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The scattering of electrons by polar molecules is considered for the energy range in which. on the one 
hand, the molecule may be considered as immobile, and on the other, the electron wavelength is large in 
comparison with the radius of short-range forces. The existence of dipole resonances is discussed. The 
results of the theory are compared with the experimental data and calculations are carried out by the close­
coupling method. 

PACS numbers: 34.70.Gm 

1. INTRODUCTION 

The fundamental contribution to the scattering of 
slow electrons by polar molecules is made by the long­
range electron-dipole interaction. Therefore, only 
this part of the interaction between electron and mole­
cule has been taken into account in a number of re­
searches on the calculation of the scattering cross sec­
tion. Scattering has been considered by an immobile[ll 
and by a rotating[2] dipole in the Born approximation. 
In the first case, the total cross section diverges, 
owing to the long-range character of the interaction, [3] 

while in the second case, if the molecule is regarded as 
a rigid rotator, we getll 

8n j> I k;+k, I o(/"-+/"±l)=--D'--ln -- . 
3k/ 2j+l k,-k j ' 

(1) 

where j is the rotational quantum number of the rotator, 
j) = max (j, j ± 1), D is the dipole moment, while k; and 
kf are the initial and final wave numbers of the electron 
and are connected by the relation 
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k!+j (j+ 1) /1 =k,'+ (j±1) (j±1+ 1)//, (2) 

where I is the moment of inertia of the rotator. 

Mittleman and von Holdt[4l have given an exact solution 
of the problem of scattering by an immobile point di­
pole. Because of the singularity of the potential D cos 8/ 
r2 at zero, such an approach is limited to values of D 
< Dcr = 0.639. At D ~ DOl" collapse to the center takes 
place. Therefore a more realistic approach is the con­
sideration of scattering by a finite dipole. This prob­
lem has been solved both numericallyt5l and analytical­
ly. [6J 

Simultaneous account of strong interaction and rota­
tion of the molecule has been carried out by the method 
of strong coupling, [7J used in the consideration of scat­
tering by a whole series of molecules. 

In all these researches, the short-range part of the 
interaction has not been computed from first principles, 
but introduced in the form of a model potential, which 
introduces some ambiguity in the interpretation of the 
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results. On the one hand, it is well known that the be­
havior of the cross sections at low energies is deter­
mined by the long-range part of the interaction. There­
fore, in some electron energy region, without using 
complicated calculations of the type of the strong cou­
pling method and without making assumptions on the 
specific form of the short-range forces, we can obtain 
for the cross sections simple expressions of the type 
of the formulas of the effective radius theory. This is 
in fact the aim of the present work. 

2. SCATTERING AMPLITUDE 

We regard the molecule as an immobile dipole. 
We introduce a sphere of radius TO, the center of which 
is identical with the center of gravity of the molecule. 
Let the interaction be described by the potential 

U(r)={ V(r), 
\ Dr/r', 

. r<ro, 

r>ro, 

where V(r> is an arbitrary function, such that it does 
not collapse onto the center. 

(3) 

At T > TO, the particular solution of the Schrodinger 
equation in the set of coordinates in which the polar axis 
is directed along D, has the form 

(4) 

where m is the conserved projection of the angular 
momentum of the electron on the axis of the molecule, 
and u: and Z:, are the solutions of the equations 

(5) 

[a •• +2D cos a+,:.mp,.m+!) lz.m (a, <1.:) =0, ,,=0, 1,... . (6) 

The eigenvalues ~:' and the eigenfunctions of Eq. (6) can 
be sought in the form of the expansion 

Q.m(cosa)= r,avnmp.!7~,(cosa), {7} .-. 
where p.!:r~, are the normalized associated Legendre 
functions. Then a::, and~:' are found numerically by the 
variational method. 

We construct solutions of Eq. (5) in the form of linear 
combinations of the functions 

(8) 

where H~i% are Hankel functions. We write out the 
general solution of the Schrooinger equation in the form 

(9) 

From the condition at "", where there should be a plane 
plus a diverging wave, we determine the coefficients 
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A..m and the scattering amplitude f: 

A.m=i exp[in(m-A.m /2) lQ.m( -cos s), 

/(6, a, q» 

= + E {Q.m(cos s)-exp[in(m-A.m) Is.mQ. m(-cos 6) }Q.m(cos a)e''''', 

(to) 

where ~ is the angle between the direction of the incident 
electron beam and the axis of the molecule. 

Thus, for given m, the scattering is completely 
determined by the choice of the numbers s:" 11= 0, 1, ••. , 
which satisfy the unitarity condition 

(ll) 

In the approximation of a point dipole s:'= 1 and (10) 
gives the amplitude of scattering obtained by Mittleman 
and von Holdt. [4] In the general case, the amplitude 
(10) agrees with that given by Abramov and Komarov, r6] 

the only difference being that in place of the functions 
Q:' we have the eigenfunctions of the operator A~ +Drj, 
where 1/ is the angular variable in prolate spheroidal 
coordinates and A~ is the corresponding part of the 
Laplace operator. The diagonal elements of the scat­
tering operator correspond to the numbers s:' exp( - i1T~:'} 
in the paper of Abramov and Komarov. r6] In our case, 
the scattering operator is diagonal only when ~ is con­
served. However, the condition of conservation of ~ 
leads to a singular behavior of the potential at zero (as 
in the case of a pOint dipole). Therefore, the S matrix 
in the ~ representation should be nondiagonal. Never­
theless the elements s:' contain all the information on 
the scattering and the S matrix can be established from 
them. 

For the determination of s:" we match the function 
(9) to the solution l!i of the SchrOdinger equation in the 
region T < TO' For given m, l!i can be expanded in the 
functions Z:, in the form 

'l'm(r) = + L, vym(r)z.m(6,q», 

and the Wigner R matrix 

can be constructed from the functions v:'. Here vm is 
the matrix of solutions v:', in which the rows corre­
spond to different II and the columns to different, linear­
ly independent solutions. Then the matching conditions 
are written in the form rs ] 

dum I um(r.)=Rm- , 
dr r=rg 

where um is the column with elements u~m' 

From (9), we get 

(12) 

(13) 

where A m and <p!. are diagonal matrices with elements 
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All,. and rp:,.; s" is a column with elements s;" and I is 
a column of unit values. 

(14) 

If none of the poles of the R matrix is close to zero 
(i. e., there are no resonances produced by the potential 
V(r> in (3) near ,; = 0), then it is possible to expand in 
powers of ,; and limit ourselves at first to the zeroth 
term. The functions rp:,. can be represented in the 
form 

(15) 

where B.,,. and ell,. are integral functions of k 2 and can 
be assumed to be independent of k in the zeroth ap­
proximation. 

We further distinguish between two cases: 1) for given 
v, m, the value of X;" is real; 2) X;" is complex. In the 
second case, 

(16) 

where IJ.~ are real. 

In case 1), B II ," and ell,. are real, and in case 2) they 
are complex but connected by the relation 

C\'m=-B ... "lo (17) 

Substituting (15) in (14), we obtain a formula Similar to 
that introduced by Gallitis and Damburg in Ref. 9 in the 
study of the threshold behavior of the cross section for 
electron scattering from a hydrogen atom, 

sm=I+2i(Am) -'k,m(M"'+exp[ -in(~m+1/2) J 
Xk"m,,)-, sin[:t{i. m+'/2) Jk,m+'Aml, 

[ ( 
d -I d 

M'"=- R'''--l)C'''] (R"'--1)B'" I ' dr dr r=7<) 

(18) 

(19) 

where X m, B m, em are diagonal matrices. The M ma­
trix (19) possesses the same analytic properties as the 
R matrix. 

The behavior of s;" at small k 2 depends on the prop­
erties of the X;". If none of the X;" is complex, then, in 
the zeroth apprOXimation, s'"= I. In the next approxima­
tion (and if there are complex X, then immediately), 
one must take into account the second term in (18). For 
most molecules, D is such that account only of xg=x 
makes a Significant contribution to (18). In this case, 

, 2isinn(I.+'/,)k"+l 
s, =1 + , 

TJ+exp[ -in (1'+'/2) Jk"+l (20) 

s,m=1+0(k)'+)'''"+'), (v, m)*(O, 0), 

where 11 = 1/(N -1)00 and N is the zeroth term of the ex­
pansion of the M matrix in k 2 • If D> 3. 79, then xij be­
comes complex and sa must be taken in the form (20). 

If X is real, then 11 is also real. In the case of com­
plex X (which corresponds to D > Dcr), we have from 
(17), (19) that 11/1 = 1 and we can write (20) in the form 
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. 1 +e-:tIl+j(J,k2i )1 

80° = 1 +e"jl.+la.k?illo' cx=arg 'f]. 

If X = - HD= Dcr), then 11 = -1 and 

'-1 + 2ni 
So - ;-ni+2 In k ' 

~ I' .dTJ b= Im-. • __ ,,, dl. 

(21) 

(22) 

The expression obtained for sg coincides (after multi­
plication bye-inA) with the first diagonal element of the 
scattering operator for a finite dipole, calculated by 
Abramov and Komarovt6J with the help of the technique 
developed by them[10J if we set 

_~= (li)"+' f'('/,-I.)r(A-i-1) 
TJ 8 r'('I,+A)r(-I.) , 

where R is the length of the dipole. Such an identity will 
exist in the case m*O, v=O. At v*O the terms in s;" 
become significant that are connected with the mixing of 
different XII' and there is no Similar coincidence. Thus, 
for each m, the results of our model are identical to 
the results of the model of the finite dipole in the zeroth 
approximation, as k- 0. 

The scattering amplitude (10) in the case of a single 
isolated X can be written in the form 

f(~, e, '1') = ~ {a,(6, e, '1') -e-J"'s,'Q,'(-cos ~)Qo'(cos e)}, (23) 

a,(t e, '1') = ~ '[Q,'" {cos 6) -exp[in(m-A,m) JQ,"'( -cos 6) JQ,m(cos O)eJ .... 

(24) 

The prime on the summation sign denotes that at v = ° 
and m = 0, the second term in the square brackets is 
omitted. 

3. CROSS SECTIONS 

We now average the scattering cross sections ob­
tained from (23) over the orientations of the molecule. 
Such an approach is equivalent to conSideration of the 
scattering from a rotator with subsequent transition to 
the limit as 1- 00. U13 Then the diffusion cross section 
is determined by the expression 

1 . 
ad = k' {b- Re(ce-'"'so' (k»}, 

b=+S (1-cost}){ia'(6,9,'I')i' (25) 

+[ Qo' (-cos s)Qo'(cos e) J'} d cos s d cos 9 d'l', 

c= S (1-cos t}) a; (s, 9, cp)Qo' (-cos s)Qo' (cos 9)dcos 6 d cos e d'l'. 

where ,9 is the scattering angle: 

cos ~ =cos 9 cos ~ +sin 9 sin £ cos cp. 

For the average total cross section we have, formally, 

2 w 

a=T S Im/(£, £.O)dcos £= ~ a(m l 

(26) 

where 
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Since we are considering a fixed dipole, 0' diverges. 
In (26), this is due to the slow decrease of the series 
O'(m) (like 1/1 m I). On the other hand, at large I m I, 
the scattering takes place on the periphery and favorable 
conditions exist for the application of the Born approxi­
mation. Therefore, the difference 

represents a reasonable correction to (26). Here 0'(1) 
denotes the cross section for scattering from a molecule 
with moment of inertia I, and the index B denotes the 
Born approximation. 

The following formula is obtained for the total cross 
section: 

(27) 

and the series in m no longer diverges. O'(m)(oo) is de­
termined from (26), and O'~m)(oo) is simply obtained as 
the first term of the expansion of O'(m)(oo) in IJ: 

(m) () 4nD' [ " (I I I I o. 00 =~ 2m1J1 m )-2 m -1], (28) 

where ljJ' is the derivative of the digamma function. 

From (1) and (2) we have for the Born cross section 
of scattering from a molecule with rotational quantum 
number j: 

0.;= 8nD' lln2Ik'- (j+1)ln(j+1)+jln j ] 
3k' 2j+1' 

(29) 

where we have assumed that k 2 » 2j/I (see below for 
more on this condition). 

Equation (29), strictly speaking, is applicable for 
scattering from a diatomic molecule in a state with 
definite A (then I is the principal moment of inertia 
about the axis perpendicular to the axis of the molecule). 
However, since 0' depends on I weakly, (29) can be used 
for an arbitrary molecule by introducing some mean 
moment of inertia I. 

All the quantities entering in (25) and (26), with the 
exception of sg, depend only on D, and only a single 
real parameter enters into s8, which is dependent on 
the Short-range forces (and does not depend on the en­
ergy). We can find it from the solution of the total 
problem by the method of strong coupling for one en­
ergy. If it is difficult to do this, then the parameter 
can be regarded as semi-empirical. 

4. REGION OF APPLICABILITY OF THE THEORY 

For the estimate of the region of applicability of the 
immobile-dipole approximation (adiabatic approximation), 
we use classical considerations. Adiabaticity is satis­
fied if the time of collisions t is much smaller than the 
period T of rotation of the molecule. The characteristic 
dimension p of the collision region is determined from 
the equation 
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Dlp'-k', 

whence we find the colliSion time 

t-D"'/k'. 

For the period of rotation of a molecule with rotation­
al quantum number j we have 

(30) 

and it follows from T» t that2) 

k'>D'I'jiI. (31) 

If j = 0, then the classical estimate (30) does not hold and 
in place of the period of rotation T we must calculate the 
characteristic time of change of the rotator wave func­
tion at a specified initial condition. We then obtain the 
inequality (31) with j - 1. 

The second assumption is connected with the retention 
of only the zeroth term in the expansion of the R matrix 
and of the Bessel functions of argument kro, which holds 
at (krO)2« 1. Thus, the region of applicability of the 
theory is determined by the relations 

(32) 

The value of ro in order of magnitude can be taken to 
be equal to one-half the distance between the farthest 
nuclei of the molecule. Then, for most molecules with 
distribution over j corresponding to T-1Q2-103 OK, the 
region (32) lies betwl>en 0.001-0.01 and 0.5-1 eV, i. e., 
right where the experiments of the type of Refs. 12 and 
13 were carried out to determine the drift velocity of 
electrons in gases. 

The limited' nature of the theory is connected also 
with the neglect of the quadrupole and polarization in­
teractions. These should be taken into account if the 
molecule has a small dipole moment (for example, CO). 

5. BOUND STATES AND RESONANCES 

It is known (see, for example, Ref. 14), that at given 
1/ and m there exists such a state D = D'::' (the Dcr in­
troduced above is identical with D~, for which there 
should appear, in the field of a fixed dipole, an infinite 
number of bound states with a condensation point at 
zero, similar to the states in the field - a/r2. [3] This 
circumstance has given rise to a set of speculative 
opinions3 ) regarding the sharp jump in the cross section 
near Dcr • It was later shown that these suppositions 
were incorrect. First, when account is taken of rota­
tion, the number of bound states becomes finite, and 
the value of D at which even a single bound state ap­
pears increases strongly even for rather large mo­
ments of inertia. [16] Second, numericalcalculations C17•18] 

have shown that the cross sections vary continuously in 
the transition through Dcr • 

In the work of Crawford, Dalgarno and Hays, [19] and 
Bottcherl:20] an incorrect conclusion was drawn that any 
theory in which an infinite number of bound states ap­
pears is unsatisfactory and leads to discontinuities as, 
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FIG. 1. Scattering by the water molecule. The dependences 
of the dimensionless quantity (34) on the energy of the elec­
tron (in eV) is shown in the figure. Curve 1-Born approxi­
mation; 2_experimentU2]; 3-calculation according to Eq. 
(35); the points are calculated according to the method of 
strong coupling(21J in the case of a different choice of the range 
of short-range action, ro; o-ro ~ 0125 A; • -ro ~ 1 A. 

for example, the theory of Mittleman and von Holdt. [4] 
However, the inapplicability of their theory[4] upon ap­
proach of D to Dcr is in no way due to the appearance 
of bound states (i. e., not to the long-range character 
of the potential), but to the singular behavior of the po­
tential at zero. It follows from the results of our 
present work that the regularization of the potential 
leads to an absence of discontinuities even upon con­
sideration of a fixed dipole. Actually, Eq. (20) (and, 
consequently, (23», actually has a root discontinuity 
at D=De .. but it is continuous. 

The factor k2ir> in (21) leads to oscillations of the 
cross section as a function of D at D > Dcr , while the 
locations of the maxima depend on the energy and the 
short-range interaction (the parameter a). Thus there 
exists no universal maximum in the dependence of a on 
D. This same conclusion was reached on the basis of 
numerical calculations by Garrett, [17] where the con­
clusion of Takayanagi and Itikawa[S] that a universal dis­
continuity exists was subjected to valid criticism. 

The possibility of oscillations of the cross section as 
a function of k also follows from (21), similar to the 
oscillations which are observed in the scattering of 
electrons by hydrogen atoms[Q] (dipole resonances). 
However, in order that there be even a single period 
in the range of applicability of the theory (32), it is 
necessary that the dipole moment be sufficiently large 
and satisfy the condition 

(33) 

where E1 and E2 are the limits of applicability of the 
theory. 

The relation (33) begins to be satisfied at Do:! 3 a. u. 

But. for such large D, the relative contribution of the 
oscillating part to the cross sections (25) and (26) be­
comes very small and experimental observation of 
these oscillations is scarcely possible. The hydrogen 
atom in this sense is favorably distinguished by the 
smallness of E2 , which is brought about by the small 
distance between the 28 and the 2p levels. ThUS, the 
rotation of the molecule leads (for not too large D) to 
the vanishing of the dipole resonances in the region of 
the continuous spectrum. 4) Oscillations in the functions 
a(D) and cr(k) were obtained earlier in the finite-dipole 
model. [6] 

6. COMPARISON WITH EXPERIMENT AND THE 
STRONG·COUPLING METHOD 

In view of the presence of an adjustment parameter in 
the theory, which we shall consider as semi-empirical, 
we shall touch on principally only those experiments in 
which the energy dependence of the cross sections was de­
termined, and we shall not be concerned with the numer­
ous data on ad' averaged according to Maxwell.[13] In 
comparison, we shall frequently operate with the quantity, 

(34) 

The NH3 molecule (D;"0.579) 

Calculation according to Eqs. (20) and (25) leads to 
the following expression for ad : 

a. = 1.45 + 2.06z' + 1.63ztj , 
tj' + z' + 1.60ztj 

where z = k 0.410. The Born apprOXimation gives ad 

= O. 893. The constant 1. 45 was obtained in Ref. 4.5> 

It follows from the experimental work of Pack et al. [12] 

that, in the energy range from 0.01 to 0.1 eV, the value 
of ad is close to 1.45. However, further improvement 
of accuracy is difficult in view of the scatter of the 
curves obtained from different approximations of the 
temperature dependence of the drift velocity. 

Th~ molecule H2 0 (D =0.729) 

It follows from (21) and (25) that 

2.70 + 1.95 cos ~ - 1.09 sin ~ 
ad= 

1 + 0.74 cos ~ 

~=a+2fdnk. 

(35) 

(36) 

In our case, IL = O. 261. Choosing a = 1. 70, we ob­
tain very good agreement with experiment[12] (see 
Fig. 1). Such excellent agreement is connected, of 

TABLE 1. Total scattering cross sections of electrons by molecules with large 
dipole moments, in A2, at E ~ 1 eV. Data on the dipole moments are taken from 
Refs. 23-25. 

Theory 

Dipole Born Method of Experiment 
Molecule moment approximation strong coupling Eq. 27 (Refs. 23-25) 

CsF 3.11 2359 2003 2017±4 1100 ±100 
CsCl 4.15 4970 - 4180 ± 20 1640 ±200 
KI 4.26 5670 - 4820 ±20 2170±380 
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course, with the adjustment character of the calcula­
tion; however, it is not accidental that the theory gives 
the correct energy dependence for the slowly changing 
quantity ad' The cross section (35), averaged over the 
velocities of the electrons for the case T= 300 OK, is 
equal to 2750 it-. In the Born approximation, (a,> 
= 1300 A.2• 
Molecules with large dipole moments. 

For the molecule CsF, theory gives 

a.=9.10+0.72 sin(~-0.975), (37) 

0=0.'-(28.6+0.3 sin ~)n/k'. (38) 

{3 is determined by Eq. (36) with p. = 1. 722. The cross 
section ai is found from (29). Since the contribution, 
which depends on the short-range interaction, is small 
in Eqs. (37), (38) we can, without making the value of 
the parameter a more accurate, obtain excellent esti­
mates for a, and a. For example, in the case of E = 1 
eV, 

(39) . 

The Born approximation and the strong-coupling 
method[22] at j = 41 (the most probable j at T = 1000 OK) 
give 308 and 103 A.2, respectively. The experimental 
value[23] at R = 1000 OK is 35 A.2. The total cross sec­
tions are shown in Table I. The complete scattering 
cross sections are given there for CsCI and KI. It is 
seen that the exact allowance for the dipole interaction 
leads to a significant reduction in the diffusion cross 
sections in comparison with the Born cross sections, 
but the complete cross sections change very little. The 
latter is due to the fact that the principal contributions 
to the total cross section are made by the higher partial 
waves. [19] 

Similar results are obtained in the conSideration of 
the excitation of atoms of the akali metals in the Seaton 
model. [26] The basic contributions to the total cross 
section there are also made by the higher partial waves, 
which are considered in the Born approximation, and 
a model with degenerate atomic levels is used for the 
calculation of the lower partial waves. However, for 
the scattering by atoms, this model is less accurate, 
since the separation of the low-lying atomic terms is 
much greater than the separation of the rotational 
molecular levels. 

The agreement of the results of the present work 
with the calculations by the method of strong coupling 
indicates that the approximations made above, such as 
the neglect of the rotation and of the energy dependence 
of the R matrix, are justified, while the divergence of 
the theory from experiment can be explained by other 
reasons, especially by our not taking into account the 
molecular vibrations, since the separation of the vibra­
tional levels is comparable with the considered energies 
of the electrons. We note that any modification of the 
model of short-range forces (including the introduction 
of exchange interaction) does not lead in the strong 
coupling method for the Cs F molecule to Significant 
change in the results by virtue of the inequalities of the 
type (39). One of the merits of this theory is the fact 
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that it allows us to estimate the accuracy of the result 
connected with the specific choice of the short-range 
interaction. For H20, for example, as is seen from 
(35), the correct account of the short-range interaction 
is very important, which also follows from the work of 
Crawford. [27] 

I express my gratitude to R. Ya. Damburg for in­
terest in the work and useful comments. 

I) Atomic units are used in this paper. 

2lThis condition is equivalent to neglect of the energy differ­
ences between channels with different rotational quantum 
numbers. 

3lFor example, Ref. 15. There exists a broad literature on 
the problem of the existence of bound states in the field of a 
fixed dipole and their effect on scattering, citations to which 
can be found in Refs. 16 and 17. 

4lResonances having another mechanism of appearance are 
possible, however. [231 This question is not discussed here. 

5lThe value of ad for NH3 in Ref. 4 was incorrectly cited in the 
case of D = 0.579/2. 
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