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The conditions for saturation of an unstable mode at the expense of its parametric decay into damped 
perturbations are investigated. It is shown that the instability cannot be stabilized if the instability 
increment exceeds the maximum damping. The dynamics of the muItimode regime that arises is considered 
in the case of strong Langmuir turbulence. The maximum field amplitude is determined for this case. 
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A characteristic feature of an active medium is the 
possibility of the excitation in it of unstable oscillations. 
Principal interest is attached here to the nonlinear dy­
namics and the mechanism of saturation of the insta­
bility. One such mechanism can be the parametric de­
cay of a linearly unstable wave into damped perturba­
tions. The quasi-stationary states that are generated 
here were investigated in Refs. 1-3. 

In the present work, the nonlinear dynamics of the 
parametric interactions of waves in an active medium 
are considered by analytic and numerical methods. It 
is shown that under conditions in which the damping of 
the perturbations is relatively small, the quasi-sta­
tionary state is not achieved in a system of three waves 
and the subsequent dynamics are determined by the in­
teraction of many waves. The behavior of the system 
in this case is studied through the example of the inter­
action of Langmuir and ion-sound waves in a noniso­
thermal plasma. Such a situation is realized, in par­
ticular, in experiments on the interaction of an electron 
beam with the plasma. 

1. In the approximation linear in the perturbations, 
we get the following from the system of equations which 
describes the decay interaction of three waves Wo = WI 

+ wz, Ito =k1 +ka, [4] in the presence of a linear oscillation 
buildup y and damping Ill> liZ in a homogeneous medium: 

C.(t) =C.(O)eY', 

(1) 

Here Cj is the complex amplitude of the j-th wave, nor­
malized so that W j I Cj IZ is the energy denSity of the 
wave, V is the coupling coefficient which can be re­
garded as real if we assume that the dissipation and 
buildup are both sufficiently small, r = y - 111 - liZ; k 
= 1,2. 

By the change of variables 

C,=C'(s) , s=vlc.(t) Ih=vICo(O) le"h 

Eq. (1) is transformed into a modified Bessel function. 
The increasing solution of Eq. (1) of interest to us is of 
the form£5] 

r+2v. 
J.I.=---, (2) 

'Y 
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where I(~) is the modified Bessel function. It follows 
from the solution (2) that the behavior of the perturba­
tion is completely determined by the value of the pump­
ing. To begin with, while VI Co(t) I «y, the perturba­
tions do not build up and Ck- exp(-II"t). The paramet­
ric interaction is effectively turned on when VI Co(t) I 
~ Y, and, thanks to the continuing growth of Co(t), the 
increase in the perturbations takes place with accelera­
tion; atVICo(t)l»y, wehaveCk(t)-exp(VICo(O)left ) 

and the perturbations rapidly overtake the pump wave in 
amplitude. The linear stage of the parametric insta­
bility is concluded at this point and further evolution of 
the system requires a nonlinear treatment. 

For an investigation of the nonlinear dynamics of the 
wave, it is convenient to transform to real quantities. 
Setting Cj = I Cjl exp(-iaj ) (1m a j =0) and separating the 
real and imaginary parts of the equations, we get, after 
simple transformations, 

(! -2Y)S.=(! +2v,)s,=(! +2v,)S,=2VA(t)tg .p, (3) 

SoS,S, cos' .p=A' (0) ezrt""A' (t); (4) 

Sj= I Cj I', .p=cx,+cx,-a.. 

According to the linear consideration given above 
(see also Refs. 2, 3), the parametric coupling of the 
waves is effective when the characteristic growth rate 
of the decay instability significantly exceeds the linear 
buildup and decay. Moreover, in accord with (4), at 
r > 0, the amplitudes of the waves increase exponential­
ly, which also leads to a relative increase in the nonlin­
ear components in (3). Therefore, the stated problem 
can be solved by perturbation theory. In the zeroth ap­
proximation corresponding to the conservative case y' 
= 111 = liZ =0, as is well known, [Z,4] the system (3), (4) 
has the solution 

m l =80+S1 =const, m:z=so+s:z=const, 

808182 cos:!: ¢=A 2=const, 

So=S,+ (s,-S,) sn'[ V(s,-S,) '1. (t-to) , x'l, 

(5) 

where K Z = (Sb -Sa)/(Sc -sa) and the quantities sa <Sb <sc 
are roots of the equation 

s(s-m,) (s-m,) =A'. (6) 

Acting in the spirit of the method of Van der Pol, we 
shall assume that the form of the solution does not 
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change when account is taken of small linear compo­
nents, and the zeroth-approximation integrals become 
slowly varying functions of time (in comparison with the 
zeroth-approximation characteristic period). Equations 
describing these slow changes are obtained from (3)-(5) 
by averaging over the rapid oscillations of the ampli­
tudes: 

dm. -;u-= - 2v.m. + 2(1 + v.) (s,>, k = 1,2, 

K(x)- E(x) 
(s,> = s. +(s, - s.) . 

x'K(x) 

(7) 

Here K(x) and E('lt) are the complete elliptic integrals 
of the first and second kind, respectively. 

The change of the integral A with time is determined 
by the relation (4). We assume for simplicity that the 
amplitude of one of the perturbations at the initial in­
stant is sufficiently small that we can assume AZ(t) 

~~ m;(t). 

Then we find from (6) (setting ml» mz for definite­
ness): 

(S) 

Substituting (S) in (7), we obtain an equation for the 
determination of the modulus of the elliptic integrals 
xZ(t)"'mZ/ml' which determines the change with time of 
the period (T-4K(x» of fast oscillations of the wave 
amplitudes: 

1 dlnx' ,K(x)-E(x) 
---= Il,- III -[IlIX - Il.l--'--'-:c:-.,......,..--'-
2 dt x'K(x) 

(9 ) 

Here we have introduced the notation Ilk = Y + Ilk for sym­
metry. 

In the region 0 < X Z < 1, using the expansion of the el­
liptic integrals in a series, [5l we transform Eq. (9) to 
the form 

dx' (Il ) -=(21l1-Il,)X'- Ill---': x' dt 8 . 

From (10) we find 

• • x'(O)e'T' 
x-(t)= X.- x.' + x'(O) (e'"' -1) , 

x'(O)""x'(t=O), 

(10) 

(11) 

(12) 

Here X Z is the stable stationary value of xZ(t), which is 
achieved in the case O<xz(O)<l, and i< Ill/Ilz<t. 

In the narrow region t $ Ill/ Ilz $1, the use of the ex­
pansion to obtain (10) is no longer correct. In this case, 
the solution of Eq. (9) is found in the region 1 - xZ '" x 2 

«1 and leads to the stationary value xZ -1, determined 
by tJ:le equation 

x"ln~=~-1. 
x Il' 

(13) 

If 0 < Ill/ Ilz < i, then xZ(t) - O. In this case, r < 0 and 
the system results in a quasistationary regime, studied 
by Rabinovich. [3l Finally, in the case Ill> Ilz, the as-
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sumption ml(t»mZ(t) is violated. In this case, it suf­
fices to redefine the modulus of the elliptic functions 
XZ = 1/xz, for which the given analysis is entirely valid. 

We now determine the time variation of the wave am­
plitudes under the conditions in which xZ(t) reaches a 
stationary value. It is evident that in this case ml (t) 
and mz(t) behave in a similar manner (mz(t)/m 1 (t) 
= const). From Eqs. (7), (S), we find 

m, (t) =m, (O)e"', m,(t) =x.'m.(t) , 

~ = 1 - 1l,1l.(1-,x.' ) , 
Il,-X. Il' 

(14) 

where x! is determined from (12) or (13). It follows 
from (12) and (14) that f3'" iCy - liz), i. e., the wave am­
plitudes increase when the linear increment predomi­
nates over the larger damping. If x~ -1, then f3'" Y, 
and at x~ - 0, as was to be expected, f3'" - 111 < O. When 
x 2 =x~, the period of fast oscillations (see (5), (S» de­
creases with passage of time: 

T ... 2K(x.) /m~ (t) - e-". (15) 

Equations (3) and (4) were also solved by numerical 
methods on a computer. Figure 1 shows the results of 
suchacalculationfory=l, 111 =0.1, IIz=0.15. Itis 
seen that the period of the nonlinear oscillations of the 
amplitudes decreases, in accord with (15), and their 
envelope increases exponentially with a characteristic 
increment of f3=O.S. We obtain f3"'0.S3 from (13), (14) 
for the given example. It is seen that the obtained ana­
lytic solution is in complete accord with the results of 
the numerical calculation. 

Thus, when the increment of the linear instability is 
sufficiently great (f3>0), the decay interaction in the 
system of three waves does not stabilize the instability­
the amplitudes of the waves increase exponentially, and 
the characteristic period of exchange of energy among 
the waves increases exponentially with time. 

2. If one of the interacting waves has a low frequen­
cy, as for example, in Mandel'shtam-Brillouin scatter­
ing, then the increment of the parametric instability 
can, with increase in the amplitude of the pump wave, 
become greater than this frequency (modifi.ed decay). 
In this case, the interaction of the waves is described 
by the set of equations (wz« wo, WI; <5 = WI - wo)C4l: 

tns 
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-5 
-8 

i (! -1) C, = VC,C,e-"', i (:t + "') c, = VC,C,'e"', 

d'C, dC, • (16) 7 + 2v, iii + w,'C, = - 200, VCoC, r'·'. 
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FIG. 1. Dependence of the 
squares of the amplitudes of the 
waves on the time: curves I, 2, 
3,-are lnro, Ins! and Ins2' re­
spectively. 
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In the absence of a linear buildup and damping, Eqs. 
(16) were investigated in Refs. 6, 7. The analytic solu­
tion in dimensionless coordinates takes the form 
mo=so+s,=const, /0 ... -2 (sos,) ,/, cos 1/l=const, 

So = ~o { 1 + [ 1 - ( ::0 ) '] 'I, cos ( 2 J Pdt) }, p = ~, sin' ~t . 

(17) 
Here so, S1, I/J have the same meaning as in (3) and (4), 
p, n are the dimensionless amplitude and frequency of 
the wave Ca, and the solution (17) describes the nonlin­
ear stage of the instability, when p» 1. Repeating the 
same considerations as in the previous section, we find 
that the amplitude of the high-frequency waves behaves 
in accord with (17), where the integrals of motion are 
now functions of time: 

met) -moe", f(t) =/0#, ~="(-'V,. (18) 

The solution for the perturbation of the density has the 
form 

jet) 
p "" 2Q2 {1- exp[ - (~ + 'V,)t]cos Qt}. (19) 

The obtained analytic solution agrees with the results 
of the numerical solution of Eqs. (16) on a computer. 
Figure 2 shows as an example the results of such a cal­
culation for 1'= 1, V1 =0.1; va =0. 5; Ii =0.1; 0 =0.2. 
From the drawing, we have 13=0.9, in complete agree­
ment with (18). 

3. We now consider the effect of a linear buildup and 
damping on the interaction of waves with random phases. 
For simplicity, we consider the packet of waves to be 
one-dimensional and sufficiently narrow that the reso­
nance conditions Wo = WI + wz, ko =k1 +kz are satisfied only 
for three waves. In this case, the behavior of the 
squares of the amplitudes of the waves is described by 
the set of equationsU •4) 

-e,,(! -21)N.=e,,(! +2'V,)N,=e01(d~ +2v,)N, 

= 2V' (NoN, + N.N, - N,N,). (20) 

Here e"'8 = I fJw/fJk", - fJw/fJk 8 I, V is the matrix element 
of the interaction. The solution of the considered prob­
lem is worked out in the book of Tsytovich in the ab­
sence of linear buildup and decay. [1) Several special 
stationary solutions of Eq. (20) are also considered 
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FIG. 3. Time dependence of 
the squares of the amplitudes 
of waves with random phases; 
curves 1, 2, 3 correspond to 
InNc, InNt and InN2, respec­
tively. 

there. However, in the general case, the stationary 
solutions of Eqs. (20) turn out to be unstable. As in the 
previous discussion (Sec. 1), we can easily show that in 
the given case, under certain conditions (see below), 
the linear effects are small on the nonlinear portion of 
the interaction of the waves (Tn~n1 «TUn) and the system 
rapidly reaches a state with quasiequilibrium distribu­
tion of the quanta, in which 

N,No+N,No-N,N,<'N.'. 

An approximate solution of the nonstationary nonlinear 
problem (20) can also be obtained under the assumption 
(which is confirmed by numerical calculation) that in the 
quasiequilibrium state the nonlinear interaction of the 
waves, which converts the energy fed into the system 
from the pump wave, is proportional to the number of 
pump quanta No: 

N,No+N,N.-N,N,=Q(t)N •. (21) 

It then follows from (20) that we can assume 

N",=q",(t)N., (22) 

where Q and Q1.Z are slowly changing functions and Q/No 
«1 (we note that at l' = v1 = Vz = 0, the equilibrium state 
corresponds to Q =0). 

From (20)-(22), we obtain 

N. (t) ~ N, (t) ~ N, (t) ~ e", ~ 
en." - £.,20\'1 - BuNz 

e01 + £..02 + B13 
(23) 

It follows from (23) that under the conditions in which 
13>0 the amplitudes of the waves on the nonlinear por­
tion grow exponentially. Here the characteristic time 
of the nonlinear interaction Tnonl -l/No - e-llf decreases, 
improving the conditions of applicability of the obtained 
solution. Correspondingly, the condition 13>0 deter­
mines the region of instability of the stationary states 
investigated by Tsytovich. [1) 

Figure 3 shows the numerical solution of Eqs. (20) 
for 1'=1; v1=0.1; va=0.2; 2Va=1; eOI=e1Z =2eaz=1. It 
is seen that, after the linear stages, the system, in ac­
cord with the solution (23) transforms into a state in 
which the amplitudes of the waves increase exponential­
ly with increment 13::: 0.33. It follows from (23) that 13 
= O. 3 in this case. 

Thus, it follows from the analysis given above that 
the nonlinear dynamics of the interaction of the waves 
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FIG. 4. Change in the energy 
density of waves with time 
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depends essentially on the linear parameters (1', vk ) of 
the system. The relation between these parameters de­
termines the final state that is realized in the system. 
Thus, in the case of waves with fixed phases, the lin­
early unstable wave can be stabilized only when its in­
crement does not exceed the largest damping decrement 
of the perturbations. A similar condition can occur also 
for waves with random phases. H this condition is not 
satiSfied, then the decay of the unstable wave only slows 
the linear instability, without stopping it. Here the per­
turbations parametrically connected with the pump wave 
turn out to be unstable. The physical explanation of the 
obtained result follows from the energy balance and con­
sists of the fact that in the case 1'> v k (or r = I' - V1 - v2 

>0) the absorption can compensate the pump only when 
the amplitude of the perturbation exceeds the amplitude 
of the pump wave. But in this case, as is well 
known, [2,4] the interaction of the waves is virtually non­
existent. 

4. Thus, if the dissipation does not stabilize the in­
stability, then the perturbations connected with the pump 
wave turn out to be unstable. The latter can also decay 
in the general case, generating a new pair of perturba­
tions and so on. Since, in accord with the previous 
analysis, after each decay act, the increment of growth 
of the perturbations decreases, it follows that the ex­
ponential increase evidently ceases when stable pertur­
bations arise as a result of the next decay, and a balance 
is established between the inflow of energy from the 
source of the instability and dissipation, to the extent 
that it is redistributed over the spectrum. 

We now consider the nonlinear dynamiCS of waves in 
the field of a coherent pump in the example of the inter­
action of Langmuir waves and ion-sound waves in a non­
isothermal plasma (Te» T j ). The initial unstable Lang­
muir perturbation can build up, for example, because 
of the hydrodynamiC instability of the cold beam of elec­
trons in the plasma. [8] The initial system of dynamiC 
equations in dimensionless variables has the form 

aE a'E , 
iiJt+a;;;z+ iy,E = pE + ilE,.e".,x, (24) 

iJ'p • a'p iJp a'IEI' 
iJt' - ,,- ax' + 2v. at = ----;;;;;-. (25) 

Here E(x, t) is the amplitude of the Langmuir wave, p(x, 
t) is the quasineutral perturbation of the plasma denSity, 
u is the velocity of the ion sound, ve and vk are the 
damping decrements of the Langmuir and ion-sound 
waves, respectively, y is the increment of the linear in­
stability of the Langmuir harmonic with k =ko• In the 
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FIG. 5. Spatial distribution for p(x), E(x). 

general case, ve va, I' are integral operators, but for 
simpliCity, we shall consider them here to be positive 
numbers, which correspond to hydrodynamic instability 
and collision-dominated dissipation. 

Equations (24) and (25) were solved numerically on a 
computer according to a difference scheme with periodic 
boundary conditions. As initial conditions, the Lang­
muir perturbations are specified with a Gaussian dis­
tribution and random phases, and in the absence of plas­
ma denSity perturbatiOns. The results of the calcula­
tion are shown in Figs. 4-6 (L = 8, u =0. 8, ko = 2rr/L, 
y= 1, ve =0. 3). According to the numerical solution, 
initially, in correspondence with the results of Sec. 1, 
the unstable harmoniC, which excites perturbations that 
grow with an increment which depends exponentially on 
the time, grows with the increment 1'. At the end of the 
linear stage, the Langmuir field is formed into a wave 
packet of the soliton type, which creates a well in the 
density, and thanks to the high inertia of the density os­
cillations, the establishment of the balance of thermal 
and Fermi surface pressures has an oscillatory char­
acter. The time of termination of the exponential 
growth of the perturbations f* and the corresponding 
shape of the packet of Langmuir waves are determined 
by the condition (L is the spatial scale of the system, l 
the width of the packet) 

Y""v.Ljl(t.), (26) 

which corresponds to the compensation of the pump and 
absorption of the energy of the plasmons. At the same 
time, because of the absence of a balance of pressure of 
plasmons and thermal pressure of the plasma, the in­
crease in the amplitude of the soliton is continued. In 
this case, the initial width of the wave packet rapidly 
contracts into a narrow soliton. In the time of contrac­
tion, the number of plasmons trapped in the density 
well does not change: 

5 

" 
2 

O'--..L-_-'-__ .L.-_~ 

" 5 8 10 
t 

FIG. 6. Time dependence of the 
amplitude and well depth of the 
left (1) and central (2) soliton. 
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(fj'!=a, ""canst, (27) 

and the formation of the soliton takes place automati­
cally, as in the conservative caser9 ,10): 

(28) 

Here (fj and l are the amplitude and width, respectively, 
of the soliton. 

Since the self-simular mode is initiated immediately 
after the linear stage, we can then assume that at the 
beginning of this regime (h is the depth of the well), 

(29) 

(30) 

Here h- Z-2 in correspondence with the condition of ex­
istence of a localized solution of the SchrBdinger equa­
tion (24). From (26), (27), (29), (30), we obtain 

(fj'l ~ l'L In' [1- U ] • 
v, LIE,,(O) I 

(31) 

Saturation of the amplitude of the soliton sets in when 
the thermal pressure of the plasma is equal to the pres­
sure of the plasmons and, consequently, 

(32) 

The relations (31) and (32) permit us to estimate the 
maximum amplitude of the soliton: 

l'L ,[ 1 U ] (fj",""~-In - • 
u v.' LIE" .. (O) 1 

(33) 

or, in dimensional form, 

IElm~ (1)' 1 ,[ 1 k;A v (4nNT) 'I. ] 
(4nNT) 'I, - -;: k;Av In ~ IH,,(O)l , (34) 

When the amplitude of the soliton reaches its maximum 
value (33), the depth of the density well, thanks to the 
inertia of the ions, continues to increase and beOOmes 
greater than the corresponding equilibrium value h 
- 8~a,Ju2, as a consequence of which the thermal pres­
sure of the plasma exceeds the pressure of the plas­
mons. The establishment of the equilibrium state is 
accompanied, on the one hand, by a d(lcrease in the am­
plitude of the soliton, and, on the other, by sound ra­
diation carrying away the excess energy of the ions. 
However, this equilibrium state is not stationary, since, 
as a consequence of the self-simulating contraction of 
the width of the soliton, the condition (26) is violated in 
the direction of an effective increase in the role of the 
dissipation. £);l:e to the dissipation, the amplitude of the 
soliton falls off as - exp(- !If), correspondingly, its 
width increases. This process takes place up to the 
time when balance is no longer achieved between the 
pump and the energy dissipation. In the steady state, 

(35) 

It should be noted that the propagation of strong per-
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turbations of the density, brought about by the fast self­
similar increase in the amplitude of the soliton, can 
have a significant effect on the course of the final stage 
of evolution of the system. Since the maximum of the 
increment of the modulation instability corresponds to a 
perturbation of the density with k - 2ko, where ko is the 
wave number of the pump, there will be 2koL solitons 
on the scale L, in agreement with the results of the nu­
merical calculation and with the experimental data. (11) 

The density perturbations, colliding with the soliton, 
can destroy it. [12) Moreover, the strong modulation of 
the plasma density at distances less than the wavelength 
of the unstable harmonic can lead to an effective discon­
nection of the instability. It is clear that the effects 
just pointed out occur at not very large sound damping. 

Analysis of the results of numerical calculation, car­
ried out qualitatively, allow us to describe completely 
the dynamics of interaction of the waves. The picture 
described above can be realized, in particular, in the 
case of the interaction of a cold beam of electrons with 
the plasma. As estimates shOW, for sufficiently intense 
beams, the parametric interaction of the waves appears 
earlier than the capture of the particles by the wave. In 
this case, however, it follows from the estimates of 
(34) that E!. ... .:2: 41TNT and consequently, the Landau damp­
ing begins to play an important role. This will in turn 
determine the stationary amplitude of the soliton. If 
the saturation of the instability is determined by the cap­
ture of particles by the wave, the amplitude of which 
significantly exceeds the threshold of decay of the in­
stability, then the further dynamics of the parametriC 
decay of this wave will also take place in a fashion sim­
ilar to the picture considered above. 

The authors thank R. Z. Sagdeev and A. A. Rukhadze 
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