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Effect of a strong electromagnetic wave on the radiation 
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A quantum-mechanical treatment is given of the spontaneous emission of radiation by electrons moving in 
a constant uniform magnetic field and the field of a circularly polarized plane wave propagating in the 
direction of the magnetic field. Electrons occupying low-lying levels n = 0, I are considered. An analysis of 
the emission probability is presented. The behavior of spin during the emission process is considered and it 
is shown that the n = I state with the electron spin lying along the magnetic field is stable against a 
transition to the n = ° state. 

PACS numbers: 03.65.-w 

There has been undoubted recent interest in the in­
teraction between a strong radiation field and electrons 
moving in a magnetic field. Spontaneous emission by 
electrons in fields of this configuration is of particular 
interest since such problems arise in calculations in­
volving lasers, electron excitation, behavior of electron 
spin, and so on. In many respects, these problems are 
analogous to those arising in connection with the inter­
action between radiation and systems of atoms or mole­
cules. The latter subject was reviewed in[1a1. The 
spontaneous emission of electrons moving in a constant 
uniform magnetic field and the field of a plane wave 
propagating in the direction of the magnetic field can be 
investigated in the greatest detail. This is so because 
the Dirac equation for an electron in a field of this kind 
has been solved exactly. [21 

Individual problems connected with the properties of 
radiation emitted by a relativistic electron in·fields of 
this kind have been treated by the methods of classical 
electrodynamics in[lb,31. In particular, Bagrovand 
Khalilov[3] have derived the combination spectrum of 
frequencies emitted by an electron, and have obtained 
expressions for the spectral and angular distribution of 
the emitted radiation, and for the total radiated power. 
They also investigated the polarization of the emitted 
radiation. An analysis of the total cross section for the 
scattering of a strong wave by plasma electrons in a 
magnetic field, taking into account deceleration by radi­
ation, is given in[1b1. Some aspects of this problem 
were considered quantum-mechanically in[4-111, in 
which equations were obtained for the radiation frequen­
cies, and the problem of scattering of a weak wave by a 
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relativistic electron in a magnetic field was investigated. 
In addition to the relativistic case, there is considerable 
interest in the interaction between a strong electromag­
netic wave and electrons occupying low-lying energy 
states in a magnetic field. This interaction and the as­
sociated electromagnetic emission by electrons are in­
vestigated in the present paper. In particular, we re­
port an analysis of the properties of the radiation emit­
ted when an electron undergoes transitions between the 
n = 0, 1 levels. The effect of the field due to a strong 
wave on the behavior of the electron spin in this pro­
cess is also discussed. 

Consider a charge e moving in a uniform magnetic 
field H parallel to the z axis and the field of a circularly 
polarized plane wave propagating alon ''1e z axis with 
frequency Wo =C"Ko and electric-fipi.l' amplitude Eo (g= 1 
and g = - 1 will correspond to r ~f,ht-handed and left­
handed polarizations, rel:ipectively). The wave function 
that is the exact soh. !On of the Dirac equation is 
known[21 and c:... •• be written in the following form in 
terms of the two-t..imensional Pauli matrices a: 

( G(1) ) 
'¥=NL-' exp(-iS) () v, 

EgG -1 

eg 
E=TeT' 

(1Y+egk)ko"'(ocos%o~ ~s e6ko'"'(.' sin 2%.£ 
S=e'J..t-kx - + --- , 

'J..%0(1+e6) 1-~ 4%0'J..(1+e6), 

G (s=±1) = [ ('J..A ·o.+'J..+sko) Un_. (a) + (2"'(n) 'I,O.U n(a) J (i-ego,) 

-s[ ('J..Ao,-'J..-sko) U,.(a) +(2"'(n)'o,lln_,(a) J (1+EgO,), 

1'- egk e l'lko"'(. sin %0; 
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In these expressions, v is an arbitrary two-component 
constant spinor, the specific choice of which determines 
the orientation of the electron spin. In particular, as­
suming that v is the eigenfunction of 0"3 (0"3V = ~v, ~ =± 1), 
we take the spin to be parallel (?; = 1) or antiparallel (~ 
= -1) to the magnetic field. We also assume that v is 
normalized by the condition v+v = 1. At the same time, 
the wave function (1) is itself normalized to unity pro­
vided 

(1 0) f-;;-· k.'+2"(n+ko'''(.' (Hell) -'-A' 
INI'=--~-' A 

16A' ' ~ = ko'+2'1n+ko',,(.' (1+ell) '+A' . 

The quantity e is the mean velocity of an electron along 
the z axis, eliA = fff - ep ~ is a constant of the motion in 
this particular field (fff is the energy and p. the z com­
ponent of the electron momentum), and Un(x) are Her­
mite functions which are related to the Hermite poly­
nomials Hn(x) by the formula 

U.(x)=(2nn!l'n)-'I'exp (-x'(2)H.(x), n=O, 1,2 .... 

It is readily seen that, in the n = 0 state, the wave 
function differs from zero only when the electron spin 
(e < 0, 8 = - g) is antiparailel to the magnetic field; the 
spin of a positron (e >0, E =g) can only be parallel to 
the magnetic field in this state. The presence of a 
plane wave does not, therefore, modify the particular 
spin properties of the n = 0 state, which are known in 
the case of a purely magnetic field. [121 

The emitted radiation can be calculated in first-order 
perturbation theory in the radiation field by the standard 
methods of quantum electrodynamics. The calculations 
are very laborious, but essentially simple, and will not 
be reproduced here. We merely note the following. 
The matrix elements of the emitted radiation can be 
evaluated exactly and can be expressed in terms of the 
Bessel functions for any given transition n - n', but we 
have not succeeded in obtaining a compact version of the 
necessary general expressions. We shall confine our 
attention here to a consideration of transitions from the 
n =0 and 1 levels. Moreover, we note that the result­
ing exact expressions are still quite complicated, and 
we shall therefore carry out an expansion in terms of Ii, 
retaining only the first nonvanishing terms. This does 
not signify a simple transition to the classical treat­
ment because the very fact that we can isolate the n - n' 
transitions is possible only in quantum mechanics. The 
main argument in favor of this expansion is that the 
higher-order corrections in Ii are always small in prac­
tice. The characteristic parameters of the problem 
are the dimensionless quantities Yo and 15, where 15 can 
be written in the following equivalent forms 

oon 'I H me',/ 1+~ 
6=-=(I-q') '--y-, 

000 Ho liooo 1-~ 

"(0 

q = (d'+"(o')'" ' 

lelHe 
d=1+ell, <OH=--· 

~-cp, 

The fact that the quantum corrections are small is 
ensured by satisfying the following conditions: HI Ho 
«1 and iii m e2 «1. Moreover, the case of exact reso­
nance, A =0, is also excluded from our analysis. If 
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we confine our analysis to magnetic fields such as are 
used in accelerators (H-10· G), then for optical fre­
quencies Wo we have 15-0.01-0.0001« 1. 

If we consider a transition from the state k =0, A, n, 
~ to the state k', A', n', ~', with the emission of a pho­
ton of frequency ex at an angle 00 to the z axis, we find 
that x is given by the following equations: 

2XoAA'I=A (ko'+2'1n'+ko',,(.'d' _I) -A' (ko'+2yn+k.''Io'd _I) 
+AA'" (Hcos 80 ), A:=A-X(1-cos 0.), (2) 

derived in[4]. It is then a simple matter to show that 
equation for x is a quartic. In the above expressions, 
1 is an integer such that x >0. If we solve (2) in the ap­
proximation Ii - 0, we find that 

X= 
(1-~)x.(l+"Il) 

(1-~ cos 8.) 
'V=n-n', 

and hence it follows that 1 + 1115 > 0, which defines the 
domains of 1 and II. 

(3) 

When 1>0, the process can be interpreted as pro­
ceeding with the absorption of 1 photons from the wave; 
when 1 < 0, the photons are emitted into the wave. When 
1> 0 and II *- 0, this process is usually referred to as 
combination (or shift) scattering. The emission proba­
bility can always be expressed in terms of the Bessel 
function J,(x) and its derivative J;(x), where, in the Ii 
- 0 approximation, the argument x is given by 

x=q (l+"Il)sin 8, 
cos oo-~ 

coso= , 
1-~ cos 00 

(4) 

Now consider the case n =n' =0 (coherent, unshifted 
scattering). In this case, II =0, the transition is pos­
sible only for {; = {;' = Eg, and its probability in the Ii - 0 
limit is given by 

m • 

F, = ~ I S sin 0 d8[q'J,"+ctg> OU), (5) 
1=1 0 

which is exactly the same as the corresponding expres­
sion for the classical limit of the probability of emis­
sion by an electron in a plane Circularly-polarized 
wave. [13] However, the quantity q depends both on the 
wave parameters and on the magnetic field and, more­
over, this dependence is very important. For the func­
tion F1 in (5), we can readily show, using the proper­
ties of Bessel functions and their approximations in 
terms of Macdonald functions, [14] that, in the limit: 

2 55l'3 5513 ( '10' ) 'I, 
F =-q' q~l· F =--(l-q,)-'I,=--. 1+- 1-q'~1' 

1 3' ,I 6 6 i\%' , 

(6) 
where, for q« 1, the main contribution to F1 is the 
term with 1 = 1, and for 1 -1« 1, the main contribution 
is due to terms with 1- (1 _ q2 t 3/2 '" yg 1 .0.1-3 (see[14]). It 
is also known that F1 is a monotonically increasing func­
tion of q. 

It is clear that the conditiDn 1 - q2 «1 is equivalent 
to y~» .0.2, which can be realized in two cases, namely, 
a) in the region near resonance (8 = -1, 15-1, A close to 
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zero), and b) in the case of a strong wave, i. e., when 
the parameter 'Yo is large. It is cleaI: from (5) that, as 
q - 1, the probability of emission of a given harmonic 
1 ceases to depend on q and tends to a finite limit which 
is a function of 1 but, at the same time, according to 
(6), the sum diverges as (1 _ 1)"112. 

In the other limiting case, q« 1, which is equivalent 
to 'Y~« 1l.2 , we see that the scattering cross section 

e' 
ro=-

me' 
(7) 

is independent of the wave amplitude and, naturally, in 
the absence of a magnetic field (Il. = 1), it is identical 
with the Thomson cross section. It is clear that this 
situation is analogous to that described in[1al for sys­
tems determined by the quasienergy. We also note the 
following. When e = 1 (nonresonant motion), the proba­
bility given by (5) decreases with increasing magnetic 
field H for fixed wave parameters. Consequently, in 
this case, the coherent scattering cross section is less 
than the Thomson cross section. If, on the other band, 
E = -1 (resonance is possible), both the probability (5) 
and the cross section (7) increase with increasing H up 
to the point 0 < 1, where the cross section (7) becomes 
formally infinite (we note that, near the resonance 0 = 1, 
the damping theory must be used in calculating physical 
quantities such as the cross section), and then decrease 
with increasing H. Thus, even when 0> 1, the coherent 
scattering cross section of electrons in a magnetic field 
is substantially lower than the Thomson cross section. 

Let us now consider combination emission (sponta­
neous emission of a quasienergy system). In the limit 
of1i-O, then=1-n'=0 (11=1) andn=O-n'=l (11=-1) 
transitions occur without spin flip. We then have t = Eg, 
and the probability of such transitions is 

~ s"· {[( elil(l-,f) 
W=BF,. F, = ~ (/+\"1\) sin 8 dO _\ (1+\'6) (1 +co~ 0) 

1-,/" " 

+(l+\'Ii)cos8- elil)II_~(l l-YE ) :r/i]' (8) 
.. l .'i (1+\"1»(I+cosll) 

[ ( eli (I-vel) ( ve (x'-l'+nl) ) ] '} .;- 1 - xl,' -eli 1 - J. . 
. .1(1+\'1\) (I+CO'<O) ... (/+,.1\) (Heo,a) 

In these expreSSiOns, 10 = - vi: 0], where [0] is the inte­
gral part of O. It is readily seen that this probability is, 
in general, independent of Planck's constant Ii. When 
II = 1, 1 =0, and 'Y~« .6,2, it follows from (8) that the 
spontaneous emission probability in a purely magnetic 
fieldC121 is 

(9) 

where T cl is known from classical theory and is defined 
as the electron emission time in a magnetic field. When 
1 *0, we find that, in the most interesting case when <5 
«1, F2 is given by (8) as follows: 
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- . 
F, = L,l' S sin 0 ao(cos' ON+q' sin' 01,"). 

I_I • 

and hence 

1.<1; (10) 

Consequently, when <5« 1, transitions with v = ± 1 are 
roughly equally probable, and this leads to the follow­
ing conclusion: when a wave is incident on an electron 
in a magnetic field, this results in an effective excita­
tion of the electron. It is clear that the number of ex­
cited levels is Il.n - 0-1• 

The emission probability decreases with increasing 
'Yo when 1 =0, and increases when 1 *0. These proba­
bilities are equal for a certain value of 'Yo. It follows 
from (9) and (10) that this is achieved (for 0« 1) when 
1003 = 3'Y~. Since for modern lasers 'Yo - O. 01, we find 
that 0-0.01. The excitation time TCI for fields H 
- 10 000 G is then - 5 sec. 

It follows from (8) that, when 0» 1, transitions in­
volving the excitation of the n = 1 (II = - 1) level are pos­
sible only if accompanied by the absorption of a large 
number of photons 1- 0 from the wave. The probability 
of such transitions is small for 'Yo« 1. 

The above analysis of the spontaneous emission of 
the system can be extended to stimulated processes. 
Some results in this field can be found in[1a,15l. 

There is particular interest in the behavior of the 
electron spin during the emission of radiation. 

It follows from[121 that, in a time t > Tel, all the elec­
trons moving in a magnetic field will emit their energy 
by radiation, and all the electrons with spins antipar­
allel to the magnetic field will be in the ground state 
with n =0. If, on the other hand, the spins are parallel 
to the magnetic field, the electrons end in the n = 1 state. 
Transition from the n = 1 level to the ground state n = ° 
is then of low probability (it occurs in a time t> T 
= To (HO/H)3, T-1011 sec for H-10000 G), since this 
transition must be accompanied by spin flip. Conse­
quently, if the magnetic field contains a system of ex­
cited electrons that, on the average, are unpolarized, 
then, after emission of radiation, i. e., after a time 
t > TCl> the system will divide into two phases, namely, 
electrons with spins antiparallel to the field in the 
ground state n = ° and those with spins parallel to the 
field in the first excited state n = 1. 

It is interesting to consider how this situation will 
change in the presence of a strong wave. The proba­
bility of transitions with spin flip (initial spin t = - VEg) 
for Ii-O is 

W=B:' (l-q')'F •• 

(11) - . 
F.=!: (l+vli) , S (1-cos8)'I,'sin8d8. 

I_l, 0 

When 1 =0, v = 1, and 0« 1, this yields 
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so that, when Yo - 0 and (3 = 0, we have the result given 
inU2 ]. 

Assuming that q« 1, 6< 1, we find from (11) that 

W=Wo+W" 

B H 
WI ="7""-H q'(Hv6)'. 

;, 0 

For fields H -10000 G and Yo - O. 01, we have Wo -10.11 

sec·1, W1 -10.5 sec·1 • Thus, the presence of a plane 
wave reduces the electron spin-flip time by five or six 
orders of magnitude, but this time remains very long 
(-105 sec) so that the n = 1, !; = - Eg state remains stable 
against transition to the n =0 state. 

In the other limiting case, when 1 - q2 « 1, we find 
from (11) that, when 6< 1, 

n 3513 (19213 --) W=B---(1-q')-'" 1 +--v6Y1-q' 
Ho 72 175 ' 

i. e., the n = 1, !; = - eg state is no longer stable in the 
presence of a strong wave. 

Thus, when the wave is present, there is a range of 
levels /1n-6·1 (0<1) for t>TC1 which is filled with elec­
trons but, if the electron spin is antiparallel to the field, 
the lowest level is n =0; when the electron spin is par­
allel to the field, the lowest level is n = 1. 
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An experimental study is reported of the selective multiphoton dissociation of SF6 in a strong infrared 
laser field. The frequency characteristics of the rate of dissociation and of the enrichment coefficient, the 
threshold charcteristics of the dissociation process, the quantum yield, and the effect of collisions on the 
rate and selectivity of SF6 dissoci!ltion have all been determined. The mechanism of selective dissociation of 
the SF 6 molecule by a strong infrared laser field is discussed. A new method is proposed for tite sele,etive 
dissociation of molecules by a two-frequency infrared laser field. . 

PACS numbers: 82.50.Et, 42.60.Qm 

1. INTRODUCTION 

The phenomenon of isotopically selective dissociation 
of polyatomic molecules by strong CO2 laser pulses has 
recently been discovered (BC~, [l] SFa, [2] OS04' [3l etc.). 
This discovery was preceded by studies of the visible 
and ultraviolet luminescence of molecular gases (C2 F3Cl, 
SiF4, BC~, etc.) under the action of a focused COa 
laser pulse. [4-6] The desire to understand the nature of 
this emission and to demonstrate that it can appear as a 
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result of the resonance interaction between a strong in­
frared field and a molecule, without the necessary par­
ticipation of collisions with other molecules, has led to 
systematic studies of luminescence in isotopiC mixtures 
of molecules[l] and to the discovery of the above phe­
nomenon. Subsequent experiments have shown that, on 
the one hand, luminescence does not necessarily occur 
during the primary dissociation process but is fre­
quently the result of secondary processes (see, for ex­
ample, the experiments with trans-dichloroethylene[7]) 
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