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The consequences of particle production and vacuum polarization inside and near the boundary rg of a 
black hole are considered. Restrictions are obtained on the components of the energy-momentum tensor of 
"real" heavy particles near rg , for a black hole which is in thermodynamic equilibrium with external 
radiation. The internal inconsistency of calculations yielding a nonzero energy flux from a black hole on 
the background. of a Kruskal space-time metric without matter and neglecting the reaction of the process 
on the metric is pointed out. 

PACS numbers: 97.70.Ss, 95.20.+8 

The purpose of the present note is to consider some 
aspects of the Hawking process(ll describing particle 
production and vacuum polarization by a black hole (BH) 
in a freely falling reference frame, and to derive some 
physical .consequences from this discussion. 

We shall consider the' BH without rotation in a freely 
falling Lemaitre coordinate system with the free-fall 
velOCity vanishing at infinity, and characterized by the 
metric 

ds'=dT'-e'dR'-r (d6'+sin' 6dcp'). (1 ) 

Of course, taking into account quantum processes, this 
system differs (albeit by a small quantity) from the cor
responding Lemaitre system for Ttl, =0. (2J We shall 
call the latter the unperturbed system. In the metric 
(1) there are no physical singularities on the horizon 
(cf. for this below). 

We first show that from a formal point of view the 
Hawking process has the result that the boundaries of 
the R- and T-regions(3,.J (we denote rRT =rRx(R, T» and 
the horizon (we use the notation r, =r,(R, T» do not co
incide. 1) According to Penrose's theorem(6J the hori
zon is formed by null-geodesics. Owing to the Hawking 
process dr,/dT<O. This means that at the horizon the 
world line r, 9, qJ ;: const. is situated outside the light 
cone along r, and is thus spacelike. The same holds 
for a region r >r, on account of continuity, i. e., in 
some region outside the horizon the line r, 9, qJ ;: const. 
is spacelike. By the definition of the R- and T-re
gions(3,4J these points belong to the T-region. The 
boundary of the T-region is determined by the equation 

_, (drldT)' 
e = drldR . 

(2) 

The statement above that this is a "splitting" of the 
Schwarzschild sphere into the horizon and the boundary 
of the R- and T-regions has a formal character, re
lated to the fact that the distance between r RT and r, is 
extremely small and when quantum effects are taken 
into account, it has no direct physical meaning. Let 
us, indeed, estimate this distance operating with con
cepts of a nonquantum metric_ 

According tom the characteristic time of variation 
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of rg measured by the clock of a distant observer is 
T"'" 103r:/~1> where r p1 is the Planck length, rpl"'" 10-33 
cm, c =1. 

Consequently, in the Lema1tre system the variation 
of the slope of the null-geodesics in the (RT) plane com
pared to the slope in the classical case T, .... =0 near the 
horizon r, will be 

(3) 

where t::..T"'" 103r:/~1 is the evaporation time of the BH. 

On the other hand the slope of the null-geodesics of 
the unperturbed solution (with T uv = 0) is 

dRldT=±lr,lr. (4) 

The change of this slope in a displacement by a distance 
Or along points with different r near r, is 

(5) 

Equating (3) and (5) we obtain the variation Or corre
sponding to the distance from ?:g to the point where the 
slope of the null-geodesics corresponds to the slope in 
the unperturbed solution r = const for the null-geodeSiC, 
i. e., to the boundary between the R- and T-regions, 
rRT' Thus 

(6) 

In order of magnitude this difference corresponds also 
to the time difference t::..T for R = const. The quantity 
Or in (6) is considerably smaller than the Planck length, 
and therefore has no direct physical meaning. 

The average value of the components of the energy
momentum tensor for the BH in vacuum is everywhere 
nonzero owing to quantum effects. Far from the BH 
the values of T uv are determined by the flux of real par
ticles produced by the hole and going off to infinity. t7J 

It is easy to show that at the horizon (the boundary of 
the BH) and in its viCinity, the average value of the en
ergy density (the component Tg) must be negative. 
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Indeed, operating in an unquantized metric we write 
the slope of the radial null-geodesics at the points r l 

< r < r RT' It corresponds to the negative derivative 

drldJ.<O, (7) 

where ~ is the effective affine parameter along the 
geodesic, which increases into the future. On the other 
hand, since these geodesics are situated outside the 
horizon r>rl , they go off into lightlike infinity J+, 
where r - 00. Hence at some point along the geodesic 
the derivative dr/d~ must turn from being negative to 
positive. For a radial congruence r is a1/2 , where a is 
the cross section of the congruence of geodesics. Ac
cording to the focusing theorem (cf., e. g., [8), if da1l2/ 

d~=dr/d~ is negative, it can become positivEf) only if 
T g < 0, proving the assertion. Starobinskii has obtained 
the condition T g < 0 near the gravitational radius from a 
direct calculation of the components T ~ (private com
munication). Here we obtain the values of T~ near r, 
in Schwarz schild coordinates starting from the physi
cally obviOUS condition that the values of T ~ be non
singular in a freely falling coordinate system (the 
Lemattre system). We shall denote the components of 
the energy-momentum tensor in the Lemattre system 
by Tik' and on r, we denote these components as follows: 

T .. =A, T .. =B, T,,=C. (8) 

We shall not be interested in the other components of 
Tlk , since they are not subject to transformations when 
one goes over to coordinate systems that move radially, 
and moreover they are finite. 

We go over from the Lemattre coordinates to 
Schwarz schild coordinates. 3) As a result we obtain 
near r l (we have set e = 1). 

T .. =A+2B+C, 

1 
T •• = -( --I -) (A +2B+C) , 

1-r, r 

1 
Til = (1-r,lr) , (A+2B+C). 

(9) 

Since near the gravitational radius the energy flux must 
be directed outwards (since r, decreases with time), 
T~ = - To1(1-rl /r»0. Consequently, (A +2B + C) <0. 
We denote - (A +2B + C) =D and rewrite (9) in terms of 
mixed components: 

o To' • D 
T.=----=-T.=----. 

(1-r,lr) (1-r/r) (10) 

The quantity D is determined by the flux far from the 
BH and has the order of magnitude~) Dc:% lie/r:. 

The quantities (10) correspond to negative energy 
density flowing into the BH. Any finite positive value 
of the energy density at r l , flowing outward would lead 
to an infinite collision energy of the free falling matter 
with this flux. The values of the components T ltV on r, 
are not only finite (in distinction from the Schwarzs
child coordinate system), but are even small in the 
sense that the additional curving of space-time produced 
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by them is negligibly small compared to the curvature 
at r, in the unperturbed solution. Indeed, in the Ein
stein equations the terms with T~ are of the order 
r;(rpl/r/ )2, whereas the curvature of space-time is of 
the order r; . 

A freely falling coordinate system is a natural sys
tem for the consideration of effects near the event ho
rizon. It is free from singularities at the horizon and 
allows in a natural way to avoid the paradoxes which 
occur in the other systems which are not applicable at 
riP e. g., the Schwarz schild system. The simplest ex
ample are the values of T ~ in the SchwarzschUd coor
dinates, (10), which diverge at r, and the values (8) in 
the Lemaltre coordinates, which are finite at rl' The 
reason for the divergence in (10) is the fact that the 
Schwarzschild coordinates do not exist at r" i. e., 
there is an unphysical requirement that the accelera
tions increase without bound as r - r l in this coordinate 
system. 

The discussion in the Lemaltre coordinates allows 
one to clarify the situation with a BH in thermodynami
cal equilibrium with external radiation of the same tem
perature as the BH. In the Schwarzschild metric this 
problem has been considered by Zel'dovich[9) (cf. 
alsoClO). !n[9) the conclusion was reached that there 
exists a considerable number of real heavy energetic 
particles which are created near r, even at low tem
perature at infinity, and which do not leave the region. 

The discussion in Lemattre coordinates (1) allows 
one to estimate the values of the energy-momentum 
tensor of "real" heavy particles, T~(*) near rl' The 
tensor T~(*) is determined by the local thermodynamic 
equilibrium; therefore in the Schwarz schild coordinate 
system there are no energy fluxes and T~(*) =0. The 
transition to Lemaitre coordinates is determined by the 
equations (e = 1) 

(11) 

I 1 ( r, 0 .) T".,=-(--) --TO(')+TI(') . 
i-r,lr r 

The components T~(*) must be finite and should not ex
ceed (8). Hence, the components T~(*) in Schwarzs
child coordinates must decrease at least proportionally 
to (r -r,l)/rl as r, is approached. We recall that the 
components T~ in (10) increase like r,/(r -r,l) as one 
approaches rl' Thus, at least at the horizon, the en
ergy density of "real" heavy particles in the proper co
ordinate system (where T~(*) =0) must be equal to zero. 
If it differs from zero in the neighborhood of r,l , then 
inside the horizon it is probably in a certain sense 
equivalent to negative energy for an observer at infinity. 

We recall that heavy particles can be excited only at 
distances .t:::..l from the horizon which are smaller than 
Ii/me, 1. e., at distances not exceeding the Compton 
wavelength of the particle, and that a change of particle 
densities in this zone has a limited meaning. 
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Finally, we turn to phenomena which occur inside the 
event horizon owing to the particle production process. 
We introduce inside rg in the T-region in the unper
turbed solution the T-coordinate system with the met
ricCl1 ] 

ds' =~- (2-i)dx'_T'(d6'+sin2 6dq,'). 
(r,fT-i) T (12) 

Here T is the temporal coordinate and x is the radial 
spatial coordinate. This system is spatially homoge
neous (in the unperturbed solution!). Of course, if one 
takes into account the Hawking process, rc is not a con
stant and the homogeneity is violated. But in a region 
bounded in x (of size of the order of several rg) the sys-

-tem is homogeneous to a good approximation. 5) Near 
the real singularity T =0 there occurs particle produc
tion; the spatial curvature is here unimportant and the 
process occurs as in the flat homogeneous model. C13] 

In the course of contraction T - ° and the energy density 
related to the particle production process iSC13 ] 

e""ttic'T'. (13) 

For T~ rg/c this quantity can be rewritten as e =lic/r:, 
COinciding in order of magnitude with the absolute value 
of Tg in (10), related to the Hawking process. 

We note the following important circumstance. The 
Hawking process- has so far been calculated without 
taking into account its reaction on the metric, i. e., the 
calculations were done in the unperturbed system. As 
we have seen above, the energy flux is nonzero, T~ *0, 
both in Lemattre and in Schwarz schild coordinates. 
This component is different from zero in the T-system 
(12), a fact which is easily obtained by going over from 
the Lemaitre coordinates (1) to the metric (12). In (12) 
T~ =D(rg/T _1)-2. But an unbounded unperturbed T-sys
tem is homogen~ous! Both directions of the radial co
ordinate in it are equivalent. This means that the cal
culation of quantum processes may give a nonvanishing 
flux T ~ in it either if there exists an asymmetry with 
respect to the T-region of other space-time regions 
which are not encompassed by the T-system (we shall 
return to this elsewhere), or if account is taken-of the 
inhomogeneity of the self-consistent solution, i. e., if 
the reaction of the process on the metric is taken into 
account, or, finally, if account is taken of the inhomo
geneities in the boundary conditions, i. e., of the fact 
that in the collapse of the star the T-system (12) is 
bounded in x and must be "joined smoothly" to the mat
ter. However, it is sometimes assertedC14,lS] that 
Hawking's result can be obtained considering an un
bounded everywhere empty Kruskal metric. In this 
case the T-system is completely symmetric relative to 
the expanding T-region and the two R-regions of the 
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Kruskal diagram (cf., e. g., C4]). Both directions of the 
x-axis of the T-system are completely equivalent and 
it seems paradoxical that one obtains a T~ which is dif
ferent from zero in the T-system. 

Finally, we note that the Hawking process radically 
changes the topology of phenomena similar to the col
lapse of a charged ballU6 ] and others, where if quantum 
phenomena are not taken into account there would be 
more than one causally connected region with Euclidean 
infinity. These questions will be dealt with in another 
publication. 

I)This is the situation for regions where TI~ '" 0 (cf., e.g., [51). 
2) At least in some reference systems. 
3)The transformation is carried out, of course, by means of 

the formulas of the unperturbed solution. 
4)StarobinskiI has noted (private communication) that tsking ac

count of the conservation law Tt~ allows one to establish a 
relation among the coefficients in the following terms of the 
expansion (10) in powers of (1- rllr). 

5)For formal reasons the system (12) does not enter into the 
Bianchi classification of homogeneous models, however, 
from a physical point of view, it is homogeneous (cf. [12]). 
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