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Invariant wave functions that appear upon the consideration of a state vector defined on the surface of a 
light wave front are introduced for the description of bound systems. The main distinction of this 
parametrization from the nonrelativistic case can be interpreted as a deviation from spherical symmetry at 
small distances even in the S -wave. A light-cone diagram technique is discussed; the wave functions are 
related to the vertex functions of this diagram technique. The machinery developed here is necessary for 
the determination of the high-momentum components of nuclear wave functions, in the relativistic theory 
of nuclear reactions, and in composite models of elementary particles. 
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1. INTRODUCTION 

The problem of the description of bound states has at 
present surpassed the framework of a purely academic 
problem and has acquired a special significance in ap
plications to nuclear physics problems. The reason for 
this is that experiments have recently moved into a re
gion where the knowledge of nuclear wave functions 
(WF) is necessary at relativistic values q - m of the nu
cleon momenta, a region where the nonrelativistic WF 
lose their meaning. Thus, the formfactor of the deu
teron is known up to momentum transfers 6 (GeV/c'f. [1] 

The problem consists in finding a formalism in which 
the relativistic WF would "abut" as closely as possible 
on the nonrelativistic ones: they should admit a proba
bilistic interpretation, should depend on three-vectors 
like their nonrelativistic counterparts and at the same 
time exhibit relativistic invariance, they should admit a 
representation in coordinate space and should go over 
in the nonrelativistic limit into the known nonrelativis
tic functions. It is clear that only within the framework 
of an invariant formalism which bares to the limit the 
physical meaning of the WF and the nature of their func
tional dependences can one hope to obtain a successful 
resolution of a quite complex problem: to find the WF 
of nuclei at nucleon momenta of the order of their 
masses. The problem of determination of relativistic 
WF was posed and considered in coordinate space in 
Shaprio's paper. [2] 

The purpose of the present paper is to introduce WF 
which exhibit the enumerated properties. Preliminary 
results have been published in the review[3] and were 
summarized in[4]. 

Before going over to the formal side of the matter we 
explain what we have in mind when we talk about rela
tivistic WF and describe the result we have obtained. 
Our point of view is that studying a relativistic bound 
system (in general, having many components and con
taining an indefinite number of particles) means a de
termination of the probabilities with which one can find 
a definite number of particles in the system, as well as 
their momentum distribution. The answer to this prob
lem is given by an expansion of the state vector iJ>(p) of 
the system in terms of states with fixed particle num
ber: 
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III (p)=N-';' ~ J C(k" .... kn:p)a+(k,) ... a+(kn ) 10) 

. d'k, d'k. 
X o"'(I,,+ ... +kn-p)-=- ... -=-. 

l'2e, l'2en 
(1) 

with all vectors k j on the mass shell k2 =m2, p2 =M2. 

The coefficients of this expansion are the Fock compo
nents C(kl> ... ,k", p) and determine the probabilities 
mentioned above. We note that other kinds of WF (e.g., 
the Bethe-Salpeter functions), although they contain in
formation on the properties of the bound system, do not 
directly determine the probabilities of the momentum 
distribution of various components, since they are not 
coefficients in the expansion (1). Relativistic dynamics 
is such, however, that these probabilities are not in
variant quantities (cf. infra) and differ from reference 
frame to reference frame. This manifests itself, for 
instance, in the fact that after the exclusion of k2 the 
two-particle component C(kh~' p) is not a function of 
only the relative momentum, but depends in addition on 
the momentum p of the system. The total two-particle 
probability 

1 J . d'k, 
u',(p)='N IC,(k,.p)l- 4e(k,)e(p-k,) 

also depends on the momentum of the system, and only 
the sum 2:n Wn is equal to one in all systems. Formally 
the noninvariance is a consequence of the fact that the 
state vector iJ>(p) is given on the hyperplane t =0 belong
ing to a definite frame of reference. 

We formulate an invariant theory of bound systems 
considering the state vector defined on an arbitrary flat 
spacelike hypersurface (a hyperplane) >.x =0, where X 
is a four-vector (~, X) such that X2 =1, ~>O. In the 
sequel it will be convenient to choose the surface of a 
light-wave front wx =0, where w2 =0, Wo >0. In such a 
theory the WF will be invariant quantities which are pa
rametrized in an invariant manner. There remains, of 
course, a dependence on a "redundant" variable, but 
even this can be given a simple geometriC interpreta
tion. As a whole the formalism takes on such a form 
that the theoretical description of experimental data 
with the help of Fock rows becomes quite realistic. 

We shall consider the case of spinless particles and 
bound states with total angular momentum equal to zero. 

Copyright © 1977 American Institute of Physics 210 



We explain the parametrization of the invariant WF on 
the example of the two-particle component, which is pa
rametrized in the following manner: 

(2) 

where n is a unit vector 101 = 1, the meaning of which 
will be explained somewhat later, and q is the relativ
istic relative momentum, for which the explicit expres
sion in terms of the particle momenta is also unimpor
tant. Under rotations and Lorentz transformations the 
vectors q and n are subject only to rotations and the 
function C(q, n) is Lorentz-invariant if it is invariant 
relative to rotations of the vectors q and o. 

The only complication in the parametrization of the 
relativistic WF consists in the appearance of the addi
tional argument n compared to the nonrelativistic case. 
This appearance could be interpreted as the appearance 
of deviations from spherical symmetry at small dis
tances even in the S-wave. In the nonrelativistic limit 
the n-dependence disa.ppears and the function C(q, n) 
goes over into the nonrelativistic WF 1/J(q). We stress 
the fact that the problem of selecting the direction n 
does not arise. Rather, we are dealing with an addi
tional variable varying between -1 and + 1, which it is 
convenient to consider as the cosine of a certain angle. 
In those WF in which relativity barely begins to mani
fest itself, the dependence on this variable is weak 
(-q. n/m). 

Thus, to make the wave function of the deuteron rela
tivistic one must introduce, besides the functional de
pendence of the two-nucleon component for q - m and the 
introduction of additional components (isobars, pionic 
components), an additional variable-the unit vector n. 
Those are the WF one has to use for a self-consistent 
description of the ensemble of experimental data in the 
relativistic region. With an incorrect parametrization 
one would need different WF for the description of dif
ferent experiments. 

We now clarify in more detail the origin of the vari
able n, variable which does not occur in the nonrelativ
istic case. For infinitesimal Poincare transformations 
x- x' =x + lix, lix; = lie l + IiW1kXk the state vector q,(p) 
transforms as follows: 

III (p) -+Ill' (p') =Util (p) = (1 +1lU) til (p), 

•• i· 
bU=iP.be. +ZM;.b(j)", 

where Pk,M1k are the generators of the Poincare group. 
In view of the fact that Pk transforms according to the 
law 

we obtain 

In the nonrelativistic case, for a two-particle sys
tem the equation (3) leads to Galilei invariance of the 
WF: 
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C,(k,-mbv, k2-mbv, p-Mbv)=C,(k" k" pl. 

Eliminating k.z with the help of the equality k1 +k.z =p, we 
reach the conclusion that the function must depend on a 
definite combination of p and k1 from which liv is miss
ing: q =k1 -mp/M, i. e., the function depends on a 
single variable. 

In the relativistic case the interaction Hamiltonian 
which enters into the generators P;,M1k changes the 
numbers of particles and the condition (3) has the con
sequence that the two-particle function transforms not 
only in terms of the two-particle component, but also 
involves components with other particle numbers. 
There is no group transformation law for a separate 
function C(kl, k.z, p); this function is not invariant under 
Lorentz transformations and (after elimination of IG!) it 
depends on two variables separately: C = C(kl> p). One 
can realize some simplifications by going onto the light
cone[5] (into an infinite-momentum frame) where the 
dependence on the absolute value of p disappears, but 
there remains a dependence on the direction pi 1 p 1 1 p~ ... 
The existence of this dependence manifests itself in the 
appearance of the additional argument n in the WF. 

The appearance of the argument n corresponds to the 
following intuitive physical picture. The WF of a rap
idly moving nonrelativistic (in its rest frame) bound 
system undergoes a Lorentz contraction, or in the mo
mentum representation is stretched by a factor of (1 
- v2 I c2 t 1/2 which leads to an elliptic distribution of the 
probability density. IntrodUCing a variable which com
presses an ellipsoid into a ball (q in Eq. (2) is just such 
a variable) one can remove this trivial stretching. How
ever, owing to the noninvariance of the individual com
ponents these do not follow exactly the (1 _ v2 I C2 )"1/2 , 

elongation law in a relativistic mUlti-component system. 
After the "kinematic" stretching is removed by means 
of the variable q one obtains a residual "dynamical de
formation, " which is described as v - c by the variable 
n, the same for all the components. A knowledge of 
this dynamical deformation in the infinite momentum 
frame turns out to be sufficient for the description of 
scattering in an arbitrary system. As shown by Te
rent'ev, [61 the WF of a system consisting only of two 
relativistic particles depends only on one variable, co
inciding with the variable q used in our paper. In our 
approach the computational formalism consists of a dia
gram technique in a three-dimensional field theory 
formulation proposed by KadyshevskiI. The invariant 
wave functions turn out to be related to the vertex func
tions of this diagram technique. Our problem here con
sists only in writing out the WF in a manifestly invari
ant form and finding a convenient parametrization, 
since otherwise the determination of the WF would be 
extremely difficult and "unprofitable. " 

We stress that the expansion of the state vector in 
terms of states with a definite particle number is effec
tive only in the case when their number is not too large. 
In the ultrarelativistic momentum region there is no 
particular basis for this situation (if one does not con
sider the deuteron as consisting of quarks). However, 
in the transitional region q - m which is the one in which 
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we are mainly interested one may expect that only sev
eral components will be important and the description 
of this region by the proposed method will function to 
its full extent. 

The plan of exposition is the following. In Sec. 2 
we introduce the state vector on the hyperplane Ax =0. 
In Sec. 3 we study the parametrization for the WF. In 
Sec. 4 we deal with the light-cone diagram technique. 
In Sec. 5 we obtain a spectral representation of the 
Green's functions. In Sec. 6 a relation is established 
between the WF and the vertex part. Section 7 contains 
concluding remarks. 

2. THE INVARIANT FOCK COLUMN 

In this section we consider a state vector defined on 
the hyperplane Ax =0, the Fock rows of which are the 
invariant WF. 

We consider the scalar field with the Lagrangian 

(4) 

where ({i H is the Heisenberg-picture field operator. The 
energy-momentum tensor of the field has the form 

(5) 

and the four-momentum operator is 

(6) 

The structure of the Fock components of the state vec
tor is determined from the equation 

P,/ll(p)=p,/ll(p), (7) 

in which all quantities are expressed in the SchrBdinger 
picture on the hyperplane x =0. On this hyperplane we 
obtain 

(8) 

where P~ is the four-momentum operator that does not 
include the interaction, and 

H ... = J H,.,(x)6(Ax)d'x. 

IntrodUCing the Fourier transform of the Hamiltonian 
HIDt 

(9) 

R(p)= J H'n' (x) e-'''''d'x (10) 

and the integral representation of the delta function 

we rewrite the operator HAS in the form 

J dT 
H ... = R(-AT)2;;' (12) 
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We express the operator Pj in terms of the Schr6-
dinger picture operators on the hyperplane Ax =0. For 
this purpose we first go over to the field cp(x) in the in
teraction picture: 

qJH(X) =exp (iPx)exp (-il"x) qJ (x) exp(iP'x) exp( -iPx). (13) 

Substituting (13) into (5), making use of Eq. (8) and 
taking account of the fact that on the hyperplane Ax =0 
we have Px =flJx, we obtain for ~ the expression: 

'P,'= f a+(k)a(k)k,d'k, 

where k j = (e(k), k). 

Resolving Pj and Pi into longitudinal (along A) and 
transverse parts (orthogonal to A) 

we write down the equation for the transverse parts 

The equation for the longitudinal component leads to the 
mass spectrum problem. 

It can be seen from Eq. (14) that any Fock compo
nent must contain a delta function as a factor in order 
to take into account the equality of the projections trans
verse to A: (k1 + ••• +kn)L = pL. It is convenient to rep
resent this delta function by the integral 

+-J 6(" (k, + ... +k.-P-A.) d •. 

Thus, the general form of the solution of Eq. (7) is 
the following 

/ll(p)=N-'I'~ J C(k" ... ,kn,p,AT)a+(k,) ... a+(kn)IO> . 
(0' ( ) d'k, d'k. 

X6 k.+ ... +kn-p-AT -= ... -=dT. 
l'28, l'28. (15) 

All vectors are on the respective mass shells. The 
four-momentum AT appearing in the argument of the 
Fock component will be called the spur ion momentum. 
For A = 0 and Ao = 1 the invariant expansion (15) goes 
over into the expansion (1). Thus, the functions C(k1, 

••. , kn,p, AT) represent an invariant form of the compo
nents of the expansion (1), defined in a frame which 
moves with four-velocity AT. 

For the sequel it will be convenient to represent the 
state vector and the momentum four-vector in a differ
ent form, introducing, according to Kadyshevskii, [8,9] 

the spurion operator a+(T) and the operator f having the 
following properties: 

a+(.) 10)=IT), (T"la(T) IT')=6(T"+T-T'), 
a+(T)=a(-T), a(T,)a(T,)=a(T,+.,), 

(T"I~IT')=T'1\('·-T"), [aCT'), :':l_=T'a(.'). 

The quantity T without circumflex is a number. 
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We introduce the operators §ii and :1e: 

fiu, = P,o -I.,T, it = 2ltT + ji, (17) 

where 

H= J a("C)R(-I."C)d"C. (18) 

From the commutation relations (16) and translation in
variance it follows that 

[#" 0'&]=0. 

We define the common eigenstates of the operators 9>1 
and J0: 

(19) 

The eigenvalues D'Y of the operator ic depend on the 
parameters p and A. The index y labels the states with 
different eigenvalues Dy. 

The expansion of the state vector IP, y) defined by Eq. 
(19) in terms of states with fixed particle number (in
cluding the spurion) has the form 

Ip,'Y)~N-'I' L, J C(k" ... ,k.,p,I."C)a+(kd ... a+(k..) 

~ 

( ) I (0) (k +k ) d'k, d'k. Xa+ "C 0)1) ,+... .-p-I."C --= .. . -=d"C. (20) 
1'28, 1'28. 

We stress the fact that in Eqs. (19) and (20), in dis
tinction from (15), the quantity p2 is in general an arbi
trary parameter which does not equal M2. It is easy to 
see that for fixed p2 =M2 such that Dy(p, A) =0, the equa
tions (19) projected on the state f (TldT goes over into 
the transverse and longitudinal parts of Eq. (7), and the 
vector (20) goes over into (15). The equation 

D,(p, 1.)=0 (21) 

determines in the proposed formalism the mass spec
trum of the bound states of the field. 

Since the spectrum of the operators does not depend 
on the representation, the zeros of the function Dy(p, 7t) 
do not depend on A. The orthogonality and complete
ness conditions for the state vectors have the form 

(22) 

L, Sip, 1)<1. pld'p=1. (23) 

The normalization condition (22) yields 

d'k d'k 
.V,= ~ S ICn'(k, •... ,k.,p,I."C) l'I)"'(k,+ ... +kn-p-I.T)-' . .. _n d-r. 

£..J 28, 2en 

(24) 

~' 
P wT 

Cz ---
k2' 

FIG. 1. 
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FIG. 2. 

We omit the factorials that are due to the identity of the 
particles. In each concrete case they can be easily re
established. In the sequel we shall also no longer keep 
track of the index y. 

As will follow from the results of Sec. 3, the sim
plest parametrization of the functions appears if in 
place of A one uses a four-vector w such that w2 =0, 
wo>O. Under such a substitution all the results of the 
present section remain in force. We show that the cor
responding invariant functions represent the components 
of the Fock column (1) in the infinite-momentum frame 
which moves in the direction w. This is clear already 
from the fact that the substitution 71.- W can be achieved 
by means of the limiting process A - "" • In this limit 
the four-vector A gets closer to the light cone and the 
functions C(kll ••• , kn' p, AT) I 1_ ~ are invariantly ex
pressed components of the expansion (1), defined in the 
system with infinite four-velocity moving in the direc
tion W = AI I A I I 1-~' One can also give a more rigorous 
proof of this fact. 

3. THE PARAMETRIZATION OF THE WAVE 
FUNCTION 

We consider the parametrization of the two-particle 
WF C(k1, k2' p, WT) kl +k2 = P + WT. We represent C(k1, 

k 2 ,p, WT) graphically in the form of the four-point dia
gram (Fig. 1). 

In the same manner as any Feynman four-point func
tion the function e(k1, k2, p, WT) can be parametrized by 
means of any pair of Mandelstam variables: 

s= (k,+k,) '=M'+2"C (wp). t= (p-k,) '=m'-2-r (wk,). 

U= (p-k,) '=m'-2-r (wk,). S+t+ll =2m'+ M'. (25) 

As usual, the kinematically admissible region is deter
mined by the Kibble equations and is represe~ted in 
Fig. 2. 

The problem of determining the two-particle compo
nent of the state vector of a relativistic bound system 
now reduces to a determination of the function of two 
variables C = C(s, t). However, for the practical solu
tion of this problem it is more convenient to introduce 
another parametrization, which is closer to the non
relativistic one, and allows in addition to introduce a 
relativistic coordinate space. [101 For this purpose we 
shall make use of the shift operation on the hyperboloid. 
For two vectors k and p situated on the mass-hyper
boloid of mass m this shift is defined in the following 
manner (cf. (101): 
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:r, 

FIG. 3. 

q.=L(p)k ... k(-)p-k - ~ [e(k) __ k_P_], 
m m+e(p) (26) 

e (k) =l'k'+m', e(p) =l'p'+m'. 

The operation (26) represents a Lorentz transforma
tion (boost) L(P) on the vector k into a frame moving 
with velocity v =p/e(p). In the nonrelativistic limit we 
obviously obtain the difference k -po We note the equal
ities 

(k( - )p)'=m-'(kp) '-m', 

(k, (- )p) (k,( - )p) =m-'(k,p) (k,p) - (k,k,). 
(27) 

Introducing the notation 

Q=P+OlT, Q'=s, (28) 

we define the following variables: 

q,=k,(-) ~ Q=k,- ~ [e<k,)- ~,Q) ], 
YQ2 'IQ' 'iQ'+Q, 

(29) 

q,=k. (-) ~ Q=-q" 
YQ2 

(30) 

ro'=ro- ~[oo.- ~Q) ], 
'IQ' 'iQ'+Q, 

(31) 

n=ro' / I ro' I =l'Q'ro' / (rop). (32) 

The vectors introduced here have the meaning of mo
menta in the center-of-inertia system (c. m. s.) of the 
particles which form the bound system, a fact respon
sible for their convenience. In view of (27) under 
Lorentz transformations of the 4-vectors kl> kz, p, and 
W the vectors ql> ~, n are subjected only to rotations, 
and the angles between them do not vary. 

Without dwelling on the group-theoretical questions 
we note that the vector qo (Eq. (26» undergoes the fol
lowing transformation under a Lorentz transforma
tion A: 

q,'=R(A)qo, R(A)=L(Ap)AL-'(p), (33) 

with R(Al • Az) =R(Al)R(Az)' 

The wave function C(kl> kz, p, WT) may be considered 
as depending on the two vectors q =ql and n: C = C(q, n). 
Indeed, I nl = 1, and on account of Eqs. (27) we have 

q'=sI4-m', (34) 

(nq) = (u-t) yi!2 (s-M'). (35) 

Therefore the parametrization (28)-(32) is equivalent 
to the parametrization in the variables s and t. 

In the nonrelativistic limit (2m -M«m, k~, k~,pz «MZ) 
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the conservation law p + WT = kl + kz goes over into its 
nonrelativistic counterpart p =kl +~. Indeed, it follows 
from (25) that T = (s -M Z )2(pw) and the spatial part of 
the equation acquires the form 

s-M' 
p+ro-( -) = k,+k,. 

2 pro 

In the nonrelativistic limit (pw)-Mwo, s _Mz_kz the 
second term in the left-hand side of the equation also 
has the order (w/wo)~/2M. Since Iw/wol =1, it is 
small of order - kim compared to the other terms of 
the equation, and can be neglected. The WF of the non
relativistic system becomes a function of one variable 
on account of Galilei-invariance, i. e., the dependence 
on the variable q . n disappears from C(q, n). 

As was noted in Sec. 2, the function C(kl , kz,P, WT) is 
related to the invariant Fock component in the infinite
momentum frame. We show how their parametrizations 
are related. We recall that C(kl' kz, p) I p_ ~ is parame
trized in the following manner (cf. e. g., (111). The vec
tors kl> and ~ are resolved into their longitudinal parts 
k~,~, and the transverse parts kt,~. The following 
variables are introduced: Xl =kUp, Xz =k~/p, 0 ":Xl> Xz 
.,: 1, Xl +xz = 1, Rl =kl -XlP, Rz =kz -xzp, Rl = -Rz, Rl ' P 
=Rz ' P =0. One may consider that the WF depends on 
the two variables Xl and R~ =R~ =R~: C = C(Xl> R~). The 
region of variation of the variables Xl, xz, and R~ is the 
unit half-strip represented in Fig. 3. 

Starting with these definitions one can find the rela
tion between the variables s, t, u and Xl, xz, R~. This 
relation has the form 

m'-u (rok,) 
Xi = s-M2 = (wp) , 

m'-t (rok,) 
Xz=--=--, 

s-M' (rop) 

R '=8 (m'-t) (m'-u) m'. 
.L (s-M')' 

(36) 

(37) 

(38) 

Equations (36)-(38) transform the Kibble region of 
Fig. 2 into the strip of Fig. 3. The mapping is real
ized in the following manner. The finite region ABCD 
of Fig. 2 goes into the region ABCD of Fig. 3, and as 
the line BCD in Fig. 2 tends to infinity, the shaded re
gion of Fig. 3 fills the whole strip. 

We also connect the variables q and n with the vari
ables in the infinite momentum frame: 

Let us analyze the transition to the nonrelativistic 
limit in the WF parametrized in terms of the parame
ters X and R~. How does the nonrelativistic character 
of the WF 1/I(q) expressed in terms of the variables X 

and R~ manifest itself when its qualitative behavior is 
for certain? Expressing s in Eq. (34) by means of the 
formulas (36)-(38) in terms of xl> Xz and R~ we obtain 

R.L'+4m' ('/,-x,) , 

4x,(1-x,) 
(40) 

Thus, in the nonrelativistic limit the 1/I-function de-
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pends on the combination of the variables Xl and R~ de
fined by Eq. (40). The dependence on R~ for fixed Xl is 
close to the dependence on q2. The dependence on Xl is 
very peculiar. Since q2 « m 2 , the effective region of 
variation of Xl is very narrow and concentrated near the 
values Xl = t (the doubly cross-hatched region in Fig. 3). 
Its width is of the order I t - Xl I - (I E 112m )1/2. In this 
region the WF varies just as strongly as in the whole 
region of R~. It is therefore clear that the parametriza
tion in terms of the variables Xl and ~ would be very 
inconvenient even if its dependence on these variables 
would not reduce to a single one. This circumstance 
serves as an indication that the parametrization in the 
variables Xl, X2, R~ of the relativistic WF may also not 
be optimal, at least as far as its determination from 
experimental data is concerned. 

The parametrization of the WF in terms of the vari
ables q and n seems more optimal for the reason that 
the variable q (as follows from its definition (29» re
moves the dilation by the factor (1 - v2 I c2 )"112 common 
for all the functions, and the individual properties of the 
WF manifest themselves more clearly in this case. 

The contribution to the normalization integral (24) 
from the two-particle component has the form 

N= LIn, 

1,= S IC(k" k"p, Ul't) l'Il«) (k,+k,-p-Ul't) 

d'k d'k 1 d'q 
X8(Ulk,)8(rok,)-' -' d;;=--)J IC(q,n)I'--. 

28, 28, (Ulp 2e(q) 

In the case of n particles one has to introduce the 
variables 

q,=k,(-) ~ Q, i=1, ... , n, • 
¥Q' 

(41) 

(42) 

and the WF depends on n - 1 momenta and on the unit 
vector n: 

C.=Cn(q" ... , q._" n). (43) 

The normalization integral has the form 

In= J ICn (q" ... , qn, n) l'Il(') (q,+ ... +q,) 

X (8,+ ... +e.) d'q, ... d'qn . 
(Ulp) 2e, 2En (44) 

The delta function in (44) allows one to eliminate one 
of the vectors and to obtain the parametrization (43). 
One can, however, use the more convenient n -1 com
binations of the vectors ql, ... ,qn analogous to the Ja
cobi variables in the nonrelativistic case. It poses no 
difficulty to generalize the results obtained here to the 
case of particles of different masses. 

On the plane Ax = 0 the WF can be parametrized in 
analogy with expression (43). Here the unit vector n is 
replaced by the vector a=AT(_)TQ(Q2)"l/2 and Q is de
termined by the equation (28) with the substitution w- A: 

C=C(q" ... , qn-<, a). (45) 
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The result is an additional variable, the absolute value 
of the vector a. 

The WF considered by us is necessary for the solu
tion of the scattering problem when the momenta of the 
system are different before and after the scattering. 
However, there exist problems in which it suffices to 
know the state vector in some system, e. g., in the 
c. m. s. (e. g., in the spectral problem) and therefore 
one can limit oneself in them to a simpler function not 
depending on the supplementary argument. It can be 
obtained from the function (45) setting a=O, which is 
easily seen to correspond to the (p =0) component of the 
Fock column in the c. m. s. 

We note that the WF of the quasipotential approachtl21 
is a special case of the WF considered here; the latter 
goes over in the quasipotential WF under the condition 
that in (45) a=O. For this purpose it suffices to show 
that the quasipotential WF is an invariantly written com
ponent of the Fock column in the rest frame. Accord
ing totl21 we have 

x (t, r" r,) =(0 I 'PH (r" t) 'PH (r" t) In). (46) 

GOing over to the SchrBdinger picture 

we obtain 

x(t, r" r,) =rlE"(OI<p(r" O)<p(r" 0) In). (47) 

Representing I n) in the form of the expansion (1), ex
panding cp (r, 0) in terms of creation-annihilation opera
tors and carrying out a Fourier transformation we see 
that the matrix element (47) is proportional to C(kh kz, 
p = 0). The result is valid also for the case of an arbl
trary particle number. We note that int131 Garsevani
shvili et al. go over to the light-cone coordinates in the 
framework of the quasipotential approach. 

According to Kadyshevskit et al. nOl one can introduce 
a relativistic coordinate space with the help of an ex
pansion in terms of Shapiro functions t14l : 

_ ( e (q) _pq/p ) -'-ipm 
s(q,p)- . 

m 
(48) 

The functions ~(q, p) span an irreducible unitary rep
resentation of the Lorentz group and exhibit the orthog
onality and completeness properties: 

(2~)' S r(q,p);(q',p)d'p=Il(3) (q(-)q')= e;:) Il(') (q-q') , (49) 

1 J' ( ) ( ') md'q -Il(') ( ') (2n)' S q,p 6 q,p e(q) - p-p. 

In the nonrelativistic limit ~(p, p) goes over into an 
exponential function: 

(50) 

Expanding the function C(q, n) in Shapiro functions we 
obtain a representation of the WF in relativistic coor
dinate space: 
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1 S md'q 
C(p,n)= (2n)'/' C(q,nH(q,p) e(q) . (51) 

The normalization integral takes the form 

1 • 
[, = 2m(rop) IC(p, n) I' d'p. (52) 

The n-particle function depends on n -1 coordinates 
related by the Shapiro transformation to the appropriate 
momentum-space variables. As pointed out by Sha
piro[a] the coordinate space introduced in this manner 
is the Fourier conjugate of the rapidity space. 

4. THE LlGHT·CONE DIAGRAM TECHNIQUE 

We now go over to a reformulation of the diagram 
technique developed by Kadyshevski'im for the case 
where one uses in place of A the four-vector w, w2 =0. 
This diagram technique is the basis of the computational 
apparatus and for such a choice of w there occur sim
plifications both in the structure of the diagrams (the 
vacuum diagrams disappear), and in the procedure of 
their computation. The vertex parts of the Kadyshev
ski'i diagram technique turn out to be connected to the 
WF introduced before. 

We recall how the four-vector A appears in the dia
gram technique. m The T-product in the S-matrix can 
be written in terms of the II-functions: 

S"'= (-0' SH(x,) e (,,(x,-~x,) )H(x,) . .. e ("(x._,-x.))H (x.) d'x, ... dlx •. 

(53) 
The signs of t1 - ta and A(X1 - xa) in (53) coincide for 
(Xl - xa)a ;;. 0, and for (Xl - xaf < 0 the operators H(X1) 
and H(xa) commute and their order becomes unimpor
tant. A transformation of the expression (53) to nor
mal form leads to the Kadyshevski'i diagram tech
nique, [7,8] where the dependence of the amplitude on the 
vector A becomes fictitious. In the case w2 =0 the sit
uation changes somewhat: for (Xl -xa)a =0 the signs of 
t1 - ta and w(X1 - xa) may be different. However, the re
gion where this can happen represents a line on the 
light cone. Splitting the integral over d 4x into the inte
grals over d 3x and dt we see that in the t = const plane 
there is only one point where the integrand differs from 
the initial expression, which cannot change the value of 
the integral. Thus the theory with w2 =0 yields the cor
rect matrix elements of the S-matrix. 

We go over to the rules of the diagram technique for 
the case with w2 = 00 The role of the propagator in this 
technique is played by the expression lI(ko){5(k2 _m 2 ) 

which is conveniently represented in the form lI(wk){5(k2 

_ma). As an example we consider the theory with the 
Hamiltonian H = - g: cp3 :. We formulate by analogy with 
Kadyshevskii[7,8] the rules of the diagram technique for 

a b 

\ W'Z'z kz 

"-
K, \ W'Z', FIG. 4. ---
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FIG. 5. 

the transition matrix element from the m -particle state 
into the n-particle state, F nm {5(4) ( ••• ), defined as fol
lows: 

(54) 

(55) 

and related to the cross section for the process 1 +2 
-3+4+ ... +n: 

do = (2n)' IFI' dSk, ... d'k, II'" (k,+k,-k,- ... -k.), (56) 
i 2e, 2e, 

where j is the incident-particle flux density. 

1. In the Feynman diagram of n-th order we label 
the vertices in an arbitrary way by numbers. We con
nect the vertices by directed lines in the order of in
creasing labels. On the full lines we orient the arrows 
in the direction from the larger number to the smaller 
one. Diagrams which contain vertices with three in
coming or outgoing full lines (the vacuum vertices, Fig. 
4a and b) may be left out of consideration, as will be 
shown below. To the i-th dotted line (we call it a spu
rion line) we attribute the momentum WT j • 

2. To each full (particle) line we set in correspon
dence the propagator lI(wk){5(k2 _m 2 ), to each spurion 
line we associate the factor 1/21T(T - iO). 

3. With each vertex we associate (21T)-1I2g {5(4)( • •• ), 
where the delta function takes in account four-momen
tum conservation, including the spur ion momentum. 

4. We integrate over all internal line momenta, with 
respect to d 4k and with respect to dT over spurion lines. 

5. We repeat the procedure outlined in rules 2-4 for 
all n I possible numberings of the vertices. 

The vacuum vertices (Fig. 4a and b) vanish owing to 
the impossibility to satisfy for them the conservation 
laws. Indeed, since the squared momentum WT of the 
spur ion vanishes: (wTf =0, the existence of the vertex 
of Fig. 4a would mean that a massless particle (e. g. , 
the photon) could decay in vacuum into two particles, 
some of which have mass. But since the particle mo
menta are on the mass shell this is impossible. 

A similar property of vanishing of vacuum expectation 
values is exhibited by old-fashioned perturbation theory 
in the infinite-momentum frame. Us] The theory with 
wa = 0 expounded here may be considered as a special, 
relativistic-invariant formulation of old perturbation 
theory in an infinite-momentum frame. 

We illustrate the rules 1-5 on the instance of the dia
gram in Fig. 5. The amplitude F corresponding to this 
diagram has the form 
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,k, 

~T' (Q(,r, 
-~ ,.-"'-- " 

F" 
k q '", k" FIG. 6. , 

" pi( 

F=Lf B(wk) 6 (k'-m') 6'" (p,+p,+w't'-k) 2 t't' '0) d'k. (57) 
2n n 't'-, 

Integrating over d 4k we obtain 

g' +f~ d't' 
F= (2n)' B(w(p,+p,» _~6({P,+p')'+2w(p,+p,)'t'-m') 'I"-iO 

g' f 
= (2n)' m'-s-iO' (58) 

where s = (P1 +Pa)2 and it was taken into account that 
O(w(P1 +Pa)) = 1. 

As can be seen from Eqs. (57) and (58) the integra
tion over dT with the help of the delta function leads to 
a linear equation for T. This property remains valid 
also in the general case. This case also has the ad
vantage of having w2 =0 which simplifies the calculations 
since for A2 = 1 a quadratic equation is obtained for T, 

5. THE SPECTRAL REPRESENTATION OF THE 
GR EEN'S FUNCTIONS 

The parametrization of the WF introduced above is 
close to the nonrelativistic one. This analogy extends 
also further and manifests itself in the spectral repre
sentations of the Green's functions and in the relation 
between the vertex function and the component of the 
Fock column. 

We write the Green's functions Go and G according to 
Kadyshevski'ic8 ]: 

Go=ll2,tT, 

G=Go-GoBG. 

(59) 

(60) 

The operators T andH are defined in Eqs. (16) and (18). 

The Green's function G is an operator inverse to the 
Hamiltonian ~ = 21T1' + If: 

(61) 

The matrix elements of the operator T which is defined 
in terms of G byC8]: 

G=G,+G,TG, 

and satisfies the equation 

T=-B-BG,l', 

are related to the S-matrix elements by Eq. (54). 

(62) 

(63) 

We write the spectral representation of the Green's 
function G: 

G= \'""1 S Ip.l><l,pl d'p, 
.t...J D,(p,w) , (64) 

where lp, y) are the eigenstates of the Hamiltonian cU; 
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Dr are the eigenvalues, and the sum is over the whole 
spectrum. We recalUhat the values p2 =M2 for which 
Dr(p, w) vanishes determine the mass spectrum of the 
bound system. It is obvious that the function G repre
sented in the form (64) satisfies the conditions (61). 

Making use of the expansion (15) for the state vectors 
we obtain an expression for the transition matrix ele
ment from an m -particle state with a spurion into an 
n-particle state with a spurion: 

I \'""1 C.·T(k/, ... , k:, p, W'l"') C",T (k" ... , km,p, w't') 
(nIG(p) m>= .t...J '() (' , 2 )" N,(p,w)D, p,w 2BI ... 2B.· 8, ... 28", ' 

T 

X6';' (k,+ ... +k",-w'l"-k/ - ... -k.'+w't') 1,_"+ ... +>,,,_0" (65) 

If y contains a discrete part (corresponding to discrete 
masses M), any Green's function matrix element has 
poles for values of p2 equal to the masses of the bound 
states and factorizes at the pole: 

C.·TC",T I 
<nIG(p' ..... M') 1m> = .. 

NT(p, w)BD(p, w)/Bp' .'_ .... 
6'" (. .. ) . 1 

X (28/ ... 28: ·28, ... 28m)'/' 'P'-M' (66) 

We note that all that was said in this section is true 
both in the case w2 = 0 and the case A2 = 1. 

6. THE RELATION OF THE WAVE FUNCTION WITH 
THE VERTEX PART 

We define the irreducible n-particle vertex part rn(kh 

••• , kn' q - WT1, WT) containing one incoming and n out
going particle lines and one incoming and one outgoing 
spurion line (the right-hand side of Fig. 6), We shall 
consider rn irreducible if it cannot be cut into two parts, 
one of which contains only the external incoming par
ticle line and outgOing spurion line and is connected to 
the remainder by one particle line and one spurion line. 
Figure 6 represents a reducible vertex part. 

We note that in a. theory with w2 =0 the spurion line 
may enter the diagram only at the point where one of the 
particle lines leaves it and may come out of the diagram 
only at the entrance point of a particle; Otherwise the 
diagram contains a vacuum vertex and vanishes. For 
this reason the variables q and WT1 (Fig. 6) appear in 
the vertex part only in the combination q - WT1• 

We express the matrix element Fn1 in terms of the 
amplitude F11 and the irreducible vertex part r n' We 
consider that to bound states there correspond bare par
ticles in the Hamiltonian. Calculating the diagram of 
Fig. 6, we obtain 

1 
F.,=Fllr. 2n't' ·2(wk) . 

(67) 

Relating by means of the equality (62) the amplitudes 
F 11 , Fn1 and the Green's function matrix elements 
(1IGI1), (nIGI1), going in the variable (k_WT'''=p2 to 
the pole pa =M2 and equating the residues we obtain the 
relation between the component of the Fock column en 
and the irreducible 'vertex r n: 

1 r. (k.,. ... I k., P, W'l") 
C:(k" ... ,k.,p,w't')= 2n s-M' ' (68) 
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where s = (k1 + ••• + k n)2 and the momenta are related by: 
p+wT=k1 + ••• +kn • 

For the description of the nonrelativistic two-particle 
system we introduce the function zp(q) = (21T)3/2C2/2mN1!Z, 
normalized by 

the nonrelativistic normalized amplitude M nr = t(21T)1/2 
xm-3/2 r z, the constant Z1/2 = im-1/2N-1/2 which renormal
izes the charge (gR =Z1/2g), and take into account that 
s - 4(~ + ')0(.2), where ')0(.2 =m 1 Ed I. As a result we obtain 
the usual nonrelativistic formula: 

mz'/J m 
lj>(q)= __ Mnr = -.--Mnnr. 

q'+x' <r+x' (69) 

The amplitude M'][ contains the renormalized charge 
gR' 

We stress the fact that in the derivation of the results 
of this section the assumption that the spectrum of ~ 
has a discrete part was essential. Otherwise the whole 
sum over y turns into an integral, changing the charac
ter of the singularities of the Green's function. 

Let us derive an equation for the WF. We first write 
the equation for the two-particle vertex (Fig. 7), con
sidering it homogeneous: 

r(k .. k" p, oo .. r) = J r(k.', k,', p, OOT') 8(ook,')8 (ook,') 6 (k."-m') 

x 6 (k,"-m') 6'" (P+OOT' -k,' -k,') ~ 
2n(T -iO) 

XV(k,', k,', OOT', k" k" OOT)d'k,'d'k,'dr;'. (70) 

The kernel V(k~, k~, WT', k1' k2' WT) represents the ir
reducible block in Fig. 7 and may be parametrized in 
the following manner: 

V=V(q', q, n, 8,), (71) 

where S1 = (k1 +kz - wT'f and the momenta q and q' are 
constructed according to the rule (42). Introducing the 
wave function C2 = r/21T(S _M2) and noting that T = (s 
_M 2 )2(wp), we obtain 

1 d'q' 
(4e'(q)-M')C(q,n)=-JC(q',n')V(q',q,n.M')-( ')' (72) 

n 2e q 

The vector n plays the role of a parameter on which the 
kernel V depends. The equation (72) has an illustrative 
character, since it does not reflect the fact that in go
ing over to the variables q and n one must use different 
vectors in the wave functions in the left-hand side and 
in the right-hand side: 

Q=p+oor; and Q'=P+OOT'. 
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However, in the present paper we shall not discuss this 
in more detail. 

Even for quite general assumptions on the kernel V(q', 
q,n,M 2 ) the investigation of Eq. (72) may allow one to 
understand the basic properties of C(q, n). 

7. CONCLUSION 

The most unusual features of the formalism under 
consideration are the dependence of the amplitudes of 
processes on the arbitrary 4-vector W and the depen
dence of the WF on the vector n. Both these circum
stances, although they have common origins, are in 
general different aspects of the problem. Thus the de
pendence on n in the WF means only a peculiar param
etrization containing two parameters more than the non
relativistic case (the two angles which determine the 
direction of n relative to the system of vectors q1' ••• , 

qn-1)' For the two-particle function we have only one 
extra parameter. If the WF would not depend on n, this 
would not remove the dependence on the scattering am
plitudes on w. 

Let us assess the extent to which the w-dependence 
makes the theory ambiguous. As already pointed out, 
the w-dependence of the matrix elements calculated in 
any order of perturbation theory is fictitious, accord
ing to Kadyshevskil. [71 It stops being fictitious if the 
problem is solved approximately, however, it has the 
order of magnitude of the terms which were omitted, so 
that the exact amplitude does not depend on w. 

Thus, the discussion is self-consistent: the uncer
tainties related to the arbitrariness in the choice of W 

do not exceed the accuracy of the chosen approximation. 
But this accuracy may also depend on w. Therefore 
there arises the problem of the optimal choice of W in 
the amplitudes to be calculated. We recall that the vec
tor W was chosen to lie on the light cone in order to 
simplify the theory. The next step is how to place W in 
an optimal manner on the light cone. We note that the 
same uncertainty occurs in calculations using the old 
perturbation theory: the dependence on the coordinate 
system, or, for calculations in the infinite-momentum 
frame, the dependence on the direction of motion of the 
system. Here, however, this problem is posed clearly 
and can be done in terms of invariant variables, the 
scalar products of the 4-vector W with the 4-momenta 
of the particles participating in the reaction. In the 
general case there are two such variables, thus, in 
this approach the amplitudes depend on additional scalar 
parameter's and it is necessary to find a method for 
their optimal choice. Such a choice is perhaps the re
quirement that the singularities of the amplitudes, if 
they depend on these parameters, should be so situated 
that the diagram under consideration should be maxi
mally distinguished. 

In the present paper we have considered a state vec
tor defined on a hyperplane. We note that it is quite 
tempting to go beyond the class of flat hypersurfaces 
and to define the state vector on hypersurfaces which 
are the most natural in a space with pseudoeuclidean 
metriC, namely on a hyperboloid. 
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In order to utilize the proposed formalism in concrete 
calculations one must extend it to the case of particles 
with spin. The first attempts at describing the deuteron 
in pd-scattering in the backward direction with the help 
of a WF in p-space (neglecting the n-dependence and 
taking the spin into account nonrelativistically) were 
done in Ref. 16. 

I express my profound gratitude to I. S. Shapiro for 
posing the problem, useful discussion, and criticism. 
The author is grateful to A. E. Kudryavtsev, Yu. A. 
Simonov, M. V. Terent'ev as well as to I. P. Volobuev, 
V. G. Kadyshevskii, S. Shch. Mavrodiev and R. M. 
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solid argon 
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A. A. Nozdrin, A. F. Pisarev, V. A. Stolupin, and V. I. Travkin 
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(Submitted February 20, 1976) 
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The article reports on a study of a cylindrical filamentary counter (filament diameter 10 /k) filled with 
condensed argon. It is established that the ionization regime of operation is characteristic of both solid and 
liquid argon. In a counter filled with solid argon, a fraction of the pulses are observed to be amplified to a 
height exceeding the height of the ionization pulses by about 100 times. The contribution of these pulses to 
the total pulse· height distribution depends on the experimental conditions and the exposure time and does 
not exceed 30% .. 

PACS numbers: 29.40.Br 

1. INTRODUCTION 

In recent years many laboratories in various coun
tries have investigated electronic methods of detecting 
particles in condensed noble gases. (1-10l Development 
of detectors using such a medium with high spatial and 
time resolution is necessary for solution of a number 
of physical problems, for example, for fast detection 
of neutral radiations and, particularly, neutrinos. U,4l 

Most of the studies have used liquid argon or xenon as a 
working medium. Several studies have been made of 
detectors employing solid argon and xenon. (2,5,11, 12l 

Pisarev et al. (5l previously reported observation of 
electron multiplication (a gain up to 150 in the propor
tional region) near the filament in a counter filled with 
crystalline argon, and also with xenon. In the present 
article we report the results of more detailed study of 
the operation of the counter described previously. (5l 
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Liquid and crystalline argon were used as the working 
medium. 

2. EXPERIMENTAL ARRANGEMENT 

The experimental apparatus included a counter, a gas 
purification system, a temperature regulating system, 
and the detecting electronics. Descriptions of the basic 
arrangement of the apparatus and the design of the coun
ter have been given previously. (5l We recall that the 
counter had a cylindrical cathode of diameter 6 mm and 
the anode consisted of a gold-plated tungsten wire 10 
microns in diameter. A block diagram of the electron
ics used in the present studies is shown in Fig. 1. The 
signal from the counter anode was fed to a charge-sen- . 
sitive preamplifier PA with a sensitivity of 7xlQ12 volts 
per coulomb, U3l and then to a linear amplifier A (max- . 
imum gain 2000) in which the signal was simultaneously 
amplified and shaped (the integration and differentation 
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