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INTRODUCTION 

Recently it has been established that a whole number 
of non-linear wave equations of importance to physics 
can be integrated exactly by means of a new mathemati­
cal method-the inverse scattering method. Among 
those we have the Korteweg-de Vries equation, tl] the 
non-linear Schrodinger equation, [2,3] the Sine-Gordon 
equation, [4.5] and others. The formalism of the inverse 
method enables us to find easily extensive classes of 
exact solutions which describe the propagation and in­
teraction of solitary waves-solitons, and to determine 
their asymptotic behavior. [2,3,6-8] However, the prob­
lem of the asymptotic behavior of an arbitrary initial 
condition is in this way far from exhausted; it is still 
necessary to determine the asymptotic behavior of the 
"non-soliton" part of the solution which is connected 
with the continuous spectrum of the corresponding dif­
ferential operator. 1l The present paper is devoted to 
the solution of that problem. 

One must note that the structure of the asymptotic 
solutions is determined also without invoking the inverse 
method. Indeed, by analogy with the linear problem it 
is natural to expect that the asymptotic solution is local­
ly periodic with a slowly varying amplitude and fre­
quency and can thus be easily found using one asymptotic 
method or another, such as, e.g., Whitham's method. C1O 

For instance, for the non-linear Schrodinger equation 

(1) 

the solution of this kind has the form (t _ co ) 

(2) 

with an arbitrary function /. The problem consists, 
firstly, in prOving the fact that (2) is, indeed, the 
asymptotic solution of the Cauchy problem and, second­
ly, in determining the function /(~) from a given initial 
condition l/I(x, t) for t = O. Asymptotic methods are 
clearly useless for solving these problems. 2) 

In the present paper we show how one can find the 
"non-soliton" asymptotic behavior for various integra­
ble systems using a standard procedure in which the 
central place is occupied by the solution of the problem 
of parametric resonance for a linear change in the 
frequency of the perturbation. We give two versions of 
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this procedure. The first of them uses only the direct 
spectral problem for the "integrating" operator and in 
that sense is more "elementary" than the second one 
which is based upon the equations of the inverse prob­
lem. Using the direct scattering problem we evaluate 
the asymptotic behavior of the non-linear Schrodinger 
equation for different signs of the non-linear term 
(describing the propagation of wavepackets in self­
focusing and defocusing media) (§1, 2) and also the prob­
lem of the asymptotic behavior of the Korteweg-de Vries 
equation (§3). We see then that the asymptotic behavior 
of the non-linear Schrodinger equation has the form (2) 
for all x whereas such a "quasi-linear,,3) asymptotic be­
havior occurs for the KdV equation only for x> t; in 
the remaining region, however, the asymptotic be­
havior is determined by the self-similar solution which 
joins up with the quasi-linear one at x- t. We apply the 
procedure based upon the inverse problem equations 
to an evaluation of the asymptotic behavior of the sine­
Gordon equation (§4). 

§1. NON-LINEAR SCHRODINGER EQUATION 
(SELF-FOCUSING MEDIUM) 

Equation (1) with the "plus" sign in front of the non­
linear term describes the propagation of spectrally 
narrow wavepackets in a non-linear self-focusing medi­
um. The inverse scattering method connects this 
equation with the spectral problem (see[2]): 

or the equivalent set of equations 

au, .-
i-+Ae-'''v,=o ax ' 

av, .-
i-+Ae"'v,=O, ax 

where we have introduced the notation 

IjJ=Ae;'" (1m A=O, A;;;'O), «D=IlI-Ax, 
V t =uleiAJC/2, v2=u2e-iAxlZ. 

(3) 

(4) 

The spectral problem (3) may have discrete eigenval­
ues lying in the complex :\.-plane. They correspond to 
exact solutions of Eq. (1), exponentially decreaSing with 
x, namely solitons. The dynamics of solitons was 
studied in detail in[2]. Here we shall assume that 
solitons (eigenvalues of the system (3» are not present. 
A sufficient condition for the absence of a discrete 
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spectrum is, e. g., the inequality 

S 11jl(x) Idx<ln(2+l'5). 

We shall in what follows denote by ~(x, ~) the exact 
solution of the set (4) with asymptotic behavior ~ 1 - 0, 
~a-l as X-"". We write ~1(-"'" ~)=b(~), ~2(-""'~) 
=a(~). If l/i(x) in the problem (3) depends on the time, 
the functions a(~) and b(~) will, in general, also be 
time-dependent. It is, clearly, impossible to give the 
explicit time-dependence of a and b for an arbitrary t­
dependence of l/i(x). However, there is an important 
fact: if l/i(x, t) in the set (3) changes with time accord­
ing to Eq. (1), a(~) will be time-independent and 

b(i.., t)=b(i.., O)e"'·'. (5) 

Equation (5) and also the fact that the mapping l/i(x) 
-a(~), b(~) given by problem (3) is reciprocally unique 
also allows us to "integrate" Eq. (1). We must then 
proceed as follows for the solution of the Cauchy prob­
lem. Firstly, we must for a given initial condition 
l/i(x, 0) for Eq. (1) use (3) to find a(~) and b(~); then we 
must use Eq. (5) and get the "scattering matrix" a(~), 
b(~, t), and after that find l/i(x, t) which if substituted 
into (3) would lead to a(A), b(~, t). The last problem 
in this scheme is the subject of the inverse problem 
in scattering theory; its solution reduces to the solution 
of the linear integral equations of the inverse problem 
(seeC2l). The explicit solution of these equations is 
known only in the purely soliton case. Here we show a 
method for solving the inverse problem when b(A) is a 
fast oscillating function of the spectral parameter A 

which, according to (5) means- t - "". 

We assume that the modulus and argument of l/i(x) 
satisfy the following conditions: 

d ' , I dx InA I «1lI.x. (6) 

and that the integral f(A2/~,,)dx converges in the 
neighborhood of both infinities. Conditions (6) mean that 
the function l/i(x) can on the basis of the set (3) in the 
neighborhood of any point be written as an exponential 
with constant amplitude and linearly changing frequency. 
For each A we split off the resonance region-the vi-

, cinity of the point XO(A) defined by the condition 

As ~"" > a this equation has no more than a single solu­
tion for any~. In the resonance region the set (4) 
simplifies to 

ov, {( 1,)} i Ty"" + A (xo) exp -i i1io + 2: loY v,=O, 

i~+ A (xo)exp {i (i1io + ~ loY')} v,=O, 

~"=ii) (xo), fo=llIxr(xo}, y=x-x,. 

(7) 

Far from the point Xo the set (4) can also be considera-
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bly Simplified. In fact, .in the region where 

we get for V1 and va 

ov, , 
ti1i.-+A v,=O, 

i)x 

(8) 

(9) 

We shall call the region where condition (8) is satis- . 
fied the asymptotic region. In that region we can easily 
find V1 and va from (9). The general form of the solu­
tion in the resonance region can also easily be given. 
To do this we introduce the variable z = Y~!12(xo) and 

, eliminate the quantity V1 from the set (7). We get for 
va 

i)'VI . OV, , 
oz' -!z Tz + a v,=O, (10) 

where 

a'(i..) =A' (x,)/IlI,.(xo), xo=xo(i..). (11) 

The general solution of Eq. (10) can be expressed in 
terms of parabOlic cylinder functions (see, e. g., t13l): 

(12) 

The function Vl(Y) can then be found from the second of 
Eqs. (7). The solution in the resonance region is thus 
determined by two arbitrary constants c 1 and C2' 

When conditions (6) are satisfied the resonance and 
asymptotic regions overlap. In the overlap region the , 
solutions of Eqs. (9) and (10) must join up, after which 
we obtain the solution of problem (4) for the whole x­
axis. In particular, we get from (9) for the solution 
~ (x, ~) in the asymptotic region for x > xo, using the 
boundary conditions at + 00 in x: 

.,. 
~,(X,A)=O, ~,(X,A)= exp (i S (A'/i1i.)dx). 

In the overlap region (13) gives 

~,=O. 

, ~ d A' 
~,= [llI zr (x,) (x-xo) j-,a' exp [-i S In i1i. dx~dx ]. .. 

The asymptotic behavior of the parabolic cylinder 
functions which interest us is the following (z _ + 00) 

(13) 

(14) 

Substituting these formulae into Vl and va and joining the 
expressions obtained with (14) we find 

r (1-ia') 
c, = e'"'!' [1lI .. (x,)] -ja'!' 

nn 
~ d A' 

XexP{-i Slni1i.--dx}, c,=c,e-·a '. 
dx (j) .. .. 
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We have thus found ~(x, ~) in the resonance region. 
Joining then similarly the solution of Eqs. (9) in the 
overlap region x < Xo with the already-found solUtion, 
we determine the solution in the asymptotic region to 
the left of the resonance pOint. Letting after that x 
tend to - 00 we get the scattering matrix: 

[ c A'(x) ] 
a(I.)=exp -na'+l J --a;:-dx , 

r-2:rti , . 
b(I.)= af(ia') e-'· /' exp{-i[iJ),+L,-L,+a' In Ill .. (x,) ]}, 

where 

- d A' 
L,= SlniP.--dx. 

dx $= 

'" d A' 
L,;" S InliP.I--dx. 

dx 11>= 
-~ 

(I6) 

(17) 

(18) 

In equations (16) to (18) we must put xo=xo(~) found from 
the equation ~,,(xo)=7t. We have thus explicitly solved 
the direct scattering problem for the class of functions 
which satisfy conditions (6). 

One verifies easily that the scattering matrix we have 
obtained possesses the necessary properties. Firstly, 
using the formula 

If(ia') I'=lt/a' sh lta', 

we can satisfy ourselves that 1 a(7t) 12 + 1 b(7t) 12 = 1. We 
note, secondly, that the exponential index in Eq. (16) 
can be written in the form 

~s- (-na'(~» d~ 
:ti _~ ~-I.-·iO ' 

which means that In a(7t) can be analytically continued 
from the real axis into the upper ~ half-plane; this in 
turn means that a(7t) is analytical in the region 1m 7t > 0 
and has no zeroes there. These statements about the 
scattering matrix are valid in the general case (here, 
however, we established them for "potentials" satisfy­
ing conditions (6) by directly evaluating a(7t), b(7t». 

Having Eqs. (16) to (18) available we can with the 
same accuracy solve also the inverse scattering prob­
lem-recover A(x), ~(x) for given a(7t), b(7t). To do 
this we note that 

A' 1 1 
a'(I.)=-=-ln--

11>.. It la(l.) I 

is a given function of the spectral parameter 7t. We 
write arg b(7t) = e(7t) and note that the integrals L1 and 
L2 of (18) can be expressed solely in terms of a(7t): 

- d 
L,= f In(s-A)-a'(s)ds, 

, ds 

We put 

8(1.) =8(A)+L,(A) -L2(1.) -'I,:t+arg f(;a') .. 

From (17) we get the relation 

eo.) =Ax-$ (x) -a'ln $.". 1I>.=i •. (19) 
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We consider first of all the case when we can neglect 
the term a2In~"" in (19). ~(x) is then found by a 
Legendre transformation 

Evaluating or ln~"" as a correction we note that 

so that we can write (19) in the form 

II> (x) =Ax-8(A) +a'ln eH. x=iJeiiJi .. (20) 

By virtue of the properties of the Legendre transforma­
tion the condition ~"" > 0 leads to e~~ > 0 and vice versa; 
the conditions (6) can be written in the form 

d - d -
-d (l8u l)'{' <-8 •. 

), dl. 
(21) 

Integrating (21) we find that excluding the vicinity of 
zero the term (]!2(7t) lne~~ is small compared to 6 which 
justifies the preceding considerations. We now remem­
ber that by virtue of Eq. (5) 

8(A, t)=8,p.)H't. 

It is clear that as t - 00 the conditions (21) turn out to be 
satisfied independent of the form of a(7t), 60(7t). This 
fact also enables one to find the asymptotic form of the 
initial problem for Eq. (1). 

We have4l for t- 00 

1. e., 

1I> .. =1/2t, a'O.)=a'(x!2t). 

We have thus finally: 

A'(x,t)=II> .. a' (~) =_1_In __ 1_, 
2t 2nt la(x!2t) I 

x· (X) -(X) Ill(x t)=-+a' - In2t-8, - . 
, 4t 2t 21 

(22) 

(23) 

Equations (22) and (23) completely determine the main 
term in the asymptotic form of l/J(x, t). We note that 
Eq. (22) was obtained earlier by one of the authors Cl4l 

by directly solving the inverse problem equations. 
We note that the asymptotic formulae (22), (23) have the 
same structure as (2). 

In conclusion, a few words on the nature of the ap­
proximations made. The condition (6) A"" «A~~ is for. 
Eq. (1) equivalent to the "non-linear geometriC optics" 
approximation or to the equations of the one-dimension­
al gas dynamics with a negative pressure. The con­
dition that there be no solitons means in that terminol­
ogy the choice of initial conditions for which the nega­
tive pressure effects do not appear as a matter of princi­
pIe. The quantity A2 corresponds to the gas denSity, ~ 
to the hydrodynamiC potential, and~" to the velocity. 
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The condition <l>n > 0 means that gas separation takes 
place with a monotonic velocity profile, and the asymp­
totic regime corresponds to the self-similar separa­
tion regime. The method developed by us enables us 
to study the evolution of initial data, which satisfy con­
ditions (6), up to the emergence into the asymptotic 
regime, according to the following scheme: 

«lJ(x,O), A(x,O)..'.a'().). eo(J.)~a'().), 8().,t)'lL <D(x,t), A(x,t). 

In the first stage of the scheme eO(A) is found from Eq. 
(19), in the third state <I>(x, t) is recovered according 
to (20), while (i(A) is expressed directly in terms of A 
and <1>. Since in each stage of this scheme we have only 
operations which are local in x, we can get rid of the 
requirement that A2(X) decreases as I xl - 00 and assume 
that A(x) increases in an arbitrary manner without con­
tradicting conditions (6). 

§2. NON-LINEAR SCHRODINGER EQUATION 
(DEFOCUSING MEDIUM) 

Equation (1) with the lower Sign describes the propa­
gation of wavepackets in a defocusing medium. This 
equation can be integrated by means of the spectral 
problem L3J 

Under the condition that I!f; I decreases as x - ± 00 the 
scattering matrix a(A), b(A) is determined as before; 
Eq. (5) also remains valid. The method for solving the 
direct and inverse problems when conditions (6) are 
satisfied differs in no essential way from the one given 
in §1. We give therefore at once the final formulae 
retaining the notation of the preceding section: 

a().) =cxp{:Ia'-i(L,+L,)}, 

yiti {tta' .. . _ } b(l.)=--.-,-exp - + !iIi,+,(L,-L,)-la" In «lJxx(xo) 
ar(,a-) 2 

(24) 

(so that la(A) 12 - I b(A) 12 = 1 and a(A) is analytical in the 
upper A-half-plane). 

The inverse scattering problem is solved by means of 
the formulae 

1 
a' (~.) = -:-lnla (I.) I, 

as 
X=-. 

Q). 
«lJ (x) =hX-e (h) +a'ln «lJ .. , 

For the asymptotic behavior we have the formulae 

x' (X) - (X) «lJ---a' - In2t-9o - , 
41 21 21 

A'_~a,(~)=_1Inla(~)I· 
21 2t 2ttl 21 

We note that in contrast to the preceding section the 
formulae given here describe the asymptotic behavior of 
an arbitrary initial condition as there are no solitons 
in this problem. 

§3. KORTEWEG-DE VRIES EQUATION 

The Korteweg-de Vries (KdV) equation 

u,-fiuux-u==O 

109 Sov. Phys. JETP, Vol. 44, No.1, July 1976 

can· be integrated by means of the spectral problem 

The scattering data a(k) and b(k) are determined by 
means of the solution 

as elements of its asymptotic form as x _ - 00: 

while 

b(k, t)=b(k, Ok"'. (26) 

We put 

u=2A cos «lJ, 

where A and <I> satisfy conditions (6) and also the con­
dition 

A'<<<lJ,'. 

Under those assumptions the spectral problem (25) is 
equivalent to the problem of parametric resonance for 
a small perturbation of the frequency while the perturba­
tion is quasi-periodic and has a linearly changing fre­
quency. We look for the solution of the problem (25) in 
the form 

where we shall assume that !f;1 and !fi2 satisfy the set of 
equations 

17''1', + ik 17'1', + A (e'"'+e-'"')e-"'¢ =0 
ax' ax ' , 

~'- ik ~~+ A (e''"+e-''") e"'·. =0 ax' ax .", . 

The assumptions we have made mean that this set can 
be simplified to 

A=~ 
k' 

01jl, -
-i a;; + Ae-'"'1jl,=O, w=«lJ-kx, 

i. e., be reduced to the problem which we have already 
studied above. For the direct scattering problem we 
have Eq. (24), but now 

A' 1 
a'(k)=-,-=-lnla(k)I; 

<D. «lJ.. tt 

as before <1>,,= k and 

8(k)=arg b(k)+L,(kj-L,(kj-tt/4-arg r(ia'j. 

The time evolution is according to (26) given by the 
formula 
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6(k, t)=80 (k)+k't. 

For 41(x, t) we have 

lII(x, t)=kx-8(k, t)-a'(k) lnS ..... 

As t_oo we get 

x=3k't, k= (xI3t) \ 

( 4 X')'" ((X)''') ( (X)''') - ((X)'1I) lII(x,t)= 27t -a' 3t In 6t 3t -80 3t ' 

( X) 'j, 1 I (( X ) 'f') I (27) 

A'(x,t)= 108t' -;:;-In a 3t . 

Equations (27) are applicable if xt-l /3 » 1. In the range 
t1/S « x« t we have 

( 4 x' )'" 
III"" 27 t + ... , A -+a (0) (_X_) .:, , 

108t' 

i. e., the asymptotic form is self-similar 

. a(O) ( S )':' (4 )'f' U ""2-- -- cos _ , 
S.S t'/' 108 27 S , 

which agrees with the well known fact that the KdV 
equation has a self-similar solutionUS1 

1 (X) u-- -
- t'I'/ t'I' 

(28) 

with the asymptotic behavior (28). It was shown in[161 
that in the region x oS t1t3 in which our consideration is 
inapplicable any initial condition also emerges into the 
self-similar solution. When ~ »1 the self-similar 
solution joins up with the asymptotic form found by us, 
thus giving a complete solution of the problem when 
there are no solitons. 

§4. SINE·GORDON EQUATION 

The equation 

UIt-uxx+sin u=O 

can be integrated by means of the spectral problemCS1 : 

iw 1_ 
-'/1"+4'/1'+ill e,u'/1,=A'/1" 

iw 1 
'/1"+4'/1, +~e-,u¢2=A¢', 

where 

Since we a~ply to this problem a method different 
from the one expounded above it is necessary for us 

(29) 

to discuss in detail the properties of the solution of the 
set (29). 

We consider two solutions of the set cp(x, i\) and 
I/I(x, i\) which are defined by the asymptotic forms 

¢-+ ~ (l)exp {i(A __ l )x}, x-++oo, 
1'2 1 161. 

<p-+ -~ (1 )exp{-i(A __ l )x}, x-+-oo. 
Y:! -i 161. 
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The solutions 

1jl(X,A), iji(X,A) ~ 

form a fundamental system so that the solutions cp, 1/1, 
and ~ are linearly dependent: 

cp(X, 1..) =a(A)1]i(x, A)+b(A, t)1jl(x, 1..). (30) 

This relation is the definition of the scattering data (as 
above we consider the situation without solitons). In 
that case 

The function 

1jl(x,A)exP{-i (1..- 1~J x} 

is analytical in the upper i\-halfplane and regular in the 
pOint i\=0. a(i\) has the same properties. A direct 
consequence of this fact is the integral relation 

iji(x,A)eXP{i (1.. __ 1 )x}= _ ~( 1.) 
161.. 1'2 -I 

+_l-J~ b(A',t) (x A') exp{i(A'-1/16A')x}dl: 
2ni _00 alA') 1jl , A'-I.+iO ' 

(31) 

which is the set of equations of the inverse scattering 
problem, if we consider it as an equation for the func­
tions I/Il.2(X, i\). 

We consider the solution of this equation as t- 00. 

We shall then follow[141. There is in principle no dif­
ference between the details of the calculations and those 
given inCl41 so that we shall omit them. 

As u(x, t) - 0 when t - 00 the functions 1/11 and 1/12 will 
differ little from an exponential in the vicinity of any 
point x. We put 

(32) 

where U1 and U2 are functions of x and t, and are slow 
compared to the exponential indexes. From the con­
servation of the Wronskian of the set (29) it follows 
that 

IU,I'+IU,I'=1. (33) 

Let, further, X= Vt. Substituting (32) into (31) and using 
the well known relation from the theory of generalized 
functions 

eIF(i.')1 

Iim----,------:­
'_00 i.' -1.-iO 

we find that 

{ 
-211i6(A-A')e'F".,,, r (A) <0 

0, r(A»o 

U,(P)= :~~; U,(s,A)8(s'-A'), 
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where 

1 1-V 
5' =16 HV' -l<V<I, { 1, 

B(x) = . 
0, 

x>o, 
x<O. 

(34) 

and we see, moreover, that Ul(~' ~) is analytical in the 
upper ~ half-plane and has no zeroes there, if a(~) has 
no zeroes (the zeroes of a(~) correspond to solitons). 
This fact enables us to determine U1 and U2 : 

, {I J~ B(s'-i.")lnia(i.') I . '} 
[" =exp ----:- ., ' .' dl" 

:ll I, -1,-10 

C'=bC )0("-") . {-~ ~J O(i:'-~')lnla(i:)1 dO'} 
2 I. ~ I.. eXP:Ii i.' -t.-iO /.. 

The solution (35) is valid for all ~ except a narrow 
(0: ("1/Z) region near ~ = ~. 

(35) 

Without making any concrete assumptions about the 
form of u(x, t) we have thus determined the solution of 
the set (29) in the region which we called the asymptotic 
one above. To determine the solution in the resonance 
region it is necessary to make such assumptions. We 
shall look for u(x, t) in the form 

n= ~ (C(V)t"'\"'exp{-i(l-V')'t}~c.c.), 
It 

V=-=-. 
t 

(36) 

The motivation for such a choice of u(x, t) has been 
given in sufficient detail in the Introduction. (More­
over, it is clear that outside the light cone u(x, t) must 
rapidly turn to zero.) Substituting now (32), (36) and 
w, calculated with the necessary accuracy, into (29) 
we verify that the set (29) can, when I ~ -~ I «1, be 
Simplified to the form 

. [-i-16i.' dC, . (9 l" C(V _'x . { "". ,~-i,)'t}C 0 '-;;-=--.. -' __ . .I )t exp -, +-" ,=, 
_It (J; 1.(1.16/.) 

1+16;.' iJ[.;". " { 4i('-I.),(} 
i~~-;-(2-F')C(F)("exp . " .... [",=0. 

_1( (J; I. (1-;-lti/,-) 

Introducing the notation 

B(i,)=~(2-V') (l-V')'C(V)f""·', 
'i 

( 8t )'" Z= t-i 
i.(1+16i,') (. ,). 

we get 

au 
i-' +B'e-""U,=o 

fjz ' 

1 1-V 
1,'= 16 I+V' 

(37) 

(38) 

The set (38) is exactly the same as the set (7), the 
solution of which we know already. We can find the 
function B(~) in which we are interested without writing 
down equations such as (16), (17) (which, of course, 
can now easily be found). To do this we eliminate Uz 
from the set (38). We find for U1 

d'U dU --' + iZ--' + IBI'U,=O, 
dz' dz 

(39) 

The function U2 satisfies Eq. (10) in which we must 
write I BIZ instead of Q!z. The expression for Uz is 
given by Eq. (12); the solutions of (39) can also be ex-
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pressed in terms of parabolic cylinder functions (it is 
sufficient to note that (39) is obtained from (10) by 
taking the complex conjugate of the latter): 

(40) 

The constants C1,2 and d1,z occurring in (12) and (40) can 
be determined from joining these solutions with the 
solutions (35). After this we can easily find B(~) by 
substituting U1 and Uz in the second of Eqs. (38). Th~ 
result has the form 

, (') I' 1 i 
IBA =~lnla(A)I' 

b' V.) [(i-tiEl',) [ 8t ] ;IBI' 
B(i,) = , 

n" la(A) I" ;.(1+16A') 

Xexp {i (ClJ,-ClJ,+ 3~)}, 

where 

1 i • d ClJ, = -lnI2AlInla{l,) 1+- Jln!~.' -1-.1-, ,1nla(A') IdA', 
:t :t dl, 

_I. 

1> An attempt to consider this problem was made in[SJ. How­
ever, alter one removes the calculational errors from that 
paper there remains a clear total lack of perspective for the 
approach used. 

2)Exceptions are the cases when an averaging technique is ap­
plicable, starting at the time t=O, or, on the other hand, 
when the asymptotic solution has a self-similar character. 
In the latter case the form of the solution is determined sole­
ly by very rough characteristics of the initial condition 
(see[11,121) . 

3) A characteristic feature of the oscillating asymptotic be­
havior of the one-dimensional non-linear equations is the 
presence in the phase of a term proportional to Int; this is 
the only difference between the non-soliton asymptotic be­
havior of the non-linear equations and that of the correspond~ 
ing linearized problems. One can easily understand the' 
reasolL for the occurrence of the logarithm: If the amplitude 
de'creases as t -1/2 (as in any linear problem) the non-linear 
shift in the frequency (quadratic in the amplitude) is propor­
tional to t -1 and this giveslnt in the phase. As far as we 
know, L. D. F addeev was the first to draw attention to this 
fact. 

4)It is incorrect to retain in A terms a:t-1 since, strictly 
speaking, the concept of a "resonance point" introduced 
above has a meaning only in the variables ~ = cI>~ so that x = x(~) 
(see Sec. 4>. 
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Electric conductivity of a non-ideal plasma 
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Results are presented of measurements of the electric conductivity of a dense plasma with strong 
interparticle Coulomb interaction. Experiments with air, neon, argon and xenon were carried out with an 
explosive nonideal-plasma generator. A four-point probe recording technique was used. The Coulomb 
component of the electrtic conductivity is compared with that predicted by theories of a non-ideal plasma. 

PACS numbers: 52.25.Fi 

1. INTRODUCTION 

Electric conductivity is one of the most essential 
plasma characteristics that determine its dissipative 
heating and the interaction with the electromagnetic 
field in the operation of magnetohydrodynamic and 
magnetocumulative generators, thermonuclear, laser, 
and other pulsed devices that require a considerable 
energy concentration. [1] In view of the high charge 
density, the average electrostatic-interaction energy 
turns out to be of the order of the kinetic energy of 
particle motion, so that deviations of the plasma from 
ideal determine the equilibrium and kinetic properties 
of such a medium. [21 

At the present time, a consistent theoretical calcula­
tion of the transport characteristics of disordered elec­
tron systems can be carried out only in the case of weak 
interaction at r=e2/kTrD « 1 (rD = ..fkTI8rrne eZ) on the 
basis of the kinetic equations or by the method of time­
dependent correlation functions. [3,41 As the deviation 
from ideal increases, however, it becomes quite dif­
ficult to justify the initial kinetic equations and the meth­
ods for their solutions. In particular, in view of the 
strong collective interaction in a dense plasma it is 
impossible to separate unambiguously the characteris­
tic times of the elementary processes, "and the time 
of evolution of the system under the influence of an ex­
ternal field is no longer, generally speaking a Markov 
process. [41 Allowance for the bound states in a partly 
ionized plasma [31 constitutes a special problem, owing 
to the absence of the corresponding kinetic equations 
and transport cross sections that would permit the use 
of approximate semi-empirical methods. The results of 
the theoretical calculations of the low-frequency (W2 
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~W!= 411"ne e2/me) conductivity of the plasma therefore 
begin to differ noticeably starting with r- 0.1. [51 Ex­
trapolation of these theories to the region r ~ 1 of in­
creased deviation from ideal, as a rule, leads to un­
physical divergences that are connected with the use of 
a finite number of Sonine polynomials when solving the 
corresponding kinetic equations by the Chapman-Enskog 
method. 

The difficulties in the experimental study of the 
electrophysical properties of a non-ideal plasma are 
connected with the need for highly concentrating the en­
ergy, and with the absence of well-developed methods 
for measurements in optically dense media. The region 
of parameters up to r- O. 7 can be reached relatively 
easily in stationary (see[51) and in pulsed[6-91 experi­
ments, the results of which, however, frequently con­
tradict each other because of considerable experimen­
tal errors and interpretation inaccuracies. [101 The 
transition to increased deviations from ideal entails 
great difficulties in the generation and the diagnostics 
of the plasma. The number of pertinent experiments 
is quite limitedC11-151 and most are of qualitative char­
acter, in view of the lack of directly recorded and re­
liable information on the physical parameters of the 
plasma. [11-131 

We present here the results of the measurement of 
the electric conductivity of a dense low-temperature 
plasma in a wide range of non-ideality parameters r 
- O. 3-4. 5. The absence of complicated molecular and 
ion-molecular formations, the fact that the cross sec­
tions of the elementary processes have been investi­
gated in detail, and the high molecular weight have 
dictated the choice of inert gases as the investigation 
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