
and this in turn is possible under the condition wHP/ C 

»1. These inequalities indicate the range of values of 
wH and WL in which both spatial localization and good 
visibility of the effect are possible. 

In conclusion, the authors are sincerely grateful to 
V. V. Zheleznyakov and E. Ya. Zlotnik for attentive 
discussion of the work and for exceedingly valuable 
advice. 

UThe phase factor is introduced in (5) to simplify the system 
of equations (6). 

2)The region of applicability of these equations is restricted by 
the condition (1), by the inequality v« 1, and by the require­
ment, common to all modifications of the geometrical-optics 
method, that the parameters of the medium vary slowly in 
terms of the wavelength (for more details see[9 1). 
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It is shown that at small values of the wave vector k, the usual kinetic equation for the occupation 
numbers is not applicable for the calculation of the damping decrement of spin waves Y3c{k) due to three­
magnon dipole coalescence processes. The effect of four-magnon exchange interaction on spin wave 
coalescence proceses is taken into account by the diagram technique in all orders of perturbation theory. 
The expression for Y3c(k) for small values of k considerably differs from the results derived from the usual 
kinetic equation. In particular, it is found that three-magnon coalescence processes give a much larger 
contribution to magnon damping with k = 0 than do four-magnon dipole processes. 

PACS numbers: 75.30.Fv 

At T« Te(TeistheCurietemperature), manyequilibri­
um and nonequilibrium properties of magnetically or­
dered crystals are determined by the spin waves. [1,2] 

In particular, the damping of the spin waves deter­
mines the threshold of parametric excitation of the spin 
system by a variable magnetic field. The relaxation of 
the magnetization to its equilibrium value, and con­
sequently, the width of the line of magnetic resonance 
in such crystals are also determined by the damping 
of the spin waves which, in turn, is due to their inter­
action with one another, with phonons, impurities, 
defects of the crystal structure, etc. 

In what follows, we shall consider an ideal ferrodi­
electric and confine ourselves to the case of spin-spin 
interactions only, to wit, the exchange -and relativistic 
dipole interactions. In this case, the Hamiltonian of the 
spin waves has the formU ,2] 

(1) 

where JlCo is the Hamiltonian of the free spin waves, 
V~e and V~IIIJ are the contributions from three-magnon 
processes of coalescence and splitting, due to dipole 
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interaction, V: is the contribution from a four-magnon 
exchange scattering, V't.,c is the contribution from 
four-magnon dipole processes, and W denotes processes 
of higher order in the creation and annihilation opera­
tors of the spin waves, which, at T« Te , make a 
small contribution. We do not include in the Hamil­
tonian (1) the interactions of spin waves with the vibra­
tions of the crystal lattice, impurities and defects, both 
from considerations of simplicity and because the ex­
periment allows us to separate the contribution of the 
"characteristic" mechanisms of magnon damping due 
only to spin-spin interactions. [2,3] 

The damping of spin waves, i. e., the approach toan 
equilibrium occupation number nk = (aia k) « ) denotes 
averaging) is determined in second-order perturbation 
theory by the usual kinetic equation 

(2) 

Here (lex) is the delta function, V'm are the matrix ele­
ments of the interaction operator in the representation 
in which the Hamiltonian JlCo is diagonal, land m denote 
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the initial and final states for those processes in which 
the spin waves with wave vector k are created and l' 
and m' are the initial and final states for processes in 
which they are annihilated. 

In the case of a weak departure from equilibrium, the 
expression on the right side of (2) can be linearized ac­
cording to An"=n,, -ii" (ii" is the equilibrium value of nIt) 
and we can find the damping decrement y(k) as a func­
tion of k, T and the external magnetic field H. Thus, 
for example, the damping of the magnons due to three­
wave coalescence processes, determined by this meth­
od, is of the form 

l,,(k) = 2:' S dp lV,(k-rp; k, p) I'[n(e p) -n(ep+e.) ]b(e.+ep-eHP), 

(3) 
where V,,(k+p; k, p) is the amplitude of the specified 
process, e It is the energy of the spin wave with wave 
vector k. [1,2J (Here and elsewhere, we use the sys­
tem of units in which Planck's constant, Boltzmann's 
constant and the Bohr magneton are taken to be equal to 
unity. ) 

It is known that the damping of magnons as k- 0 is 
determined in the case considered only by the dipole 
interaction, since the exchange interaction does not 
make a contribution to the damping of the spin waves 
with sufficiently small k (because of its short-range 
nature). Here it follows from (2) that the contribu-
tion to the wave damping with k = 0 from V ~c and V ~.P 
is equal to zero, since the processes of coalescence 
and splitting corresponding to these interactions are 
forbidden by the laws of conservation of energy and of 
the wave vector that is contained in the collision inte­
gral of the kinetic equation (2). (see, for example, (3». 
Thus, in second-order perturbation theory, the contri­
bution to the damping of waves with k=O from spin­
spin interactions is determined only by the four-magnon 
dipole scattering, and the calculation of this contribu­
tion from Eq. (2) gives[ll 

(4) 

where Mo is the saturation magnetization. For ex­
ample, for yttrium iron garnet (YIG) at room tempera­
ture (Mo= 140 Ga, Tc= 550 OK) we obtain, in units of the 
magnetic field, y~s(O) -10- 3 Oe, which is much less than 
the observed values. 

Of course, the prohibition, imposed by the conserva­
tion laws on the participation of three-wave processes 
in the relaxation of magnons with k= 0 is valid only with 
accuracy to the next order of perturbation theory. 
Therefore, the real contribution of such processes to 
y{k- 0) is determined by corrections of higher order. 
However, it will be shown below that for three-magnon 
coalescence processes, the order of the perturbation 
theory at small k diverges in the temperature and 
magnetic field regions achievable experimentally. 
Account of this circumstance leads, as we shall see, to 
an effective increase in the contribution to damping 
of magnons with small k from three-magnon processes. 
In particular, the contribution from three-magnon 
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coalescence processes to the damping of magnons with 
small k turns out to be much greater than (4). 

THE NONAPPLICABILITY OF ORDINARY KINETIC 
EQUATION f:OR PROCESSES OF COALESCENCE OF 
SPIN WAVES WITH SMALL k 

The kinetic equation is applicable, as is well known, 
to time scales that are much greater than the charac­
teristic interval of time TO for which all the distribution 
functions of higher orders begin to be determined by 
specification of the single-particle functions, i. e., the 
occupation numbers. ttl Since the characteristic time 
scale of change of nIt is the corresponding time of damp­
ing T,,=y;l, then the criterion of applicability of the 
kinetic equation is written down in the form of the in­
equality T,,» TO' Thus, in the use of the usual kinetic 
equation, it is assumed that the results obtained with 
its help are true with accuracy to the ratio TO/T". 

We shall show that as k- 0 the ratio TO/T" is not a 
small parameter for three-magnon coalescence pro­
cesses, and therefore the question of the applicability 
of the kinetic equation and its accuracy demands addi= 
tional study. Actually, in its physical meaning, To is 
the time within which the correlation between the oc­
cupation numbers of the spin waves, which arise in the 
process of their interaction, [4J vanishes. Consequent­
ly, TO can be determined from the damping of correla­
tion functions of the type 

<V.(t) v.(o»= 1:lVnml2Pn exp{i(En-Em)t}, (5) 

where 

V.(t)=exp (iJ'&ot)V.exp (-iJ'eot). 

Here V" is the considered interaction, responsible for 
the processes of coalescence of magnons with wave 
vector k[ll: 

v. = 1: Vd (1, 2, k)a,+a,a,L'i (k,-k,-k) +H.c (6) 

" 
and Pn is the probability of finding the system in a state 
with energies En • 

Writing down the unperturbed Hamiltonian in the form 

we can easily obtain the result from (6) that as k- 0, 
for three-magnon coalescence processes, En -E",= eo, 
i. e., the correlator (5) is not damped but oscillates 
with constant frequency eo. This means that in first 
approximation, the correlation time increases without 
limit as k- 0 and consequently the ratio TO/T" ceases 
to be a small parameter. The latter fact also indicates 
the nonapplicability of the usual kinetic equation. 

For investigation of the corrections to the kinetic 
equation (2) and for calculation of the damping in higher 
orders of perturbation theory, it is convenient to use 
the diagram technique. It is well known that at small 
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departures from equilibrium y(k) = Im~(~~, k), where 
~(e~, k) is the mass operator for the equal-time re­
tarded Green's function of the magnon.t1l Since the 
diagram technique has been worked out for temperature 
Green's functions, then the problem actually reduces 
to the estimation of the mass operator for the tempera­
ture Green's function, i. e., to the determination of 
~(En,k), wheree n =21TinT, n=O, 1, 2, .... Then 
~(e, k) is found by analytic continuation of ~(e n , k) with 
a discrete set of points on the upper half-plane of the 
complex variable E. U,5] In particular, the calculation 
of the damping by the kinetic equation (2) is equivalent 
to calculation of the mass operator in second-order 
perturbation theory. Thus, for example, the calcula­
tion of the ,damping decrement from the kinetic equation 
for processes of coalescence, splitting or scattering 
of spin waves is equivalent to finding the contribution to 
the mass operator from the second order diagram, 
shown in Fig. 1 (the dashed. lines here correspond to 
the zero Green's functions). 

In such an approach, the inapplicability of the kinetic 
equation for coalescence processes at small k means 
that the contribution from the diagram in Fig. lea) 
ceases to be a good zero approximation in the diagram 
series for the mass operator corresponding to this 
process, ~3C(e, k), shown in Fig. 2. Here, the com­
plete Green's functions G(en, p)=(e,-e n -~(en' p»-l 
correspond to the dashed lines, and r means the renor­
malized vertex. It is not difficult to establish the fact 
that as k- 0, the diagram series for ~3c actually di­
verges; This can be done by direct calculation of the 
diagrams of higher orders. The contribution from dia­
grams of fourth order dominates the contribution from 
diagrams of second order shown in Fig. 1(a) (in some 
region of T and H). 

CALCULATION OF THE MASS OPERATOR 

Thus, the problem of the determination of the damp­
ing decrement of the spin wave due to three-magnon 
coalescence processes reduces to the calculation of the 
mass operator ~3c shown in Fig. 2. We first consider 
the renormalization of the Green's functions G = (e, - en 
- ~)-1 entering into ~3c' For this, we first note that 
here, in the consideration of the total mass operator 
~, we can confine our attention to the contribution from 
diagrams of second order, shown in Fig. 1, since the 
perturbation theory works well in this region of inter­
mediate wave vectors p, which make the prinCipal con­
tribution to ~3c' Second, from the diagrams of second 
order shown above, we can in what follows take into 
account the contribution to ~ from the diagrams in Fig. 
l(c) only, which corresponds to a four-magnon exchange 
scattering. The fact is that the contribution to the 
damping of the spin wave from exchange scattering in­
creases, with increase in the wave vector much more 
rapidly than the contributions from dipole processes as 
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is well known, U] and it is clear from the following that 
the contribution from the exchange is decisive in the 
fundamental region of integration in ~3c over the inter­
mediate wave vectors p. Finally, we can write the 
renormalized Green's function in the form 

(7) 

where ~ex is the exchange part of the total mass opera­
tor in second-order perturbation theory, graphically 
shown in Fig. l(c) (the real part of ~'" in the considered 
problem is unimportant, since it leads only to renor­
malization of the exchange constant in the spectrum of 
spin waves. [ll). 

We now proceed to the renormalization of the vertex 
r and show that, under the experimental conditions, the 
noted renormalization can be neglected, i. e., in the 
calculation of the mass operator ~3c, we can limit our­
selves to renormalization of the Green's functions (7) 
and in place of r there remains the bare vertex V,(k 
+p; k, pl. For this purpose, we consider first ~3c with 
account only of the bare vertex V,(k+p; k, p), the de­
pendence of which on k and p is known. [1J Using (7), it 
is not difficult in such a case to obtain, after corre­
sponding analytic continuation, 1) the following expression 
for the imaginary part of the desired mass

A 
operator 

~3c (we denote it in this approximation by ~3C): 

_ 1 J dpIV,(k+p; k,p) 1'[1ex(P)+1,x(k+p») 
Im.t" (e., k) - 4,,' (e.+Ep-ek+P)'+[ -Y,x(p) +-Y,x(k+p»)2 

X [n(Ep+e.) -n(ep+A-E.) -n(E.) +n(Ep+') ), (8) 

and for e, we limit ourselves in further estimates to 
the simple dispersion law e., = H + np2 (D is the exchange 
constant). Moreover, y",(p)=Im~ez(e" p), i.e., y.(p) 
is the damping decrement due to four-magnon exchange 
scattering, and for those p which make a fundamental 
contribution in the integration in (8), 

where a is the lattice constant. U.6J 

With the help of (8), we estimate the interval of in­
termediate wave vectors p which gives the prinCipal 
contribution to the mass operator ~3c' Making the sub­
stitution x = np2/ T and neglecting the dependence V,(k 
+p; k, p) on the angular variables, it is not difficult to 
rewrite (8) at k= 0 in the form 

where. 

o ~ ( ~ ) " ( ; ) 2 ~ ( ~xT)" . 

t = 
" o 

p 

FIG. 2. 
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FIG. 3. 

Here Y;x- Tc{T/Tc)4 is the mean damping due to four­
magnon exchange scattering. Ul 

It follows from (9) that at H»y!'x, i.e., when 0» 1, 
the principal contribution to the integral is made by the 
thermal intermediate states (x-1). In this case, the 
series of perturbation theory for ~3e is seen to converge 
in the parameter Y;x/H and such a situation was con­
sidered in Ref. 7. In the present work, we consider 
the opposite case, 0« 1, which is frequently realized 
under experimental conditions (YIG, room temperature). 

We now show that at 0« 1 renormalization of the ver­
tex makes a small contribution in the calculation of 
~3c' At 0« 1, the principal contribution to (9) is made 
by x- /}. Therefore, as k- 0, the problem reduces to 
the estimate of rep) in the corresponding region of 
phase space, 1. e., for P-Po, where Po is determined 
by the condition Ye,,(Po)- H. In this range of wave vec­
tors, the principal role is played by the processes of 
exchange scattering, UJ which has already been taken 
into account in the renormalization of the Green's func­
tions (see (7)}. Consequently, even in the renormalized 
vertex, the principal contribution is made by the ex­
change corrections, and it is not difficult to establish 
the fact that for small input wave number k, the greatest 
contribution to rep) is made by the diagram shown in 
Fig. 3. We estimate this diagram by noting that in the 
region Yex(PO)- H, the contribution from it can be re­
written, obviously, in the form 

- . S dq dr 
v,(po) ""V, H+1,.(Q) 1q,(Po). (11) 

where Yq.r(Po) is an expression, not integrated over the 
interior lines, corresponding to the diagram of Fig. 
l(c) at k=po. After substitution of the well known ex­
pression for Y q,r' Ul the integral (11) _is easily deter­
mined and the result takes the form V.(po>- V.01 / 2 • 

The latter also means that in the considered case 1i« 1, 
renormalization of the vertex can be neglected, 1. e., 
we can limit ourselves to renormalization of the Green's 
function. It then follows that the damping decrement 
of the spin waves due to three-magnon coalescence pro­
cesses is determined by Eq. (8). 

REGION OF APPLICABILITY OF THE KINETIC 
EQUATION. DISCUSSION OF THE RESULTS 

In the case H« Y;x, i. e., at (H/Te }{Te/T)4« 1, 
the damping decrement due to three-wave coalescence 
processes of spin waves has the form (see (8» 

(k) = _1_ S dp\ V,(k+p; k, p) \'1,,(P) 
1" 2n' (e.+ep-ek+P)'+41,,'(P) 

X [n(ep+e.) -n(ep+,) -n(ep ) +n (ep+') J. (12) 

As Y.x( p) - 0, the obtained expression transforms into 
(3) as it should, i. e., into the result which follows 
from the ordinary kinetic equation (2). 
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Comparison of (l2) with (3) shows that the expression 
(12) for Y3c(k) found in the work corresponds formally 
to the approximation of the ''broadened delta function, " 
i. e., to the replacement of the /} function entering in­
to (3) by the Lorentz formula. Such a replacement of 
the /} function is sometimes simply postulated, as has 
been done, for example, by Simons in the calculation of 
the damping of phonons[9] and by White and Sparks in 
the calculation of the instability threshold of spin 
waves. [to] However, it follows from the results of 
the present work that the apprOximation of the ''broadened 
delta function" is correct only in those special cases 
in which in the calculation of the mass operator we 
·can restrict ourselves to the renormalization of the 
Green's functions and neglect the renormalization of the 
vertex, i. e., acutally, in a restricted region of change 
of the characteristic physical parameters of the problem 
(for example, for (H/Te}{Tc/T)4« 1 in our case). 

We now determine the interval of values of the wave 
vector k for which the kinetic equation (2) is inapplica­
ble, i. e., when it is necessary to use the relation (12). 
Since (12) enters into (3) at Y ... ( p) - 0, then, consequent­
ly, the expression (3) will be applicable only for such 
large k when we can neglect the exchange damping Yex(P) 
in the denominator of the integrand expression in (12) in 
comparison with Ek + e, - E/o+, = H - 2Dk· p. Since the 
baSic contribution to the integration in (12) as k-O is 
made by the values of p which satisfy the condition 
Yex{P)- H, the region of applicability over k of the kinet­
ic equation (2) is determined by the relation Dkp 
»y",,(p)- H. Then we obtain the following value of the 
limiting wave vector kUm : 

(l3) 

Thus, the kinetic equation (1. e., Eq. (3» is applicable 
for the calculation of the damping in three-magnon pro­
cesses of confluence in the range k» kUm' and for 
k "'" kUm the damping decrement is determined by the ex­
pression (12). 

For damping of magnons with k = 0, it is not difficult 
to obtain 

(14) 

from (12) with k=O. Comparing (l4), with (4), we find 

1,,(0) _ (Tc )"'(!'-) 'I. »1. 
1 • .'(0) T H 

(l5) 

It then follows that the corrected kinetic equation mate­
rially changes the point of view with regard to the role 
of three-magnon processes in the damping of spin waves 
with small wave vectors: in the framework of the ap­
proach based on the usual kinetic equation, it was as­
sumed, in contrast with (l5), that the contribution Y3C(O) 
can be neglected in comparison with ;1.(0). [1.2] 

We note that as H - 0 the damping should naturally re­
main finite. This is violated in (14) for the reason that 
we, for Simplification of the calculations, made us~ of 
a simple disperSion law, not taking into account the 
dipole interaction. This means that (14) is applicable 
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for H» M o, i. e., when the external magnetic field is 
much greater than the local fields of the crystal. 

At k *" 0, the calculation of the integral in (12) be­
comes complicated, with the exception of the case k 
« k llm , when it is not difficult to obtain the following 
expression for Ysc(k): 

"(" (k) ="(" (0) +,,(,a'k', Mo' ( Tc) '" ( T ) '1. ,,(,--- -
Tc T H 

(16) 

Estimate of kllm from the relation (14) for YIG at 
room temperature and H-103 Oe gives k llm -104 cm-1• 

This value lies on the lower boundary of this region of 
k, which has been studied experimentally up to the pres­
ent time, [2,3] which makes difficult the comparison ofthe 
obtained results with experiment. We note that the esti­
mate Y3C(0) from the relation (14) gives Y3c(0)-10- 2 Oe 
for YIG at room temperature, which can bea Signifi­
cant fraction of the total line width of the better sam­
ples. [2] It is also possible that the experimentally ob­
served[3] deviation from the expected linear law for the 
dependence of y(O) on T is connected with the contribu­
tion of the three-magnon coalescence processes con­
sidered in the work (according to (14), the contribution 
from such processes to y(O) changes with temperature 
as Tll/6_ T2). • 
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t) Analytic continuation is carried out by the standard method; 
see, for example, Ref. 8. 
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The resistive state and pinning in deformed single crystals 
of niobium 
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The current-voltage characteristics, pinning, and dislocation structure in deformed single crystals of 
niobium are studied. An effect of plastic deformation on the current-voltage characteristics near the upper 
critical field Hc2 is observed. The observed features of the resistive state, the effect of deformation on the 
current-voltage characteristics, and the peak effect are discussed in terms of models that account for the 
possibility of varying the number of moving vortices and for the increase in the dynamic pinning force near 
Hc2 in materials with an inhomogeneous distribution of pinning centers. 

PACS numbers: 74.4O.0t 

I. INTRODUCTION 

The study of the resistive state, consisting of the cur­
rent-voltage characteristics of type-II superconductors 
in the mixed state, yields the most complete informa­
tion on pinning and on the motion of the vortex lattice. 
In most studies of type-II superconductors the current­
voltage characteristics, observed while varying the ex­
ternal magnetic field H, are a series of curves with an 
initial nonlinear portion, becoming linear with further 
increase of the current. The slope of the linear portion 
is proportional to the magnetic field. [1,2] 

Since the reports by Kim and coworkers were pub-
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lishedU ,2] it has been assumed that changes in the struc­
tural state of the superconductor (its imperfection or 
inhomogeneity) do not affect the shape of current- voltage 
characteristics, causing only their parallel shift along 
the current axis. [1,2] An unusual behavior, however, of 
the current-voltage characteristics (near Hc2 , at least) 
was observed in a number of studies, for example, in 
deformed Nb-Ti and Nb-Ta alloys, [3-5] and in recrys-

. tallized foils of an Nb-Zr alloy. [6] We have recently re­
ported[7] features of the current-voltage characteristics 
in stress-deformed Single crystals of niobium near Hc2 0 

The present work is devoted to the features of the 
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