
ever, in the absence of detuning, judging from the crude 
mapping Z(Z), such stable motions do exist and corre
spond to cycles supported on one of the vertices at the 
"bottom" of the function Z (Z), where I dZ / dZ I COl O. 

B. Influence of the de tuning on the dynamics of a 
triplet. Introduction of detunings destroys the integral 
surface Y", 0 and transforms the equilibrium state at 
zero from a saddle-node into a saddle-focus (see Fig. 
6). The stable separatrix of this equilibrium state, 
which became twisted around the point X'" - 1, Z '" y as 
t - 00 in the case 1) '" 0, already goes off to the half-space 
Y < (j/2 at (j > O. The behavior of the trajectories be
comes much more complicated, and a qualitative analy
sis without additional assumptions becomes impossible. 
We confine ourselves therefore to the case of small (j, 
when we can still approximately disregard the destruc
tion of the integral surface Y", O. The role of the detun
ing reduces in this case, just as in a conservative sys
tem, only to a hindering of the exchange of energy be
tween the modes, i. e., in our case, to a decrease of 
the maximum attainable values of Z at X'" - 1. The lat
ter circumstance means that situations are possible in 
which the line carried by the trajectories at X < 0 in the 
course of the mapping from the plane X'" 0 into the vi
cinity of the plane Y'" 0 lies on this plane near the equi
librium state X=-I, Z"'y. This means that the con
sidered mapping is divided into two classes of motion 
by a separatrix that enters in the zero state of equi
librium. The trajectories that enter in the vicinity of 
the plane Y", 0, outside the unwinding separatrix (see 
Fig. 2) cross the plane X = 0 and move farther in a di
rection of increasing X. On the other hand the trajec
tories that fall inside the separatrix turn towards de
creased values of X before they cross the plane X'" O. 
They cross this plane, but only after one or several 
revolutions in the region of X < 0, and furthermore at 
larger Z. The picture of the "cruder" mapping of a 
line into a line, corresponding to the described situa
tion, is shown in Fig. 5c. The discontinuities on the 
Z (Z) curve near small Z correspond precisely to the 
subdivision of the motions by the separatrix. For dy
namic systems described by a similar piecewise-smooth 
transformation under certain limitations, [12] one can 

FIG. 6. Phase portrait of 
integral plane Z = 0 at 0 > O. 
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FIG. 7. The steady-state motion observed in the computer ex
periment: a} single-period regime at 6 =0, aw=o, 11')'> 1; 
b) multiperiodic regime at 6=0, aw=o, v'Y:51; c) stochastic 
regime at 6 =0. 001 and'~w =0. 001. 

prove a very strong statement, namely that mixing ex
ists in the system. 

Thus, our analysis shows that if the regime of sta
bilization of the unstable mode as a result of decay into 
damped modes is poss.ible, then in the presence of de
tuning it can be stochastic-in a purely dynamic sys
teml 

2. Decay triplet .. Computer experiments 

A detailed numerical experiment6 ) performed with the 
system (1) has confirmed all the principal results of 
the qualitative analysis. We emphasize that the dy
namic processes are observed only in the absence of de
tuning, 0 = 0, while the stochastic processes, converse
ly, only at 0 * O. We obtained approximately 100 real
izations of which ~ were at 0 * O. We chose the follow
ing values of the parameters: y = 0.15, 0.1, and 0.01; 
0=0,0.001, 0.01, and 0.1; the initial conditions were 
chosen to be AI,z,3 = 5-10 and <1>(0) = 0-2. 

A. Resonant case, 0 = O. In the resonant case, de
pending on the initial energies, we observed two types 
of motion-single-period (Fig. 7a), for which the maxi
mum value of A3 were - 13-18, and multiperiodic (see 
Fig. 7b). Only three- and four~periodic motions were 

Ii 
f.O a \I> g------b------_ --------- ----------- ----------- ------

-------- ------
§''Iz$ == - = ---- :::::.'::= :.--..: 

-- --- -----
J/z$ - -----------------.::.:::::.: 

O~~~~F=~~fO~O
't 

t 

f 

FIG. 8. Characteristics of the regime of total stochastici1;y: 
a) form of the autocorrelation function R(T); b) character of 
the variation of the phase difference of> with time, with accumu
lation of of> observed; c) distribution function in the reciprocal 
duration between spikes j (liT). 
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FIG. 9. Characteristics of partial stochastici1;y regime: 
a) autocorrelation function R(T); b) plot of 1I>(t}, it is seen that 
there is no phase accumulation; c) distribution functionj(lIT). 

stably observed, while others, for example five- and 
six-period motions, had a small stability region and 
from time to time were transformed into one another. 
The amplitude of the multiperiodic motions was notice
ably smaller, As max - 5-8, and the period was larger 
by a factor 1. 5-3 than for the single-period motions. 
The instability of the mode could be eliminated only at 
a sufficiently large relative damping and a small growth 
rate, namely, at y < !. At y - i the form of the oscilla
tions was described approximately by elliptic functions, 
and with decreaSing y it became more and more re
laxational-the motions took the form of discontinuous 
exponentials for A3 and of narrow solitons for Al and Az 
already at y =0. 1 (see Fig. 7a), i. e., sharply pro
nounced rapid and slow motions were observed. The 
period of the oscillations was - 1-1. 5, and the time of 
the fast motions was < O. 1. With the exception of these 
time intervals, the phase <1> remained approximately 
equal to ± rr/2 regardless of the initial values of <1>(0). 

B. Nonresonant case. In the nonresonant case, 
when the synchronism conditions between the modes 
were not exactly satisfied (0 * 0), all the observed mo
tions were stochastic. Their properties, in contrast to 
the dynamic processes, depended essentially on the ini
tial conditions with respect to <1>. At 0> 0, AI,z,3 - 5-
10, and <1> = 0-2rr we observed three qualitatively dif
ferent groups of stochastic regimes, the autocorrelation 
functions of which are shown?) in Figs. 8, 9a, and lOa. 
The same figures show the distribution functions, cor
responding to these regimes, of the intervals between 
the jumps in terms of their reciprocal duration /(l/T), 
and oscillograms of the difference between the phases 
<1> = <1>(t). The amplitude realizations corresponding to 
the different stochastic regimes are qualitatively simi
lar, and only the maximum values of the amplitudes 
change. One of the typical realizations is the depen-

FIG. 10. Characteristics of transient stochastici1;y: a) R(T), 
b) of>(t). 
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FIG. 11. Limits of the existence of dif
ferent types of stochastic regimes on the 
(X, 1') plane. 

dence of the amplitude of the unstable mode on the time 
and is shown in Fig. 7c. The regions of the initial val
ues of <1>(0), at which these different regimes were ob
served (we shall call them arbitrarily "complete sto
chasticity "-Fig. a, "partial stochasticity "-Fig. 9, 
and "transient stochasticity" -Fig. 10) are plotted in 
the (X, 11 plane, see Fig. 11. We add that the average 
period-the time of the slow motions of all the stochas
tic processes-was larger by one 'order of magnitude 
than the time of the slow processes in the dynamic case. 

3. Comparison with theory 

We recall that the stochastic regimes were observed 
only after introduction of the detuning 15, and even at 
small 15 the intensity of these motions Zmax or (X 2 

+ y2)max was smaller by approximately one order of 
magnitude than at 15 = O. We have thus confirmed the 
statement used in the qualitative analysis that the detun
ing lowers the level of the maximum attainable Z, on 
the basis of which the intermittent mapping Z(Z) was 
obtained. 

As follows from the qualitative analysis, disordered 
motions of two types are possible in the system (3) at 15 
> O. One of them corresponds to trajectories in the 
right half-space, for which Y is always larger than (5/2 
and the accumulation of the phase difference <I> in the 
periodic or quasi-periodic motion is impossible. The 
other types of motion correspond to trajectories in the 
left half-space-Y<15/2, and for these motions accumu
lation of a phase difference is already pOSSible, be
cause the trajectories can go from the region Y < 0 into 
the layer 0 < Y < 15 /2, and consequently encircle the Z 
axis. 

It is easy to verify that the experimentally observed 
partial-stochasticity regimes correspond precisely to 
"right-hand" disordered motions and to those "left
hand" motions whose trajectories do not enter the layer 
0< Y < 15/2. Indeed, during the slow stage of the right
hand motion the phase difference <I> is close to ± rr/2, 
after which it rapidly changes to rr-motion near the 
plane Y= 15/2 + 0, after which it resumes its previous 
value-motion near the plane Z = 0 outside the region of 
the slow motions. The situation is similar for the left
hand motions lying in the half-space Y < O. This is pre
cisely the time-variation of motion observed experi
mentally in the partial-stochasticity regime, see Fig. 9b. 

On the other hand, in the left-hand motion, in which 
the representative point goes from the half-space Y<O 
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into the layer 0 < Y< 15/2, the value of <I> increases, in 
this case <I> changes during the fast motion by 1T, after 
which the trajectory again goes off to the left half-plane 
and moves near the circle, while <I> increases by another 
rr. This explainS the accumulation of <I> observed in the 
regime of complete stochasticity-see Fig. ab. 

We emphasize that the properties of the regimes of 
complete and partial stoChasticity, for example the form 
of the autocorrelation function, did not depend on the 
calculation accuracy in a wide range. This proves the 
dynamic origin of such a stochasticity in the computer 
experiment. All that depended on the calculation accu
racy, i. e., in fact on the fluctuation level, in narrow 
limits, was the thickness of the boundary separating the 
regions of the existence of the two regimes. At the 
boundary itself there was observed the stochasticity re
gime represented in Fig. 10. Its properties depended 
on the calculation accuracy and it obviously does not 
characterize the stochasticity of the dynamic system it
self. 

BeSides experiments with the initial system (1), ex
periments were performed also on the degenerate in
teraction of a stable mode and its unstable second har
monic. In the presence of detuning, the observed re
sults agree fully with those described, and by the same 
token confirm the validity of the transition from the sys
tem (1) to the system (2) in the qualitative analySiS. 

4. Structure of turbulence 

We examine this problem, using as an example a 
parametrically excited one-dimensional acoustic turbu
lence in a dissipative medium with dispersion. This 
can be, in particular, acoustic waves in a solid, ion 
sound in a plasma, and other types of low frequency 
waves with analogous dispersion law w(k)-helicons, in
ternal waves, etc, We assume that the frequency of the 
unstable mode is close to the limit of the strong disper
sion, so that no energy is transferred upward in the 
spectrum. Then, bearing in mind the linearity of w(k) 
at low frequencies, we can confine ourselves to an analy
sis of only decay processes. In the general case, for a 
continuous spectrum of the decay pairs, the initial sys
tem is represented in the form 

where b is the complex amplitude of the wave of fre
quency WeI, excited with a growth rate y, a~ is the com
plex amplitude of the k-th component of the spectrum, 
and IJ~ is its decrement (ko = k(wo), 0 < I ql < M« ko). 

According to (4), in the linear approximation there 
will be excited predominantly pairs with k - ko/2, which 
are symmetrical with respect to wo/2 and ko/2-for 
these the decay increment 

is maximal, while pairs with I ko - kl - ko/2 do not grow 
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at all, a fact taken into accoWlt into (4), where Alko« 1. 

The problem of the nonlinear evolution of the spec
trum of the initial fluctuations was solved for a particu
lar but discrete pair spectrum. As shown by a com
puter experiment in which the interaction of different de
cay pairs was investigated, close pairs become mutual
ly synchronized in phase, forming boWld states-do
mains in k-space. 8) In the dynamic case, when the dis
persion is neglected, Aw = 0, the width n = Vook of these 
domains decreases slowly with increasing pair damp
ing-at yly we have n = 0.1 and at yly = 30 we have n 
= O. 06. When the dispersion is taken into accoWlt (sto
chastic triplets), the width of the domaihs, in a wide 
range, no longer depends on viI' and increases linearly 
with increasing detWling Aw inside the triplet. For ex
ample, at 10 < vly < 100 we have n>::l 30 Aw. 

If the growth rate of the Wlstable mode is spectrally 
narrow, there can exist at each instant of time, as 
shown by experiment, only one pair of domainS. The 
obvious reason is that the different pairs are fed from a 
single spectrally narrow source and suppress each oth
er when they interact. 9) The presence of fluctuations 
causes the lifetime of the arbitrary pair of domains to 
be finite, and the system goes over randomly from a 
state with one excited pair into a state with another ex
cited pair. Physically this result seems quite obvious 
and is explained by the fact that the decay pairs really 
exist only during a fraction of the period TO of the trip
let-their intensities take the form of sequences of nar
row spikes, see Fig. 7. The random bursts of inten
sity of other spectral components in the interval be
tween the spikes induce decay of the Wlstable mode into 
a new pair, etc. In the computer experiment, the life
time of the pair turns out to be T pair - 10-50TO• The dis
tribution fWlction of the pair in frequency had a maxi
mum near Wo12. 

2. KINETIC EQUATION FOR TRIPLETS 

If the instability region of the decaying modes in k
space, while remaining small in comparison with ko, is 
broad in comparison with the width of the domain, then 
different domain pairs can already coexist. 10) The tur
bulence in this case is an ensemble of different decay 
triplets, and its spectrum depends on the character of 
the interaction between them. If there is no dispersion 
in the entire considered k-interval, domain pairs from 
different triplets will be resonantly coupled via a third 
Wlstable mode, different triplets apparently synchronize 
each other, and the turbulent spectra becomes much 
more complicated. 

We conSider here a Simpler case, when the disper
sion is appreciable within the instability interval and 
the spectrum of the Wlstable mode is not equidistant. 
The damped pairs from different triplets are then not at 
resonance with the foreign Wlstable modes and can in
teract only with one another. But since the short-dura
tion bursts of the damped modes from the different trip
lets are not correlated, their interaction can be ne
glected in comparison with the interaction between the 
long-lived Wlstable high-frequency modes. This inter
action will be due to the low-frequency acoustic per-
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turbations, the frequencies and wave numbers of which 
are smaller than or of the order of the spectral width 
of the instability region. 

Since in our case the width of the instability region is 
assumed to be much smaller than the frequency of the 
HF modes, the sought equations are obtained within the 
framework of the adiabatic approximation. [15] In this 
approximation, the high-frequency modes with random 
phases propagate in a medium with parameters that 
vary slowly as a result of the low-frequency sound. 
Consequently, for parametrically excited one-dimen
Sional sOWld waves, we have a kinetic equation for the 
high-frequency mode and a hydrodynamic equation for 
the low-frequency sOWld: 

(5) 

Here Nk is the intensity of the k-th HF mode, ~ is a 
variable characterizing the low-frequency acoustic per
turbation, S is a constant that depends on the normaliza
tion, Vs is the viscosity, Yk is the linear increment of 
the HF modes, and p~! is a model term describing the 
stabilization of the HF mode on account of the decay in
to modes that are damped within the triplet, Y"lp,,=N~O) 
being the average level of the high-frequency mode in 
the regime of stationary stabilization in the autonomous 
triplet. Replacement of the real colliSion integral by 
such model terms is possible if the time of establish
ment of the quaSistationary state within the triplet is 
much shorter than the time of interaction between the 
triplets. 

An "ideal" gas of non-interacting triplets corresponds 
to a state with ~ = 0, which exists only in the case when 
the energy of the high-frequency mode has a uniform 
distribution in space. Such a state, however, may turn 
out to be unstable to long-wave perturbations. 

Consider, for example, the stationary regime Nk(x, t) 
= N ~O) with a dependence N ~O)(k), for which N ~0)(k2) 
- N ~0)(k1) = a. Here k1,2 are the limits of the instability 
region of the high-frequency modes in k-space. It is 
easily seen that at VII - Vs such a stationary spatially
homogeneous regime is Wlstable with respect to breakup 
into clusters with characteristic dimensions 

(6) 

if aS 2 < V" v~. If aS 2 > VkV~, then the short-wave per
turbations are also Wlstable. 

CONCLUSION 

We call attention once more to the fact that the onset 
of the stochastic behavior in a nonlinear dissipative 
medium is not necessarily connected with a large num
ber of interactions. Disordered motions, which require 
statistical methods for their descriptions, can arise 
even in a system containing three or even two coupled 
nonconservative modes. The turbulence-the disor-
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dered motion of the medium with a large number of ex
cited degrees of freedom-is in this case the result of 
an interaction of ready-made stochastic formations, 
for example triplets. 

The problem considered above can simultaneously 
serve also as a finite-dimensional model of turbulence 
in a viscous liquid. 11) The existence of stochasticity in 
this example confirms in essence the recently advanced 
ideas concerning the onset of turbulence, [10,11J accord
ing to which onset of a disordered behavior is possible 
as a result of loss of stability of only doubly-periodic 
motion. 

We emphasize also that owing to the randomization of 
the phases of the modes inside the triplet, when de
scribing an ensemble of triplets with the aid of the ki
netic equation for such complicated quasiparticles, the 
description can be obtained without resorting to addi
tional hypotheses such as the random -phase approxima
tion. 

The authors are grateful to A. V. Gaponov for con
stant interest in the work and for a discussion of the re
sults, and to V. N. Belykh, B. D. Latkhtman, and A. 
L. Fabrikant for valuable remarks. 

I)For waves with random phase, stabilization by decay is pos
sible if VI + V2 >.y (we assume that (T = 1). Stationary values 
of the mode intensities are then established, i. e., the energy 
flux over the spectrum is constant. 

2)We note that at 'Y = 1 Eq. (3) satisfies the Liouville theorem 
on the conservation of the phase volume div it = 0 (u = <X, Y, Z», 
i. e., in this case our nonequilibrium system is conservative. 

S) At high initial energies, processes are also possible in which 
the point goes around the region of the slow motions and, dis
engaging from the Circle, falls immediately at X < - 1 into the 
region Z >'Y IX I with X < 0 and small Y. At small 'Y, however, 
these motions should be unstable-the loss of the energy of 
the HF mode during the coalescence and decay is not offset 
by the enhancement of the HF mode. 

4)The Z(Z) curve becomes deformed, drops or rises, depend
ing on the proximity of the vertical strip that hugs the line to 
the plane Y=O, i.e., the form of this cruder mapping de
pends on the initial conditions on the plane X = O. This is the 
price we have to pay for making the problem cruder-a de
crease in the dimensionality of the mapping. 

5)Phase-space regions to which all neighboring trajectories 
are attrached but in which there are no stable motions-cycles 
or equilibrium state-are called "strange attractors" . ClO,11] 

S)Preliminary results of this experiment are reported in[IS). 
7)The autocorrelation function 

was calculated for each realization at n = 2000 (here T = t'+1 
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- t
" 

A3 =A3 -MA3 , MA3 is the mathematical expectation value 
and D is the variance of the quantity As). 

8)The process of concentration of the energy of the decaying 
modes in domains recalls the appearance of jets in k-space, 
for example, when waves are scattered by particles. 114J The 
difference between these processes lies particularly in the 
fact that the phases of the different modes in a jet are ran
dom, while in a domain the phase of the spectral components 
is constant and is independent of k. 

9)This process is analogous to mode competition in a laser With. 
homogeneously broadened line of the active medium. 

IO)Continuing the analogy with lasers, it can be noted that this 
case is similar to simultaneous generation of many modes 
in a medium with an inhomogeneously broadened active-medi
um line-the different modes emit different active frequen
cies. 

I1)The onset of disordered motions in finite-dimensional non
conservative systems was deduced numerically also inl1S,17l. 
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