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The transformation of a horizontal surface of a dielectric fluid into an immobile corrugated surface 
following application of an external electric field is studied. The destruction of the plane boundary as a 
result of development of instability in fields exceeding a critical value brings the system to a stable 
stationary state. It is shown that at a small supercriticality the state possesses a hexagonal structure and is 
characterized by a hard excitation regime. 

PACS numbers: 64.70.Dv 

INTRODUCTION 

It is knownCl,2] that a plane surface of a dielectric 
fluid becomes unstable in a vertical electric field when 
the field intensity E exceeds a certain value Ee deter
mined by the parameters of the medium, by the dielec
tric constant E, by the density p, and by the surface
tension coefficient CI!. The surface of a ferromagnetic 
fluid in a magnetic field is just as unstable. The in
stability of a plane boundary was first observed in the 
case of a dielectric fluid. [3,4] Cowley and RosenswiegC5l 

have subsequently observed a similar instability for a 
ferromagnetic fluid. In particular, they have estab
lished that at slight excesses above the instability 
threshold, the plane surface of a ferromagnetic fluid 
turns into an immobile corrugated surface in the form 
of a hexagonal lattice, analogous to the Benard cells in 
convection slightly above critical. 

This phenomenon constitutes a unique two-dimen
sional phase transition. The order parameter in this 
case is the deviation 1/(rl.) of the surface from plane. 
As shown in this paper, in the dynamic description 
1/(rl.> t) is a generalized coordinate, while the quantity 
piJ!, where lJ! is the hydrodynamic potential on the sur
face, is the generalized momentum. The Hamiltonian 
then coincides with the free energy of the system in the 
external electric field. It can be expanded in powers 
of the order parameter. The fundamental point is that 
this eJ..'Pansion contains terms of third order in 1/. We 
call attention to the fact that in the theory of phase tran
sitions, as noted by Landau, [6] the presence of analo
gous terms in the expansion of the free energy should 
lead to a first-order phase transition of the crystalliza
tion type. As applied to our case, this corresponds to 
a hard excitation regime. 

Let us see now what the surface-relief structure 
should be. Standing waves whose wave vectors that are 
nearly equal in modulus build up during the linear stage 
of the instability slightly above its threshold. During 
the nonlinear stage, owing to the cubic terms, three 
standing waves with angle 7T/3 between them turn out to 
be coupled. The fourth-order terms do not lead to such 
a rigorous correlation between the excited waves. One 
can therefore expect that in the case of weak excess 
above critical the new stationary stage would have a 
hexagonal structure, by virtue of the twO-dimensionality 
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of the transition. Naturally, a solution of this type can 
be realized only if it is stable. As shown in this paper, 
a solution of hexagonal type is characterized by a hard 
excitation regime and is linearly stable up to a certain 
super criticality hi = (Ei/Eef -1. There exists in this 
case a field region 0 < h < h2 where there are no other 
stable solutions. At supercriticalities exceeding h2(~ 
<hi), one more solution becomes stable, in the form of 
a quadratic lattice. The realization of one of these 
structures in the interval ~ < h < hi depends on the man
ner in which the given value of h is reached (from above 
or from below). Transitions from one state to another 
are hard. 

1. VARIATIONAL PRINCIPLE AND CANONICAL 
VARIABLES 

Let us consider the surface oscillations of an ideal 
dielectric fluid in an external electric field E in a uni
form gravitational field g. We introduce a coordinate 
frame with z axis parallel to the vector g. In this 
frame, the shape of the surface is given by the function 
z = 1/(rl.), and the normal to the surface is 

n=[H(V1])']-' (-\'1], O. 

The kinematic condition 

a1] 
-at+VV 1]=v, 

connects the quantity 1/ with the velocity of the fluid. 
The latter is determined from the equation 

(1) 

(2) 

where (J is the stress tensor. [7] To form a closed sys
tem, Eqs. (1) and (2) are supplemented by the electro
static equations 

E=-V"" div(BV<p)=O 

and by the boundary conditions 

(0.'-0, ')n =ctdiv \'1] n,', 
, '" [1+(V1])']'I' 

qJ1=C:PZ! En1=BEn2 at Z=11, V--+O as z __ -oo. 
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The subscripts 1 and 2 pertain here to the vacuum and 
to the medium, respectively. 

In the study of surface waves it suffices to consider 
only potential flows for which v = Vii>, where iI> is deter
mined from the equation V2i1> =0 with the boundary con
ditions 

[ 0<1> (V<1»'] . vI] . 
p Tt+--2- ,~" + pgl] =0: d,V [1+(Vll)']'/' 

_ (8-1)'E,,' + (e-1)'E,' (3) 
4n8 8it 

V <1>=0 as z_-oo. 

Zakharov has shown previously(81 that Eqs. (1) and 
(3) in the absence of electric fields have a Hamiltonian 
structure, and the quantities it = pil>(1), r~, t) and 1)(r~, t) 
are canonically conjugate: 

~= all 
at 6,!' 

a 'I' 6H 

iJt 6,] 

This result remains in force also in the presence of the 
field. In this case the Hamiltonian 

f{=f{,+H,+H .. 

n fE,' ~ E,' 
If .. = -I elr.:. I d:-, ---I dr.:.I d:-. 

i\.. 8.. 

coincides with the free energy of the system in an ex
ternal electric field, while the canonical variables co
incide with the previous ones. This fact is verified di
rectly by varying the Hamiltonian H. The only non
trivial variation is that of H3with changing boundary. 
The variation is carried out in this case in analogy with 
the procedure used, for example, in the book of Landau 
and Lifshitz(71 in the derivation of the stress tensor a ik' 

It should be noted that the equations of motion of the 
surface waves are Hamiltonian also under more general 
assumptions: at an arbitrary dependence e = e(E), in 
the presence of arbitrary geometry, for an interface 
between two dielectric fluids, etc. It is clear that after 
replacing e by JJ. and E by H, all the foregOing applies 
equally well to a ferromagnetic fluid in an external field. 

2. STATIONARY SOLUTIONS 

We consider henceforth a situation wherein the exter
nal homogeneous electric field is parallel to the vector 
g. In this case, as is well known, (21 there exists a cer
tain threshold field E e , above which a plane boundary is 
unstable. We investigated such a regime, which occurs 
above the threshold of this instability. We consider 
first once more briefly the linear stage of the instabil
ity of the plane boundary. This problem is easiest to 
formulate and to solve within the framework of the Ham
iltonian approach. It suffices for this purpose to take 
the Fourier transform with respect to r~ and to expand 
the Hamiltonian H in powers of the canonical variables, 
retaining only the quadratic terms 

H,= I dk [2: 1'1'.1'+ ~:.'lll.I']' 
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(jJ"=gk+~- (e-1)'E' k' 
p e(eH)4itp' 

where ~ is the square of the frequency of the small 
oscillations. It follows from this directly that at 

E' Eo' e(e+1) ( )'/ ->-=--- pgo: • 
Sit 8it (8-1)' 

the frequency ~<O, and the plane oo'undary is unstable, 
the maximum growth rate being possessed by the oscil
lations with wave number ko equal to (pg/ a)1/2. 

The nonlinear stage of development of the instability 
is determined by the following terms of the expansion 
of the Hamiltonian H: 

H,»,= III dk i6(k,+k,+k3 ) [v •.•.•. 'l •• 'I'.,'I' •• - 3\ U""','I.,11',I1"] 

• 
+ III dk,6(k,+k,+k,+k.) [F., •.•.•. I].,,].,'I'.,'!' •• 

• 
+ :! T """',11', I]., 11'.11', ] + ... , (4) 

where the matrix elements have the symmetry that fol
lows from (4). An explicit expression for the coeffi
cients u and T will be presented later on, whereas the 
coefficients V and F have been calculated by Zak
harov. (8) 

The nonlinear terms lead to a limitation of the ampli
tude of the oscillations. However, the transition to 
some stationary state is impossible, since the system 
is Hamiltonian-the damping Yt , which is due to the 
viscosity 

is essential. It is obvious that itt=O for the new sta
tionary state, and the stationary relief of the surface 
is determined from the equation 

6 (H,+J1,) 

{lll'-

+ :~~ IT -••.•. k, l]k. '1', 11.,6 (k-k,-k,-k,}dk, dk,dk,=O. (5) 

We confine ourselves in the expansion of the Hamil
tonian to terms of fourth order inclUSive, which in any 
case presupposes smallness of the angle of inclination 
of the surface 1 V1)1 «1. As will be shown below, for 
stationary solutions with hard excitation regimes, this 
assumption calls, besides the natural condition that the 
excess of the external field over the threshold be small, 
also that the ratio of the matrix elements u/T be small. 
In this case this reduces to the condition 

1.=(8-·1)( (8+1) <1, 

which we assumed to be satisfied. 

We change over in (5) to the dimensionless variables 

In terms of the new variables, the expressions for the 
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square of the frequency and the matrix elements near 
the threshold take the form 

wk'=k(k-1)'-2hk', 

U'.k,k,=X [2(k,k,+k,k,+k,k,)-~ k.'], 

T ••• ,k,k.= ~lki+kiI3- ~k.'-[(k1k2)(k,k,) 
i<J i 

+ (k, k,) (k, k,) +{k, k,) (k, k,) J. 

In particular, at I k j I = 1 we have 

Uk.k%k3=U=3X, 

2u 6 
tje = To+4T./3 -24-Y-=3=---2-5- X' 

from which we get directly the applicability criterion: 
X« 1. We set aside, however, the question of the val
ues of £ at which the solution will still retain a hexa
gonal structure. To this end it is necessary at least to 
satisfy the condition To +4Tr/3 >0, where the matrix ele
ments T take into account the dependence on X. This 
inequality is violated at £ > £c = 2.1. One should there
fore expect in the experiment the formation of a hexag
~nal structure at E < Ec' As a rule, this condition is 
satisfied for ferromagnetic fluids and cannot be real-

T •• _k,k,_k,,,,,T ,= 161 cos '/2613+161 sin '/26 I '-cos 26-10, (6) ized in the case of a boundary between two dielectric 

(J is the angle between the vectors k1 and kz. 
We proceed now to a study of the stationary solutions 

of (5). We call attention first to the fact that in the case 
of weak supercriticality (h = (E/Ec'f -1« 1) the unstable 
waves are standing waves with wave vectors in a nar
row layer h1l2 near k =ko = (pg/ a)1/2. If we confine our
selves only to the interaction of the excited waves, then 
the third-order terms near the threshold take the form 

~ 1 S II lI'n' = - 3! U tjk,tjk,tjk,6 (k,+k,+k3) dk, 

+v J tj.,'I'k,'I'.,6(k,+k,+k3) II dk,. 

In view of the momentum conservation k1 +kz +ka =0 and 
I ~ I '" 1, the wave vectors k j form, with good accuracy, 
an equilateral triangle. This means that three waves, 
with angle 1T/3 between their wave vectors, are coupled. 
One can therefore expect the stationary state to have a 
. hexagonal structure in the case of weak supercriticality. 

For a solution of this type, the reciprocal-lattice vec
tors q j should be chosen with modulus equal to unity, 
corresponding to a maximum growth rate of the plane 
boundary. This state corresponds to the relief 

11 (r.l.) =2tj, (cos q,r.l. +cos q,r.l. +cos q3r.l.), 

q,+q2+q,=0. 

Taking the Fourier transform of (7), we obtain from 
(5) the dependences of the amplitude 1h on the super
criticality (Fig. 1): 

tju n= __ u _ ± [( __ U_) '+ -=--_4h-=-_] 'I, 
, To+4T." To+4T,./3 To+4T'/3 ' 

(7) 

(8) 

where To and Tr/3 (see (6» are equal respectively to 5 
and 6/3 -y.. 

The first solution in (8) is characterized by a hard 
excitation regime with a discontinuity in the order pa
rameter 

FIG. 1. 

- ~ 11~ --__ Jl II I ---
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- fluids with close values of £1 and £2' In the latter case, 
after making the substitutions 

e-~. E/-etE/', 
8, 

p,-p, 
g~ p,+p, g 

the problem is fully equivalent to that considered above. 

As to the second solution (the lower part of the 
branch), it is of the "supersoft" type, and the ampli
tude for it near threshold is proportional to h. 

In addition to the considered periodic structure, two 
other structures1) are possible, in the form of a one
dimensional lattice 

'1 (rJ =211, cos qr.l. (9) 

and a quadratic lattice 

(10) 

where q1 . liz =0 • 

It is obvious that the third-orde,r terms make no con
tributions ior the last two solutions. 2) Both solutions 
are characterized by a soft excitation regime. For the 
first of them, the amplitude is 

and for the second 

3. STABILITY AND COLLECTIVE OSCILLATIONS 

Let us investigate the stability of the obtained sta
tionary solutions. To this end we linearize the equa
tions of motion against the background of the stationary 
relief. For surface-shaped perturbations of the form 
~ke-Hlt we obtain 

Q'~;'=k(k-1) 's.-2hk'~.-ku J tjk,Sk,6 (k,+k,-k)dk, dk, 

+ : J Lkk,k""lk,llk.~k,ll(k,+k,+k3-k)dk,dk,dk,. (11) 

In the derivation of this equation we have left out terms 
proportional to Vt1t2t3 and Ft1tzt3Q (4), which can be 
easily seen to have an additional smallness relative to 
I V1/I. The most dangerous from the point of view of 
stability are, as before, perturbations with wave num
bers on the order of unity, I k -11 -..fii, to which we 
shall henceforth confine ourselves. Outside this wave-
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vector interval, the frequency U remains equal to the 
frequency w of the oscillations of the plane boundary, 
and such oscillations are therefore stable. 

1. We consider first the stability of the hexagonal 
structure. For perturbations with wavelengths k -1 
-.fii it is necessary to distinguish between two cases. 
In the first case the wave vector k lies in the iilterval 
between the reciprocal-lattice vectors (nonresonant 
OSCillations), and in the second the vector k is close 
to one of the reciprocal-lattice vectors (resonant os
cillations). 

In the first case none of the vectors of the type k +q, 
has a length close to unity, and the natural modes are 
plane waves ~ - exp(ikr~). Their dispersion relation 
takes the form 

(12) 

where e is the angle between the vectors k and ql' The 
square of the frequency is minimal when the wave vec
tor k has a unit length and makes an angle rr/6 with one 
of the reciprocal-lattice vectors: 

It follows therefore that the "supersoft" stationary solu
tion (1)- h) is unstable at small h, while to the contrary 
the "hard" stationary solution is stable with respect to 
nonresonant oscillations. 

Expression (12) for the square of the frequency is 
valid up to angles emin - X« 1. At smaller angles third
order terms become resonant-among the vectors of 
the type k +qi there appear vectors with lengths on the 
order of unity. In this case the eigenfunctions of Eq. 
(1) constitute a combination of six waves: 

Sk= 2:c,B(k-q,-x). Ixl«1. 

The system of equations for the amplitudes Ci takes the 
form 

Q'c,=[ (xq,r-~h+ (2T.,,+T,,) Ih')C, 

T ~ T..lh'c~,-Ulh(C-,+c~3)+T"'3Ih'(C,+C_,+c,+c-,). (13) 

Analogous equations for the remaining five coefficients 
are obtained by cyclic permutation of the subscripts. 

Equations (13) break up into two systems: for even 
an = t(cn + con) and for odd f3n = (cn - c..,,)/2i combinations 
of the coefficients (n = 1, 2, 3). For the odd perturba
tions we have 

• 
Q'p,= (xq,)'~,+UI], 2:,3n. 

, 

From these follows the dispersion relation 

Q'-3Q' ('/,"'+UI],) +3Q'x' (ll'1'+'/ 16"') 
-'I"u'1'x'-'/",,' (I +cos 6<r) =0, (14) 

where cp is the angle between the reduced wave vector 
x and one of the reciprocal-lattice vectors. The ex-
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trema of the square of the frequency as functions of cp 
lie at the points cos6cp = ± 1 (we note that at these points 
Eq. (14) can be solved exactly). The minima of the 
square of the frequency with respect to K lies at the 
point x =0. We present expressions for the frequencies 
of the three branches of the odd oscillations at small 
x(x2 « u1J3): 

Two branches of the odd modes are acoustic and one 
branch is optical. The different speeds of sound (1/2 
and v'3/2) correspond to different values of the com
pressibility of the system in the different directions, 
along the principal diagonal of the hexagon and perpen
dicular to its side. 

From the expression for the square of the frequency 
of the optical branch U~ it follows that the stationary 
solution II is unstable at h > 0, since u1J3 is negative at 
h>O. The solution I with hard excitation regime rela
tive to the odd modes is stable. 

We turn now to the even perturbations. The equations 
for the coefficients ai take the form 

• 
Q'a,=[ (xq,l' + 2(To + T",,) T],' - 4h)a, - (,/,Tol],' - 2h) 2: an. 

, 

Just as for the odd modes, the squares of the frequen
cies are minimal at K =0. We present their explicit 
expressions at small K: 

Q,\ = 2 (To + T ":,) '1,' - 4h + '/,x' ± 'I,,,', 
Q/='I,(T,,+4T",,) 1],'+2h+'I,,,'. 

It is seen that the solution I at small h is stable rela
tive to the even oscillations. When the external field 
becomes smaller than the critical one (h < 0), the hard 
state retains stability up to a value h* determined from 
the condition U~(K =0) =0, or ~ = - If /4 (To +4T. /3 ), cor
responding to the vertex of the parabola in Fig. 1. 
Thus, hysteresis should be observed when the external 
field is decreased after reaching the maximum. 

We note that the state corresponding to section II of 
Fig. 1 is always unstable, namely at h < 0 relative to . 
oscillations with frequency U3 and at h < 0 relative to 
oscillations with frequencies U6 • When speaking of a 
hexagonal lattice we shall therefore always bear in 
mind solution I. 

The smallest stability margin is possessed by even 
oscillations with frequencies U4• 5(K =0). The threshold 
below which the hexagonal lattice becomes unstable is 
determined from the condition ut 5 = 0 and is equal to 

(15) 

2. We shall show that a stationary solUtion in the 
form of a one-dimensional lattice (9) is unstable with 
respect to perturbations propagating at an angle (J to the 
reciprocal-lattice vector (external instability). Let (J 

be close in magnitude to neither of the values ± rr/3 or 
±2rr/3, so that the third-order terms are not resonant. 
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In this case the dispersion relation is 

Q'=(k-1)'-'2h+T,'l". 

It follows from (6) that the maximum increments are 
possessed by perturbations with () = ± rr /2 and k = 1: 

- Q' = fL. = 2!,(2~ - 10 1'2) h > O. 

3. We now investigate the stability of the quadratic 
lattice (10). We consider first nonresonant OSCillations, 
the wave vector k of which is not close to any of the 
vectors ql of the reciprocal lattice. In addition, we as
sume that none of the angles between the vector k and 
the vectors q/ is close to rr/6. For perturbations of 
this type we obtain from (11) an expression for the 
square of the frequency 

It is minimal at k = 1 and () = rr/4: 

Thus, the quadratic lattice is stable with respect to 
these perturbations. In the case when the wave vector 
of the perturbation is close to one of the reciprocal
lattice vectors (k =q; +)t, j)( I « 1), the eigenfunctions of 
Eg. (11) constitute a combination of four waves: 

;'k~~ l:(",llIk-(li'~ z), 

the amplitudes c/ of which obey the equations that fol
low from (11). 

Just as in the case of a hexagonal lattice, the per
turbations can be even or odd. Odd perturbations are 
acoustic oscillations with frequencies 

while the even perturbations are optical with frequencies 

where cp is the angle between the vectors )( and ql' All 
these oscillations are stable, in particular 

Finally, we consider perturbations with wave vector 
k in the vicinity of the unit vector ko making an angle 
rr/6 with one of the reciprocal-lattice vectors (for the 
sake of argument-with ql) 

In this case the vector~, which is equal to kl +~, also 
has a modulus close to unity and the perturbations are 
combinations of two waves 

,k (",Ii(k--·k,) i f;,/)(k- k.,), 
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FIG. 2. Dependence of the average 
energy density H on the supercritical
ity h for a hexagonal (113) and qua
dratic (R2) lattice. The solid and 
dashed lines correspond to stable 
and unstable states, respectively. 

the amplitudes c/ of which satisfy the equations 

Q'c,=[x' cos'(~-:rr./6) 
-2h+(T'IG+T,,!,,) 11,')r,-!l'l'C" 
Q'c,=[,,' COS2«V~:1!fj) 
-2h+ (T.,,+T,,/.,) lj/)C,-u.'l,c,. 

The squares of the frequencies are 

lL'~-:!h+(1',,,+7',,,,)rl,'"-1/4z"(2+ws 2" I 

±[ ((lII,)'+"/",z" ,ill 2'1 p. 

We see therefore that the square of the frequency n~ is 
minimal at it =0 and is negative at small supercriti
calities h <: hz, where hz is determined from the condi
tion n:min =0: 

11.~ .-,..-=-__ 1',::..." _+-=2~T.:::",~,,_ 
('27'" ~ '27'" ~T 

Thus, a quadratic lattice is unstable for small fl, and 
the only stable stationary solution in the region 0 < fl < hz 
is the hexagonal relief. In the region hz < h < hi> both 
the hexagonal and the quadratic lattices are stable. 
Comparing the averl!6e energy densities for these struc· 
tures, we can answer the question of the nonlinear in
stability. For the quadratic lattice the average energy 
per unit area is 

'OFt' 
11::. = _.- 'l'lJ + '.!.T:r./'! ' 

and for the hexagonal lattice 

II" --1--1(11'1 Hit)' 'oh'] 
T" + ",T r : t 

(see Fig. 2). They become comparable at a supercri
ticality 

Ii, 
t" '.1'" 

here 

o ~ (I i 2 T" I 11'",.,) '., . 
T" ! '21", ' 

In strong fields, the quadratic lattice is energywise 
favored in strong fields and the hexagonal in weak fields. 
However, if the external field increases adiabatically 
slowly, then the hexagonal structure, which is produced 
at h =0, is preserved up to a super criticality hi> at 
which the structure is destroyed and a hard transition 
to quadratic cells takes place. In the reverse slow de
crease of the field to the subcriticality hz, a quadratic 
lattice will be observed. 
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It should be noted that the numerical value of hi must 
be approached with caution becau.se of the random nu
merical smallness in the denominator of (15) for the 
threshold hi' but one can hope the qualitative picture 
of the transitions to remain valid. 

We note also that in the presence of dissipation imag
inary increments appear in the expressions for the 
squares of the frequencies of the natural oscillations, 
but all the conclusions concerning the stability and the 
expression for the thresholds remain in force. 

In conclusion, the authors thank V. E. Zakharov for 
interest in the work, G. A. Levin for a discussion, and 
M. I. Shliomis for a valuable remark. 

tlOne more structure with triangular symmetry is possible, 
but in our case it coincides with the hexagonal structure (7) 
and is obtained from the latter by shifting the origin (see[91). 

2)Generally speaking, the third-terms make a definite contribu-

·tion to the fourth-order terms, but this contribution is small 
in terms of the parameter X2• 
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Features of the volt-ampere characteristics and oscillations 
of the electric potential in superconducting channels 

v. P. GalaTko 
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Zh. Eksp. Teor. Fiz. 71, 273-285 (July 1976) 

The physical nature of the supercritical resistive current states in narrow superconducting channels and 
the connection of this phenomenon with relaxation processes of "mixing" of the electron and hole 
components of the normal-excitation spectrum are discussed. The exact solutions of the kinetic equations in 
the vicinity of the singular points of the structure of the resistive state are investigated and the effective 
boundary conditions at these points for the macroscopic equations of the structure are found. The solutions 
of these equations for large currents of the order of the upper critical current jc2 and the volt-ampere 
characteristics of a long channel are constructed. The role of the principle of minimum entropy production 
in the formation of the structure of the resistive state is noted. At low currents the static structure is found 
to be unstable, generally speaking. The physical reasons for the instability are analyzed together with the 
corresponding manifestations of the nonstationarity in the resistive state. 

PACS numbers: 74.30.Hp 

It is well known[il that the peculiar diamagnetic prop
erties of a superconductor are, in a certain sense, a 
more fundamental characteristic than the infinite con
ductivity. Significant in this respect is, e. g., the ex
planation of the nature of the dissipative current states 
in bulk type-I and type-II superconductors. From a 
microscopic point in view [2,3l the electric fields that 
arise in these superconductors on passage of a trans
port current have, in essence, an induction origin. 
They are associated with the dynamics of the magnetic 
fluxes in the superconductor and with the acceleration 
of the superconducting condensate in the vortex elec
tric fields: 

{)p,!{)I=eE, rot p,=-eH (1) 

(Ps is the condensate momentum per electron; Ii= c= 1). 
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A different situation arises in narrow super conducting 
"channels" connected to a current source. In view of 
the small transverse dimenSions of the samples the dis
sipative current states observed experimentally in them 
are not explained by vortex mechanisms[2l or by the 
structure of the intermediate state, [3l and, thus, a new 
physical aspect of superconductivity is manifested 
here-a Singularity in the response of the superconduc
tor to a nonequilibrium longitudinal electric field. 

As already noted, r'l the question of the nature of the 
resistive states in narrow channels abuts primarily 
upon the study of the Cooper instability in the normal 
current state at below-critical temperatures T < Te. 
Unlike a condensate-accelerating vortex electric field, 
which is associated with the change of magnetic flux and 
(in accordance with Anderson's theorem[Sl on violation 
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