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Three theorems are proved for many·particle nonadiabatic systems, establishing the qualitative features of 
the dependence of the binding energy on the parameter which appears in the kinetic energy operator of the 
Hamiltonian. The first theorem establishes a relationship between the first and second derivatives of the 
binding energy with respect to this parameter. The second theorem imposes a restriction on the size of the 
first derivative. The third theorem determines upper and lower bounds of the system's binding energy for a 
given value of the parameter according to values of the binding energy associated with other values of the 
parameter. The theorems allow us to derive rigorous estimates of the binding energy and dissociation 
energy of nonadiabatic systems on the basis of data which exists for comparable systems. As an example, a 
lower bound is estimated for the dissociation energy of the muonium molecule. 

PACS numbers: 03.65.Ge 

1. The Hellman-Feynman theorem, [l,Zl establishing 
the dependence of the eigenvalue of a quantum mechani
cal system on a parameter in the Hamiltonian, has been 
widely used in calculations for molecular systems in the 
case when the Born-Oppenheimer adiabatic approxima
tion is valid, and the parameter (usually the distance 
between nuclei) appears in the expression for the poten
tial energy. [3-51 However, numerous cases exist when 
the parameter, for example, the ratio of the particle 
masses, appears in the kinetic energy operator and may 
be regarded as the parameter of nonadiabaticity. In this 
connection the conditions for applicability of the adia
batic approximation cannot be satisfied with regard to 
the selected subsystem. Cases also exist when one is 
not able to single out an adiabatic subsystem .. Below 
we shall call both types of systems stationary nonadia
batic systems. In particular, examples of the indicated 
systems are given by: 1) electron-positron ions and 
molecules of the type e-e+e~ [61; 2) systems of the type, 
atom (ion or molecule) +positron[7J; 3) muonic mole
cules of the type pp.-p[8.91; 4) systems of the type, atom 
(ion or molecule) + muonium, for example, CzH.(p.+e-), 
or "muonium" water H(p.+e-)O[91; the broad class of 
systems formed out of quasiparticles (electrons and 
holes). [101 

Three general theorems of the Hellman-Feynman type 
are proved below for many-particle nonadiabatic sys
tems. The following basic assumptions are utilized: 
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1) the particles interact according to a law of the type 
1 rlj 1-" and 2) the kinetic energy operator linearly de
pends on the parameter a. The theorems determine 
the qualitative features of the dependence of a nonadia
batic system's binding energy Bo on the parameter a. 
The first theorem establishes a relationship between 
the first and second derivatives of Bo with respect to a. 
The second theorem imposes a limitation on the size of 
8Bo(a)/Ba. The third theorem determines rigorous 
upper and lower bounds for Bo(a) with respect to the 
values Bo( a l ) and Bo( az), where a l < a < az. The ob
tained results are qualitative in nature and, in analogy 
to other qualitative results in quantum mechanics, [111 

they allow one to make relatively simple estimates. 

2. Let the SchrBdinger equation for an N-particle 
system have the form 

HIJ! .=-B.IJ!., (1) 

where k denotes the totality of quantum numbers, k = 0 
corresponds to the nondegenerate ground state of the 
system, and 

H=T,(r) +«T,(r)+V(r), 

8' T ~ b("') 
1,2 = ~ iJ,Il~ axl ax/ ' 

ij, ~y 

l ... ,(a)~(OIT,.,IO>, T,.,(a»O; 

,(a) =T,(<<)/T,(a) , 
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(2) 
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V(rQ) =Q-nV(r), Q>O, n<2. (3) 

The most general result for nonadiabatic systems is 
related to the use of the Hellman-Feynman theorem for 
Eq. (1): 

a: Bo(a)=-(OIT,IO)=-T,(a). (4) 

It follows from this theorem that the system's binding 
energy monotonically decreases with increasing values 
of the parameter a: 

Bo(a,»B.(a»B.(a.,), a,<a<a,. 

The following theorems hold for Eq. (1): 

Theorem 1. The inequality 

0' 0 --a' [(a+a)n/('-"B.(a) ]<2(a+a)-'-0 [(a+a)n/,2-»'B,(a)]. 
~ a 

is satisfied for a +a >0, a = const. 

Theorem 2. The inequality 

a 
-_-[ (a+A) n/('-n'B. (a) ]<0. 
da 

(5) 

(6) 

(7) 

is satisfied for a< aa and A;.. T(az), where T is defined 
by Eq. (2). 

Theorem 3. The following inequalities hold for given 
values BO(al ) and Bo(aa) and fulfillment of the conditions 
a l < a< aa, A> T(aa): 

( a,+A ) ,/(2-.) (a,+A) n/('_n) 
a+A Bo(a,»Bo(a» a+A Bo(a,). (8) 

3. The proof of Theorem 1 is based on the applica
tion of a special form of the scale transformation 

(9) 

taking into consideration the condition of homogeneity 
of the interparticle interaction potential (3), and gen
eralizes the relationships used in a special case (n = 1, 
four-particle system) for an analysis of nonadiabatic 
effects in molecules of the Ha type. (1a-141 The transfor
mation (9) reduces Eq. (1) to the form 

where 

R=(a+a)-'[T,(f)+aT.(f) j+V(f) , 

and the equation!) 

B' a 
-R=-2(a+a)-'-R. 
aa' Oa 

. (10) 

(11) 

(12) 

(13) 

is satisfied. Introducing the notation Ko =ii +Bo and 
differentiating Eq. (10), we obtain after transformations 

( - 0' -) (- I 0 I 0 - ) 'I'olK.1 Oa' '1'. +2 '1'. a;;K. a; '1'. 

+(,y./..!:...,K.j w.>=o. 
Ba' I 

(14) 
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The first term in (14) is equal to zero due to the hermi
tian property of the operator ii. By using Eq. (10) the 
second term in (14) can be written in the form 

utilizing the Hellman-Feynman theorem (4) for Eq. (10) 
with respect to the parameter ai' the definition (12), 
and the relationship (13), Eq. (14) can be written in the 
form 

[ 0' 0] < 0 - iJ - ) -B.(a,a)+2(a+a)-'-B.(a,a) =2 -'I'.IK.I-'If •. 
Oa' Oa iJa {Ja, 

(15) 
In order to estimate the sign of the matrix element in 
the right-hand side of Eq. (15) with the function a4Vaa 
orthogonal to the ground state wave function ~o of Eq. 
(10), let us use the expansion 

{J - ~ -a;: 'If. = ~ c. 'If ,. 
.>, 

Upon utilization of the assumption concerning the 
orthogonality of the functions ~k for k ;"1, this expan
sion allows us to write the right-hand side of Eq. (15) 
in the form 

2 }2lc.I'(B.-B.»O. (16) .... , 

Taking account of inequality (16) and the definition (12), 
from (15) we obtain the relationship (6). 

4. Let us consider the proof of Theorems 2 and 3. 
Let us find the solution of the equation 

[ -{J{J B.(a, A) 1. =0. 
IX a=az 

(17) 

Using the Hellman-Feynman theorem for Eq. (10) with 
respect to the parameter a, we obtain A = T( aa)' It fol
lows from relationships (15)-(17) that the condition 

{J' 
Oa' B.(a,A»O. 

is satisfied for a z - a« az• Thus, the function aBo(a, 
A)jaa is negative in a small neighborhood to the left of 
az and increases with increasing values of a. Repeat
ing these arguments, we obtain the result that such a 
behavior of the function aBo(a,A)/aa is characteristic 
for the entire region a < aa. In this connection utiliza
tion of the condition A > A only strengthens the inequality 
aBo/aa<O. Taking the definition (12) into consideration, 
we obtain inequality (7). 

For the proof of Theorem 3, we note that it follows 
from the differential properties of the functions aZ Bo/ a a2 
and aBo/aa that Bo(a,A) decreases with increasing val
ues of a for a< a z• Taking this property and the defi
nition (12) into consideration, we obtain the inequality 

(a'+A) "m-')B.(a'» (a+A)n/(,-n)B.(a). (18) 

for a' < a. Using the inequalities (5), we find that the 
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replacement of A by A in inequality (18), where A >A, 
strengthens this inequality. Taking this property into 
consideration, from (18) we obtain the inequalities (8). 
We note that the inequalities (8) are stronger than the 
rigorous estimate (5) which follows from the Hellman
Feynman theorem. Inequality (8) goes over into (5) for 
A» az. One can also show that the lower bound in in
equality (8) is closer to the exact value Bo(a) than a 
linear extrapolation of this quantity with respect to the 
values Bo(az) and (aBo(a)/aa)a=az' 

5. Let us consider certain corollaries for the case 
of Coulomb systems (n =1), a case of practical impor
tance. These corollaries allow us, in particular, to 
obtain rigorous estimates of the binding energy and dis
sociation energy of nonadiabatic systems on the basis 
of data, which is obtained for comparable systems from 
calculations or experiment. The indicated data may 
pertain to the adiabatic domain. From Theorem 2, the 
virial theorem, and the Hellman-Feynman theorem for 
Eq. (1), it follows that the quantity T(a), characteriz
ing the nonadiabaticity of the system according to the 
definition (2), is an increasing function of a. On the 
other hand, it follows from the proof of Theorem 2 that, 
for A = T( ( 1 ) and a1 < a inequality (7) goes over into the 
inequality 

From this inequality follows the rigorous estimate 

(19) 

in which the quantities a1, T(a1), and BO(a1) can refer 
to the adiabatic domain. 

6. As an example let us estimate, with the aid of the 
inequality (19), the lower bound on the dissociation en
ergy of a muoniuni molecule, (J,.L+e-)z +Dp. - (p'+e-)z' This 
example is of interest since the further development of 
accelerators will, in the near future, allow us to obtain 
a rather high flux of f..L mesons. As the initial ("adia
batic") data we shall use the parameters for the hydro
gen molecule. In Eq. (1) for the case under considera
tion, we obtain in atomic units 

T,~1/2CV d'+V,.,'), T,~1/2 (V ",'+vo,'), 

aJJ~a~Ct!I' CL),=m,/m j " 

where ap' =me/m p. = 1/206.8. [9) The Born-Oppenheimer 
parameters are given by (ap )1/4 =0.15 and (ap.)1/4 =0.27, 
respectively. The quantity T(a1 = ap) in relation (19) can 
be estimated by using the following empirical depen
dence for the hydrogen molecule: 

Bo (a) =a-b-y'a, (20) 

where a =1.174 and b =0. 382 in atomic units. [lZ) Upon 
taking relations (2) and (20) into consideration, it fol-
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lows from the virial theorem and from the Hellman
Feynman theorem that, in the hydrogen molecule the 
ratio of the electrons' kinetic energy to the kinetic en
ergy of the nucleus amounts to 

a bY~ 
k(a)=--=--_, (21) 

T(a) 2a-3Ya 

where for the molecules Hz and (f..L+e-)z we accordingly 
have 

Substituting the value T(ap) determined from Eq. (21) 
into relation (19), we obtain an estimate for the lower 
bound of the muonium molecule's dissociation energy 
D p. > Dm1n, where 

Dm1n = 3.7 eV for the values of the parameters indicated 
above. For comparison we note that, in agreement 
with relation (20) [D(Hz) - Dmln]/D(Hz) "'~' extrapolation 
of relationship (20) to the value a = ap' gives Dp. =4.27 
e~ . 

We are grateful to R. V. Vedrinskii, V. I. Vlasov, 
A. A. Rogachev, and L. N. Shvartsman for discussions. 

l)Here and below the usual assumption is made concerning the 
existence of the corresponding derivatives. 
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