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Resonant and nonresonant excitation exchange in slow collisions in a dense gas are considered. 
Asymptotic formulae are derived for the dependence of the excitation lifetime in a given atom on the gas 
density. It is shown that excitation deactivation at intermediate densities is due to triple collisions by the 
Landau-Zener mechanism. At high densities the problem reduces to an interaction between the local level 
and the exciton band. and the process is in effect resonant even in the presence of primary levels difference. 

PACS numbers: 51.10. +y 

The question of calculating the probabilities of in
elastic processes that develop in collisions in a gas of 
finite density is of considerable interest for plasma 
phYSiCS, astrophysics, and quantum electronics. In 
particular, the recent advent of gas lasers operating 
at high pressures (-10 atm)[ll raises the question of the 
mechanisms that produce inversion and lasing in such 
systems. 

We consider in this paper the problem of exchange of 
excitation, and pay principal attention to the case of in
exact resonance. In the case of inelastic collisions in 
a dense gas, a distinction can be made between two 
fundamentally different situations. In the first, quan
tum transitions occur in a two-particle system (quasi
molecule) and the influence of the gas environment re
duces to the action of a random potential field that shifts 
the terms of the quaSi-molecule and depends on the 
configuration of the gas particles. This case is realized 
in charge-exchange processes. [2.3] For these problems 
there exists a region of gas density n in which the pair
ing criterion!) nO'~/2« 1 is' still satisfied, where 0'0 is the 
cross section for the charge exchange in vacuum, but 
the effective cross section of the process depends al
ready on the gas density. The second situation arises 
in the case of excitation exchange. Furthermore, the 
non-additivity of the van der Waals forces makes the 
problem essentially collective in the quantum-mechani
cal sense. Strictly speaking, the concept of the cross 
section becomes meaningless in this case and the pro
cess must be characterized by the lifetime of the ex
citation for a selected atom. 

Resonant exchange of excitation in dense gases was 
considered by Vlasov, Furtsev, and Kazantsev. [4.5] 

The resonant-exchange cross section in boundary col
lisions is of the order of d 2/v, where d is the dipole 
matrix element of the transition and v is the relative 
velocity. Since the probability of the resonant transi
tion is of the order of unity, the distances Po that charac
terize the collisions are of the order of d/ $. It fol
lows therefore that there exists in the problem a char
acteristic density value at which the relation nd 3V -3/2 

-1 is satisfied, i. e., when the number of particles in 
the interaction sphere is of the order of unity. This 
parameter has also another meaning, namely, it is 
equal to the ratio of the energy of the dipole-dipole in
teraction of the particles over an average distance nd 2 

to the transit width v/Po, L e., to the reciprocal time 
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of interaction during the collision. It is therefore ob
vious that if the characteristic energy of the interaction 
is much lower than the transit width (nd 2 «V3 / 2 / d), then 
the process remains practically paired. The reciprocal 
lifetime of the excitation is determined in this case by 
the formula 

"f=na res z.·--nd2 • (1) 

The opposite limiting case was investigated by 
Kazantsev. [5] If the condition nd 2 »V3 / 2/d is satiSfied, 
an exciton band appears in the gas (an exciton in a sys
tem of randomly disposed atoms), and the thermal mo
tion of the atoms leads to damping of the excitons. A 
rigorous analysis of this problem is extremely compli
cated. Kazantsev[S] has considered a simplified model 
in which it is assumed that all the atomic dipoles are 
equal in magnitude and parallel to one another. The 
dispersion distribution for the density of states in the 
exciton bandj(E) is then given by 

1 Eo 
j(£)=----

:t £'+Eo" 

8:t' , 
E,=---="d". 

913 
(2) 

The frequency of relaxation due to thermal motion of the 
atoms is 

27"1'3 , 
1 = 4 (2:t) ", " "'. (3) 

The last result means that the effective excitation-trans
fer cross section is of the order of n-2 / 3 , Le., of the 
order of the square of the average distance between par
ticles. It is probable that a rigorous analysis will re
sult in a different numerical coefficient in (3), but since 
the problem contains only one parameter nd 3v- 3 / 2 , the 
formulas 

yield the sought solution in two extremal density cases 
at exact resonance. We note that in contrast to charge
exchange, there is no region here in which the criterion 
for the paired character of the collisions is still satis
fied, but the medium already shifts significantly the 
terms of the colliding particles. In fact, in order for 
cross section to change noticeably, the term shift, which 
is of the order of nd 2 , must become comparable with the 
transit width. But in this case nd 3V - 3/2 - 1, i. e., an 
exciton band is already formed. 

Copyright © 1977 American Institute of Physics 83 



We proceed now to nonresonant exchange of excitation 
and consider the reaction B*+A-B+A*. In this prob
lem we encounter a new parameter-the resonance de
fect ~-and the number of different limiting cases in
creases correspondingly. The ratiO of the transit width 
to I ~ I coincides with the Massey criterion and is a 
measure of the adiabaticity of the process. If this ratio 
is large, i.e., I~I «V3 / 2/d, then, in accord with the 
Stiickelberg formula, [61 the cross section of the paired 
process is close to resonance. Thus, in this case all 
the arguments advanced above concerning the exact 
resonance are applicable. 

We shall consider the opposite limiting case of strong 
adiabaticity I ~ I »v3/2 / d. Depending on the value of 
nd 2, we can separate here three regions: 

1!1 I »l/I'ld»nd', 

I '" I »nd'»v"'ld, 

nd'» 1!1 I »v"'ld. 

(4a) 

(4b) 

(4c) 

Conditions' (4a) cover the region of the smallest densi
ties in which, obviously, the Stiickelberg formula [61 for 
the binary nonresonant exchange cross section O'St 

should be applicable, therefore y=nO'Stv. In the adia
batic limit considered by us, O'st is equal to 

_ :t' 2'1, dId [ (d,d) '''/1'1,,] { (d,d) '/'/1'1, } 
Ost- 8 [f('/.)]' v v exp - v ' 

where d1 is the dipole matrix element of the atom B, 
while d is the same for the atoms of the gas A. 

The region (4b) is characterized by the fact that in 
the gas of the atoms A there exists an exciton band. 
Consequently, the deactivation of the atom B corre
sponds to interaction of a local level with an exciton
state band. The local level is located in that part of 
the band where the distance to the center of the band 

(5) 

is much larger than its width I ~I »nd 2 • The density 
of states in this region is given by the asymptotic form 
of formula (2): f(E=~)=Eo/rr~2, and the exciton levels 
themselves are formed on account of the fluctuation 
approach of the atoms to distances much shorter than 
n- l / 3 • The number of levels in the resonant-interac
tion spheres that fall in the transit width is equal to 

ndJv-"'f(E~!1)v"'ld ...... (nd'I!1) '¢:1. 

Therefore, in the principal order in the density it suf
fices to consider the interaction of the atom B with a 
pair of fluctuationally approaching atoms A. The dis
tance r to which the atoms A must approach each other 
to produce an exciton level located a distance ~ from 
the center of the band2) is estimated from the relation 
d 2/r 3 - I~I. By virtue of the conditions (4b), the value 
of r is much less than the resonance radius Po, so that 
it becomes necessary to consider the interaction of the 
atom B with the quasi molecule AA. 

Let us find approximate expressions for the elec
tronic terms and the wave functions of this quasi 
molecule. We assume that the detuning is much less 
than the Bohr energy, and therefore the distance r be
tween the atoms A is much larger than the dimensions 
of the latter. Assume for the sake of argument that 
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FIG. 1. 

the ground state of the atom A corresponds to an IS 
term, and the excited state to a lp term. Then, ob
viously, the normal term of the AA system is l~;, and 
the corresponding wave function is ~ $(1) ~ .(2), where 
~ $ is the wave function of the ground state of the atom 
A; the numbers I and 2 denote the aggregates of the 
electronic coordinates of the first and second atom of 
the quasi molecule. The state of the excited system 
AA * as r- 00 is sixfold degenerate, and the dipole
dipole interactions splits it into four terms, two doubly 
degenerate terms III,. and Illy and two nondegenerate 
terms l~; and l~:. We have obtained the signs of the 
~ terms by assuming that the excited P state of the 
atom A is obtained from the normal S state by changing 
the orbital number of one electron by unity. Then the 
parity of the atom is reversed, the quantity (_l)L re
verses Sign, and consequently the Sign of the ~ term of 
the system AA* coincides with the sign of the ~ term of 
the unexcited quasi molecule. Simple calculations lead 
to formulas for the terms at finite but large r: 

, . 1 (d)' 
U( II.,,)=:l:: 37' (6) 

where (d)2 is the square of the modulus of the reduced 
dipole matrix element. The relative arrangement of the 
terms is shown in Fig. 1. The wave functions corre
sponding to the terms (6) will be written out in a repre
sentation in which the z axis coincides with the axis of 
the quasi molecule AA, while the angular part of the 
wave function of the atom in the P state is chosen to 
consist of the real combinations of Y Ix and Yly (instead 
of YI .+ l , YI .- I ): 

'I" ('~:'u) ~ ['f. (I) 'fp, (2) ± 'l'P' (1) <:p, (2) ]d2", (7a) 

'I"('II,,,; x. Y)=['f.(1)'l'px,(2)±'l'px,(I)q:.(2)]/y2. (7b) 

As seen from the figure, at definite values of r (of the 
order of d 2 / 3 1 ~1-l/3) resonances take place between the 
level of the atom B* and the terms of the quasi molecule 
AA*. The calculation of the matrix elements of the di
pole-dipole interaction between the molecular states 
(7a) and (7b) on the one hand, and the state of the atom 
B, on the other, shows that the only nonzero elements 
are those corresponding to resonances with the g terms 
(marked by points in the figure). In the calculations 
we use the additivity of the dipole moment of the mole
cule: dmol = del) +d(2), and we obtain 

V,(;, l~g+_t, l~g+)~i'j,(d)(d,a),!Ta" 

1'x(;, '~,+-t, lII"x)=l''T.(d)(d,a);,Taxo 

1'y(i, '~/""f, 'II" y) =l''T.(d)(d,a)"Tay, 
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where the indices i and! stand for the initial and final 
states of the atom B, respectively d l11 is the a-com
ponent of the dipole-moment vector 'of this atom (a, (3 
=x,y,z) 

R is the radius vector of the atom B relative to the 
central point on the axis of the molecule AA, and sum
mation over a in (8) is implied. Thus, at each value 
of ~ there is only one resonant distance r c : 

r-=(~ <d)') ',. 
, 3 161 if Ll < 0, 

r.+ = (~ (d)') ". 
. . 3 6 if Ll > O. 

It is now necessary again to separate two cases. If 
the velocity of the atom B is much larger than the 
thermal velocities in the gas A, then we can regard the 
pair AA as being at rest during the course of the col
lision. The probabilitiy of excitation transfer is de
scribed in this case by a formula of the Stiickelberg 
type, averaged over the distribution of the resonance 
defects (or, equivalently, over the distances r). It is 
interesting to note that the probability of encountering 
a pair at a distance r ~ at ~ < 0, which is double the 
probability for the distance r~ at ~ > 0, is exactly can
celed out by the statistical weight of the doubly de
generate In,. term. There is therefore no asymmetry 
with respect to the sign of ~. 

More interesting for the interpretation of processes 
in gas lasers is the case of thermal equilibrium between 
the atoms A and B, when their velocities do not differ 
too greatly. Then the relative motion of the pair of 
atoms A takes the system out of resonance before the 
atom B manages to move Significantly in space. 3) We 
can therefore assume the matrix elements V in (8) to be 
constant, and represent the difference ~ - U( 1~;) or 
~ - U( lII,.) by a linear function of the time in the vicinity 
of the resonance point r c • This situation is typical of 
the Landau-Zener problem: The difference between the 
diagonal elements vanishes linearly at the transition 
pOint, while the off-diagonal matrix element is con
stant in the vicinity of this point. 

ThUS, the mechanism of the deactivation of the atom 
B reduces in our case to the following. The terms of 
the three-particle complex B+AA intersect when the 
distance between the atoms A changes. The excitation 
transfer B*+AA-B+AA* is described by the Landau
Zener formula, in which the off-diagonal element V de
pends on the distance R between B and AA. In the vi
cinity of the atom B, binary collisions of the atoms A 
take place, and those atoms which are characterized 
by an impact parameter p smaller than rc cause the 
atom B, to be de-excited, the Landau-Zener probability 
of this process being W(p, R, v). Therefore the relaxa
tion frequency sought by us is equal to the number of 
pair collisions described above, occurring in a unit 
time in the entire space around the atom B, i. e. , 

n' 
"(=zv SW(p,R,v)d'pd'R. (9) 

In expression (9), v is the relative velocity of the atoms 
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A. The parameters in the Landau-Zener formula (for 
the notation seem, Sec. 90), are equal in our case to 

I
· a 1 3'" ILlI'!' IF,-F,I= -(6-U) =---ar , e 2'1. <d)2/S r 

Ll <0, 

(10) 

where ~",' .• are the dimensionless functions of angles' 
of the order of unity, and depend on the relative orien
tations of the vectors r, Rand (d l )u (see (8». In con
trast to the usual Landau-Zener formula, we must take 
into account the difference between the values of V per
taining to two passages through the point rc (when the 
atoms A approach each other and move apart). This 
difference is the result of the difference in the orienta
tion of the vectors rand R at these two pOints. It is 
necessary next to average over the angle between p and 
R, over the velocity directions, and finally over the 
initial projections of the angular momentum of the atom 
B and sum over the final projections. It is easy to 
see, however, that all these cumbersome calculations 
lead only to the appearance in 'Y of a numerical coeffi
cient of the order of unity, and the dependence of'Y on 
the parameters is obtained immediately: 

n' S "( = 2 v < (e-O, + e-O' - 2e-O,-O,» dp dR, 

Ii _ 2n<d)'<d.>'(ID.'),., (11) 
'.' v(1-p'lr;)'h IF,-f'.IR"· 

The subscripts 1 and 2 label here the first and second 
passage of the point r c' the angle brackets denote the 
averagings described above. Integrating in (11) over the 
moduli of the vectors p and It, we obtain ultimately 

n' <d)' 'Iv 
"( = const~ <d,> <d) /!;."t!,., const - 1. (12) 

Formula (11) pertains to the case of the transition to 
the 1~; term. The interaction with the doubly degen
erate (In,,),,,, term does not lead to additional difficulties 
in the Landau-Zener problem. This case was investi
gated in[a], where it is shown that the situation reduces 
to replacement of V: by the sum V! + V~ . Formula (12) 
consequently remains in force. . 

We note that if the level B* lies below the level 
A *(~ < 0), then the deactivation of the atom B* can be 
accompanied by formation of a bound state of the pair of 
atoms AA*, i. e., to formation of an excited molecule 
A 2 ; For the inverse reaction A * A + B - AA + B* it is 
necessary to replace n2/2 in (9) where nn*, where n* is 
the concentration of the excited atoms A * . In addition, 
the radio velocity at the point r c' which enters in (11), 
is now equal to v(l_p2/r~_~/e)l/2, where e is the 
kinetic energy of the relative motion of the atoms A. 
This leads to the appearance of an additional factor 
(1_~/E)3/4 in formula (12) for 'Y. Naturally, the reac
tion is possible only if ~ < e. 

As seen from (10) and (11), the distances R Signifi
cant for the described excitation-transfer mechanism 
are those for which 01,2-1, i. e., 
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FIG. 2. 

, lfl'd, d' d,1&I'h ,. 1&ld 'h 
R -------r (-) ~r' 1& l'l,v" I & I d'''v'/' 'V'I, ' • 

This justifies the assumption made above, that the 
essential distances to the atom B are much larger than 
the dimension of the quasi molecule AA. 

Estimates of the effective cross section by means of 
formula (12) (O'etf=y/nv) show that it can reach a rather 
appreciable value even at a large resonance defect and a 
low collision velocity. For example, for <1-1 eV, v 
-104 cm/sec, d-d1-1D, and n-l02o cm- 3 we obtain 
O'fJlf:-10-17 cm2 • We emphasize that the vacuum excita
tion-exchange cross section calculated by formula (5), 
leads for the indicated values of the parameters to a 
quite negligible value O'st - exp( _103) at. un. Therefore 
formula (12) is valid also in an appreciable part of the 
region (4a), so long as O'eH > O'st. A justification for 
this statement is the fact that regardless of the satis
faction of the criterion nd 3v -3/2» 1 for the formation of 
the excition band (it is this which distinguishes (4a) 
from (4b», the excitation-transfer process proceeds via 
two competing channels: transfer in pair collisions with 
cross section O'St, and collision with the fluctuationally 
approaching pair of atoms A via the mechanism that 
leads to formula (12). 

We consider now the last region (4c). The local level 
is located in this case in the central part of the exciton 
band, where the density of states is l/7rEo• The number 
of levels filling in the transit width is estimated at 

i v'la 
--nd'v-'I, -1. 
nd'd 

Thus, the resonance condition is always satisfied in 
the region (4c), so that Kazantsev's results[51 are ap
plicable. The reciprocal exciton lifetime is given by 
formula (3). As already mentioned, the effective cross 
section is in this case O'eU _n-2 / 3, i. e., in fact the 
difference between the atoms B and A becomes ines-
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sentia!. A qualitative plot of y against the density in 
the the different regions is shown in Fig. 2 . 

We have considered here an actual example with 
definite multipolarities, angular momenta, and other 
characteristics of the atomic and molecular terms. 
It is clear, however, that the discussed transfer 
mechanism can be quite general. Indeed, if a dipole 
transition in the atom is allowed, then the corresponding 
dipole matrix element d..o 1 of the molecule containing 
this atom is also different from zero. At interatomic 
distances that are large in comparison with the Bohr 
radiUS, (dmo1 )u is linear in the components of the 
atomic matrix element. Resonant interaction between 
A and A* always leads to a doubling of the number of 
molecular states and to a splitting, proportional to r- 3 , 

of the terms g and u. Therefore in any case of excita
tion exchange connected with dipole transitions in the 
colliding atoms, at nottoo large values of 1 <11 , the terms 
of the three-particle system intersect and the Landau
Zener approximation is valid, as is consequently for
mula (12). 

1lu is implied that the probability of the transition is of the 
order of unity in the essential range of the impact parameters. 

2)The center of the exciton band is, obviously, the energy of 
the isolated excited atom A * . 

3 )This will be the case even if the atom masses are of the 
same order. Obviously, the conditions for the applicability 
of the approximation constructed here become more favorable 
if the atom B is much heavier than the atom A. 
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