
temperatures, the situation is different. The nonlinear 
damping of the sound increases the role of the volume in 
the process of light scattering (see ·Fig. 6); the small 
duration of the giant laser pulse leads to non-stationari­
ty of the 5MBS, which limits the length of interaction 
to a quantity of the order of 10-1_10- 2 cm. Whereas 
this suffices for the development of 5MBS at room tem­
peratures, at low temperatures such a length does not 
assure the effective transformation of the light. 

All that has been said above enables us to suggest the 
following scheme for the generation of intense hyper­
sound. Two laser beams of equal intenSity 10 and a 
frequency difference corresponding to the backward 
5MBS are directed against one another on a crystal of 
thickness L= xnl/fi placed in a liquid helium cryostat. 
Here the maximum intenSity of the hyper sound amounts 
to Co Y1o/nc E • For example, for quartz and at an in­
tenSity 10= 100 MW/cm2 (TL -10- 7 sec), we get L= 5 
x 10-2 cm, lac = 300 W/cmz (a similar calculation from 
linear theory yields an estimate that is larger by a 
factor of 20). We note that even for crystal lengths of 
the order of a centimeter, intense hypersound cannot 
be extracted from the crystal, because of its nonlinear 
absorption. 

Retuning the frequency of one of the laser beams and 
directing the light beams on the crystal at the corre­
sponding angle, we can change the frequency of the 
generated hypersound. 
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Quantized motion of atoms and molecules in 
electromagnetic fields 
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Atoms and molecules may exist in coupled states in the strong field of a standing electromagnetic wave. 
The absorption spectrum peaks (against the background of the Doppler contour) acquire aJine structure 
when the distance between levels begins to exceed the line wiilth. This occurs for atoms in fields - 10 
W/cm2 and for molecules in fields -0.1 W/cm2. The peak width is investigated as a function of the 
frequency detuning of the strong field for broad and narrow molecular resonances. Discontinuities arise in 
the atomic spectra when the condition E(h k) > hy is satisfied and they may produce dips of the absorption 
coefficient. The case of a strong field (~ Ikw/cm2) is considered when the general shape of the absorption 
coutour changes, viz., the Doppler contour is replaced by a band whose width is proportional to the field 
amplitUde. 

PACS numbers: 31.30.0s 

1. INTRODUCTION. fective modulation of the levels (the dynamic stark ef­
fect) has been investigated in detail, principally in con­
nection with the theory of gas lasers. (1-3] In this the­
ory it is very important that the atoms move with con­
stant unperturbed velocities. We consider in this paper 

A strong inhomogeneous electromagnetic field acts on 
atoms and molecules in two ways: the stark shift alters 
the energy levels and the particle velocities. The ef-
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a situation wherein both modulations-of the levels and 
of the velocities-are substantial. A strong correla­
tion is then produced between the motion of the atom, 
its response to an external field, and the absorption 
(emission) spectrum. This modulation does not reduce 
to allowance for the Doppler effect. Not knowing the 
trajectories of the atom, it is in general impossible to 
determine its response to the external field, and vice 
versa. In other words, the mechanical and optical 
phenomena become intermixed in a strong resonant in­
homogeneous field. 

In weak fields, as is well known, the change of mo­
tion of the atom in optical transitions reduces to a re­
coil effect, which can become noticeable only for nar­
row resonances 

e(lik»lir. (1 ) 

where f (Ii k) = (Ii k 'f /2M, Ii k is the photon momentum, M 
is the atom mass, and y is the resonance width. In 
optics, condition (1) is satisfied at y< 105 Hz. The sin­
gularities of the recoil effect in stimulated transitions 
in a weak field were investigated by perturbation theory 
in[4,5] in connection with the theory of the Lamb dip. 

In the field of a strong standing light wave, the cri­
terion for the need of taking the recoil effect into ac­
count in induced transitions is of the form[6]: 

kdE/p>r. (2) 

where d is the dipole moment of the transition, E is the 
amplitude of the field, and P is the momentum of the 
atom relative to the standing wave. The left-hand side 
of this inequality is the Doppler shift of the frequency 
due to the velocity modulation in the inhomogeneous 
field. Some singularities of the recoil effect in a strong 
field were discussed earlier. [7,8] 

The criterion (2) depends significantly on the atom 
velocity. For atoms that are trapped in the potential 
wells of a standing wave and for which f(p)-dE, we 
have in place of (2) the condition 

Q=k(dE/M)"·>r. (3) 

where n is the characteristic frequency of the oscilla­
tions of the atoms in the potential well. The distance 
between the energy levels is then larger than liy. The 
critical field intensity 10 = Cy4g. /41T1rk\ which corre­
sponds to the condition n = y, depends strongly on the 
resonance width. For atoms with y-l07 Hz we have 
10 -10 W/cm2 • For molecules with y-l05 Hz we have 
10 -0.1 W/cm2 • 

At I> 10 a fine structure due to the bound states ap­
pears against the background of the Doppler absorption 
contour, near the center of the line. The number of 
bound states of the atoms at the threshold is dE/Iin-30. 
Under the conditions of the inequality (3), the effects 
due to quantization of the atom motion must be taken 
into account. 

We note that the influence of the trapped atoms on the 
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spectral characteristics under the conditions E(lik) 
« IiU« liy (U is the depth of the nonresonant potential of 
the atom) was considered classically by Letokhov. [14] 

It was possible in this case to disregard the field-in­
duced shift of the levels. 

In addition to condition (2), there is also the criterion 
kdE/p> e(lik)/Ii or 

dE/li>kp/M, (4) 

which means that the motion of the atoms and the change 
of the atomic states takes place in quasiclassical fash­
ion. If the condition (4) is satisfied up to the thermal 
momenta PT of the atoms (the critical intensity corre­
sponding to the condition dE/Ii=kPT/M will be desig­
nated 11 ), then the absorption contour differs substan­
tially from the Doppler contour. For alkali-metal 
atoms we have 11 - 1 kW / cm2 • Thus, the change of the 
atom motion in an inhomogeneous field manifests itself 
either in the form of a certain fine structure in the ab­
sorption coefficient, due to the bound states at I> 10 , or 
in a change of the general form of the absorption coef­
ficient due to the change of the continuous states at 
1>11 , 

We have calculated the weak-signal absorption coef­
ficient in the presence of a strong standing wave acting 
on an adjacent transition. To find the absorption line 
contour it is necessary to know the spectrum and the 
wave functions of the atoms in the discrete and contin­
uous states. This problem can be solved with the aid of 
the system of wave equations for a many-level atom. [9) 

2. FUNDAMENTAL EQUATIONS 

We considered the line shape for the absorption of a 
weak field Vo(x, t) by a three-level system with states 
0, 1, and 2. The frequency of the signal Vo is close to 
the frequency w20 of the 0-2 transition. The adjacent 
1-2 transition is acted upon by a strong field V(x, t) 
with frequency close to W21 • All the quantities pertain­
ing to the weak field and to the transition 0-2 are 
labeled with the index zero, while the quantities for the 
strong field and the 1-2 transition are written without 
an index: 

V(x) exp [-i({~,,+2t.)tl. V(x) =1' cos kx, V=dE/Ii. 
Vo exp [-i(W20+10)t+ikoxl. l',=d,Eo!lI«:l'. 

The three-level system was investigated theoretically 
and experimentally in many studies (see, e. g., [10-12]). 

These, however, dealt only with traveling waves, in 
which the recoil effect is merely the same as in spon­
taneous transitions. We start from a system of SchrB­
dinger equations having in the resonant approximation 
the form 

i(~+y)("'l)=(Ho/1l+/!". V(x) )("'l)+VoIj)O(O). 
at Ij), V(x), Ho/II-/!" Ij), 1 (5) 

1 d )' 
Ho = - 2M ( 11 dx • 

For Simplicity, the relaxation constants of the excited 
levels 1 and 2 are assumed to be equal, and the lower 
level is assumed to be the ground state. At the initial 
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instant of time, only the ground state is populated with 
an atom density no, and its change due to the weak field 
will be neglected. 

The wave function of the ground state is of the form 

1jl,(X,t)=, 1_ \"11jlp exp{ipxlli-ie(p)tlli}, 
fL.t... 

p (6) 

where the angle brackets denote averaging over the ther­
mal motion of the atoms. The weak-field absorption 
coefficient qo(Ao) is determined by the relation 

2nfik. < JL ., > q =LIE I' dxli", (x,t)ljl, (x,t)1jl,(x,t) . , , (7) 

It is assumed that the averaging region L is large in 
comparison with the wavelengths A = 21T/k and Ao = 21T/ko, 
but small in comparison with qr/ • 

The effects due to quantization of the atom motion, 
which will be considered belOW, manifest themselves 
only in sufficiently strong fields 

(8) 

As to the ratio of the thermal energy of the atoms to 
the depth of the potential wells, we have 1fV:5 T up to 
fields close to the critical ionization field. We there­
fore put 

1il'«.T. (9 ) 

In this range of fields, the most characteristic are two 
limiting cases, the quasiclassical case 1fV» E(1fk), when 
there are many bound states, and the quantum case 1fV 
« e(1fk), when there are no bound states. It is conve­
nient to consider these cases separately. 

3. THE QUASICLASSICAL LIMIT 

We shall deal henceforth (except in Sec. 8) mainly 
with the quasiclassicallimit, when the condition (4) is 
satisfied with a large margin for all the atoms: 

(10) 

where aT is the Doppler width. In this case the condi­
tion 1fV» q1fk) is all the more satisfied, since 1fk«PT' 
The wave functions of the atoms can then be obtained in 
the quasiclassical approximation. 

The behavior of the free and bound atoms turns out 
to be essentially different for small and large detunings 
of the strong field. At small a, it is more natural to 
represent Eq. (5) in the form 

.( {) ) ('1'1) (H,lfi-V(X), 0 ) ('1'1) 
t Tt+'! '1', = 0 H,IIi+V(x) '1', 

_ A (0 1) ('1'1) + 17',_1jl, ( 1 ) , -Ll '1'1.2= (1jl1±1jl,) 11'2, 
1 0 '1', 1'2 1 

(11) 

so that the off-diagonal term is a small perturbation. 
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4. RESONANT CASE 

At a=o, the homogeneous equation (11) describes 
two groups of independent particles in potentials ± 1fV(x), 
and their wave functions are (0!=1,2) 

'l'a = 1: Aa. (m, t) '1'. (x-mA.-xa) + 1: Aa. (t) '1'. (X-Xa) , 
m,n I: 

where the functions CPn(x) and cp,(x) of the discrete and 
continuous spectra satisfy the equation 

(H,+IiV(x) )cp.=fiffinq>., (H,+fiV(x) )q>.=eq>" 

With - V < wn < V and e > 1fV. The eigenfunctions with 
equal energies and different indices O! differ in a shift 
of the argument by .\/2. We represent the absorption 
coefficient in the form of a sum of contribution from 
discrete and continuous states: qo =qcont +qdls, 

Q,M·~ . 
qcont= n'fiL J dpF(p) E1'I',(p.)I'Rel'!+i(e-e(P)-M,)/ltj-" 

_00 t>V 

(12) 
. Q,k +~ 

qd\S= Eq., qn=-J dpF(p) Iq>n(P.) I'Re['!+i(ffi.-a,-e(p)lli)j-l, 
n npT _00 

(13) 
where CP"n(P) is the Fourier transform of the wave func­
tioncp"n(x), andp.=p+1fko' 

The integral absorption coefficient 

Q, = J d!';.o q,(a,) =2n'd,'n,k,lfi (14) 

has, by the virtue of the completeness of the system of 
eigenfunctions cp,(x) and <Pn(x), the same form as in the 
absence of an external field (sum rule). Inside the ab- . 
sorption band - V < Ao < V, the resonant denominator 
can be replaced by a Ii-function (energy conservation 
law). The momentum conservation law is obtained by 

. calculating the Fourier transforms of the eigenfunctions 
by the saddle-point method. 

Contribution from continuous spectrum 

Using the conservation laws, we obtain the following 
absorption coefficient for frequencies that are not close 
to the absorption band: 

Q, 
qcont =-;: (V'-a,')-''', ]a,l< v. (15) 

The integral absorption coefficient (15) coincides with 
Qo• This circumstance is a consequence of the in­
equality (9): the fraction of the atoms in bound states 
is a small quantity of order (1fV /T)1/2. 

The atoms observed a weak signal at those points of 
space Xo at which the term of the excited ato~ inter­
sects the detuning, V(xo) = Ao. The absorption coeffi­
cient is proportional to the density of states of the atoms, 
which is inversely proportional to the slope of the term 
dV(xo)/ dx at the intersection point. This leads to for­
mula (15). As Ao approaches the boundary of the ab­
sorption band, the density of states increases and qo in­
creases. At I Ao I = V we have not a crossing but a sec­
ond-order term tangency at the points where coskx = ± 1. 
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Taking this circumstance into account, we have at the 
boundary of the absorption band the following formula: 

(16) 

where a =3-1/3 • 2-Z/3r3(t)1T-5/Z", 0. 5 and r(x) is the Euler 
Gamma function. 

At the boundary, the absorption coefficient increases 
in comparison with the center of the band by an approxi­
mate factor (V/~T)1/3» 1. The transition from (15) and 
(16) takes place in a relatively narrow frequency inter­
val ~c - V l/3 ~¥3« V. At I ~ I > V, the absorption coef­
ficient becomes small by virtue of the conditions (8) and 
(10). The boundary of the absorption n is smeared out 
by an amount of the order of (~~f Iv. The dependence 
of qcont on ~o is shown schematically in Fig. 1. We 
note for comparison that in a homogeneous field (travel­
ing-wave field) under the conditions of the inequality 
(10) the absorption contour constitutes narrow peaks at 
the peaks ~ =± V. Thus, in the field of a strong reso­
nant standing wave the absorption line spreads to form 
a band whose width is proportional to the amplitude of 
the external field. 

Contribution from discrete spectrum 

For the absorption coefficient qdlS inside the absorp­
tion band we have the expression 

qdis =Q,[li/llT(V+6,) ],/. (17) 

In this case there is no singularity at ~ = V, since the 
number of the bound states contributing to the absorp­
tion vanishes here. At ~ = - V expression (17) goes 
over into 

(18) 

where a' =32/3 • 2-7/3rz(t)1T-S/2"'0.2. The frequency re­
gion of the transition from (17) to (18) is of the order of 
~~ = V 2/3 (8(lik)/lip3« V. 

Formula (17) yields inside only a certain averaged 

FIG. 2. 
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FIG. 3. 

dependence of the absorption on the frequency; in Fig. 
2 it is represented by the solid line. The exact behav­
ior of qdIS(~) has a more complicated structure, owing 
to the resonances (they are shown dashed in Fig. 2) at 
~ = Wn, where liwn are the energies of the bound states. 
The authors contribution to the absorption from the dis­
crete state is of the order of (fiV/T)1/2« 1, so that qo 
""qcont. 

5. STRUCTURE OF BOUND STATES 

Inasmuch as in a strong field at n» y the peaks due 
to the bound states are far enough from one another, it 
is of interest to consider their structure in greater de­
tail. At frequencies satisfying the condition n« V + ~ 
« V we can use the quasiclassical oscillator approxima­
tion and attain for the contribution made to the absorp­
tion by the n-th bound state the expression 

hkQ, sin' ct. 
(19) q. 

where 

CGn = (n+1) 1l/2+k,[2h (n+1)/MQ]'''+2 [ (n+ 1/2) (ro n -6,)jQJ'" 

is the quasiclassical phase. 

The absorption intensity qn is subject to oscillations 
with a frequency that increases with the level number n. 
However, at n >n/y the oscillations vanish because of 
the averaging, in the exact formula (13), over a fre­
quency interval on the order of y. Therefore at n>n/y 
it is necessary to put sin2 Q'n'" t in formula (19). The 
structure of an individual peak is shown schematically 
in Fig. 3. Near the resonance the peak no longer has 
a square-root form, and at ~o = wn the factor yl/2 ap­
pears in the denominator (19). The case of oscillations 
at n<n/y is shown schematically by the dashed curve. 
The characteristic root structure of the periods is due 
to the fact that the weak signal Vo mixes the discrete 
states of the excited atoms with the continuous states of 
the unexcited atoms. If the weak signal were to act on 
the same transition as the strong field, then transitions 
would be produced also between discrete-discrete 
states and the shape of the peak would be Lorentzian. 
The height of the peak would increase by an approxi­
mate factor (n/ y)l/Z. 

We estimate now the relative height of the peak a, 
defined by the relation 

a = (q,(ron ) -q,(ron-Q) j!q,(oo.) 

[ 
dqcont(w ) 1 d 2qcont(w) ] / 

"'" q (00 ) + n Q + _ n Q' qcont(w) . 
n. d6, 2 d6,' n 
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In the calculation of a, the smooth part of the discrete 
spectrum can be disregarded at 0» y. At the center of 
the band, where the first derivative of qcont(~) vanishes, 
we have 

Thus, for resonances located near the center of the 
band (their approximate number is (~T/y)l/2), the curva­
ture of the absorption band can be neglected. The ex­
act formulas for a are quite cumbersome, and we con­
fine ourselves therefore to very rough estimates. The 
qualitative dependence of a on the field amplitude is 
shown in Fig. 4, am -10-2A -3/4 and ao - A -3/2, where A is 
the atomic weight. The minimum field amplitude V m 

corresponds to the condition 0 = y. This dependence is 
suitable approximately for atoms (we used for estimates 
the parameter values k - ko -105 cm-l and y-107 Hz) and 
for molecules (k - 2 x 104 cm-2, y-105 Hz). For A -10, 
the relative height of the peak fluctuates from tenths of 
a percent to several percent. 

6. DYNAMIC BROADENING OF RESONANCES 

We investigate now the strudure of the bound states 
at small detunings of the strong field. The case ~ = 0 
of the resonance of the strong field is special, for only 
in this case can the Schrodinger equations be diagonal­
ized exactly. The quasiparticles moving in potentials 
±liV(x) do not interact with one another in this case and 
make equal contributions to the -absorption. At finite 
detunings, the off-diagonal term in (ll) leads to a mix­
ing of the quasiparticles and to a change of the reso­
nance widths. 

Indeed, as seen from Fig. 5, the wave functions of 
the particles of different sorts can spatially overlap. 
One potential in the figure is shown by the solid line and 
the other dashed. Under the influence of the perturbing 
potential proportional to ~, a particle of one sort with 
energy liwn can go over virtually into a state of par­
ticles of another sort with energy liwi! and "drop" to a 
level with energy liWn in the neighboring well. A transi­
tion from one well to another is produced in this man­
ner. The probability of the transition is in this case 
not an exponentially small quantity relative to the quasi­
classical parameter. 

The amplitudes of the states whose energy of the nega­
tive satisfy the following system of equations: 

i (:t + 1) Aan(m) =oon'Aan(m) +'/,fn (Aan (m-l) +Aan (mH)) 

+ J dx 'l'an (x-mA-xa) f",(x, t)",,(x, t). (21) 
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W~ denotes the resonant frequency with allowance for 
the shift due to the virtual transitions to discrete and 
continuous states. In order of magnitude we have w~ 
- wn - 6,2/V. The frequency of the hopping to the neigh­
boring levels is given by 

!l'N ]' r n = --[ S dx 'l'n (x-x,,) Cjln (x-.xa) . 
COn-(i)n 

(22) 

To estimate the overlap integrals we can use the 
Franck-Condon principle for electronic transitions in 
molecules. These integrals have the largest value when 
the turning pOints n and if of the states coincide in the 
vicinity of ~x=A[e(lik)/liV]l/3_li2/3. The distance be-· 
tween the turning points of neighboring levels is of the 
order of Ii, so that n levels fall in the vicinity of ~x in 
the quasi-classical limit N» 1. As a result we have 
the following estimate for the hopping frequency: rn 
- ~2(wn _ Wn)"l. 

Solving (21), we obtain for qn the expression 

The level smears out into a band of width 2rn, while the 
period in momentum space is equal to lik. 

In the case of positive energies, different states with 
identical energy become mixed in first order in~, as 
shown in Fig. 5 for states with energy liwe • The for­
mula for qn then becomes 

kQo +S~ I I'{" (P+A) q" (~o) = "["PT _~ dp 'l''' (p+) co. 4ft 

X Hel 1+i(oo.'+f" cos (p+A/ft) -~o-E (p)/ft) ]-' 

+ sin' (p+1.I4ft) Reh+i (00,.' -f n cos (p+Alft) -!lo-e(p) 1ft) ]-,}. (24) 

This expression differs from (23) in that the level now 
smears out into two bands that interfere with each other. 
This gives rise to modulation factors cOS2 (P+A/41i) and 
sin2 (p+A/41i) for positive energies we have r.- ~[e(lik)/ 
liV]l/4. Further analysis of the structure of the reso­
nances depends essentially on the relation between the 
width liy of the resonance and the recoil energy f(lik). 
We consider two characteristic limiting cases. 

Broad resonances 

Atomic dipOle-allowed transitions usually satisfy the 
condition 

(25) 

When r. is large enough (y« rn« 0), the main contribu-

FIG. 5. 
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tion to the integrals (23) and (24) is made by a rather 
large momentum region in which COS(P+A/n) is a rapidly 

. oscillating function .. Averaging over these oscillations 
we obtain 

( )=kQ,ICPn(p=O)I'Sd [f' 
q" w 2n'hpT p n 

- (e(p)ll!+w)']-'{', (26) 

where w = Ao - w~. The integration is carried out over a 
momentum region in which the radicand is positiveo We 
have assumed for simplicity n > 0/ y, so that the oscil­
lations of the matrix element of the transition can be 
disregarded. The function qn(w) is illustrated in Fig. 6 
by the solid line, while the dashed line shows the same 
dependence at rn=O. The effective resonance width 
turns out to be of the order of the tunneling frequency 
r n' The vertex of the peak flattens out in this case in 
such a way that the integrated intensity remains un­
changed. When the condition (25) is satisfied, the shape 
of the peaks for the positive and negative energies turns 
out to be the same, differing only in the resonance 
width rn. 

Narrow resonances 

For certain narrow molecular resonances and weakly­
resolved atomic transitions, the condition (1) may be 
satisfied.1> It is of interest to consider the shape of 
the peaks in this case. To simplify the calculations we 
assume 

(27) 

The contribution to the absorption is determined by the 
small vicinity of momenta in which the energy conserva­
tion law is satisfied 

(28) 

Let us examine the character of the absorption singu­
larities that arise when rn is varied. The singularities 
manifest themselves in the case when the function d{ff/dp 
vanishes at the point where (ff(p) =0. At small values of 
r n there is only one value of the frequ.ency w' at which 
the equation d{ff/dp =0 has a solution and which corre­
sponds to the right-hand boundary of the absorption 
peak. 

At rn = r e , a second frequency wIt appears, at which 
the equation d{ff/dp =0 also can have a solution. The 
exact value of re depends on the ratio k/kQ, and in or­
der of magnitude we have r e - e(lik)/Ii. As seen from a 
graphic analysis of the equation d{ff/ dp = 0, the second 
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root appears in the case when the linear function is 
tangent to a sinusoid. This means that if{ff/ dP2 =0 at 
this point and the singularity becomes stronger than a 
root singularity. 

Thus, at rn=re there appears (see Fig. 7a) an addi­
tional symmetrical peak 

kQ,(21!19) ", 1<p.(p=O) I' 
q.(w) = n'hpT (d3{ff Idp') '('(w-w")'" (29) 

At the maximum, the symmetrical peak exceeds the 
square-root peak, qn(w")/qn(w/ )- (c(lik)/liy)1/6. At rn 
> r e' the symmetrical peak splits into two asymmetrical 
root-type peaks, as shown in Fig. 7b. As a result of 
this splitting, the band of width w' - wIt - e(lik)/Ii be­
comes detached from the peak. Inside the band, near 
its boundaries, we have a square-root behavior qn 
- (w' - wt1/2 as w- w' and qn- (w - w"t1/2 as w- w". 
This behavior of the absorption coefficient is due to the 
fact that the quasiparticles have a positive effective 
mass near the bottom of the band and a negative mass 
near the top of the band. 

With increasing r", the process of detachment of 
bands of width e(lik)/Ii from the initial peak repeats it­
self. The heights of the individual root-type peaks de­
crease like (Meff/M)1/2, where Meff -M(l +lirn/e(lik)t1 

is quasiparticle effective mass. Thus, the broadening 
of the resonance with increasing r n is via "production" 
of an ever larger number of bands with decreasing 
amplitudes. The broadening of the resonances with 
positive energy takes place qualitatively in the same 
manner. The difference lies in the fact that the peak 
splits into two peaks and two systems of bands, the 
intensities of which are modulated by the factors 
cOS2(p+A/4n) and sin2 (p+A/4n). 

So long as the perturbation-theory criterion rn« 0 
is satisfied, the summary area of the band is equal to 
the modulation of the peak at rn =0. If we disregard the 
not too significant quasiclassical factor, the criterion 
of the resonant approximation is 

(30) 

7. NONRESONANT CASE 

At a large detuning 

(31) 

the Hamiltonian of the strong field can be diagonalized 
only approximately. In the quasiclassical approxima-

b 

w" w' W w"'w" w' w 

FIG. 7. 
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tion we have the following system of equations for the 
upper working levels: 

. ( i) ) (<PI) (H,IMU(X), 
! -+, = at <P2 0, 

o 
H,IIt-U(x) 

+~(1+~')-1 d~ (0, -1 )~( <PI )+(l+~')-"'V,1jJ, (~), 
M dx 1, 0 dx <P2 1· 

U(x) =l't1'+V' (x), ~(x)=(U(x)-~)IV. (32) 

The off-diagonal component, which is proportional to 
d?;ldx, is a small quantity; its order of magnitude rela­
tive to U(x) is kplMV« 1 in accordance with condition 
(10). In principle order we have two groups of particles 
moving in potentials ± 1iU(x). We determine from them 
the contribution made to the absorption, neglecting the 
Off-diagonal component in (32): 

qcont(~) 

Qo [ A"-2~ ]';' 
=-;- .'\.0 (V'+2AoA-4.'\.') , 

A-U<A,,<O, 2.'\<·.'\0<.'\+u. (33) 

Formula (33) is defined in two regions; the absorption 
band splits into the two bands shown in Fig. 8. We note 
that the absorption coefficient has a regular normaliza­
tion. Near the absorption-band boundaries themselves, 
formula (33) is violated and instead of the square-root 
singularity we have a finite value, just as in the reso­
nant case. In addition, no account in (33) of the Doppler 
smearing of the boundaries by an amount on the order 
of (~~)2Iv. With increasing ~, the area of the right­
hand band decreases like (V I ~)2. At ~ = 0, formula 
(33) goes over into formula (15). Bound states appear 
in the potentials ± 1iU(x) and make a contribution to the 
fine structure of the absorption coefficient. Small off­
diagonal terms in (32) lead to a mixing of the indepen­
dent states. The bound states in the potential +1iU(x) 
are against the background of the continuous spectrum 
of particles that move in a potential -1iU(x). However, 
the decay of these bound states is impossible in the 
quasi classical limit, since the momentum conservation 
law is not satisfied here. All that remains is hopping 
to the same energy level in a neighboring well. The 
picture of the splitting of the peaks is of approximately 
the same form as in the resonant case for bound states 
with negative energies. The hopping frequency is of 
the order of 

(34) 

At large detunings, the hopping frequency decreases 
like ~-3. 

r n increases with decreasing ~, and at r n - n per-

FIG. 8. 
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FIG. 9. 

turbation theory no longer holds for the bound states. 
This takes place (leaving out the quasiclassical factor. 
(e(1ik)/1iV)1/3) at ~-n. 

We can thus state that the bound atoms move in poten­
tials ±1iV(x) at ~<n and in potentials ±1iU(x) at ~>n. 

8. QUANTUM LIMIT 

So far we have considered the quasiclassical case 
e(1ik)«1iV. Let us discuss the singularities of the ab­
sorption coefficients in the quantum limit 

e(lik»/tV. (35) 

As before, we assume here that the condition (8) is 
satisfied. Both conditions (35) and (8) can be satisfied 
only for very narrow resonances y-105_103 Hz. For 
simpliCity we assume the strong field to be resonant 
(~=O). In this case, as is well known, the atom-exci­
tation spectrum has discontinuities at p =±sflkI2, where 
s is an integer. Figure 9 shows the discontinuities at 
s = 1. When the detuning satisfies the condition 

/tAo=e (ltkl2) -e (likI2-liko) '. (36) 

the parabola corresponding to the spectrum of the atoms 
in the ground state falls in the forbidden band and the 
absorption decreases to a relative value either ylV or 
1iV Ie (1ik). The last estimate follows from the fact that 
the wave function of the excited atoms contain higher 
harmoniCS, the momenta of which are shifted by an 
amount m1ik, while the amplitude decrease like (1iV I 
e(1ik»m. Scattering by these waves can take place with 
energy conservation. The case m = 1 is shown dashed 
in Fig. 9. Thus, in the quantum limit (35), a number 
of dips appear in the absorption coefficient. The dip 
with the largest area corresponds to the first forbidden 
band. The center of the dip does not depend on the field, 
and the width of the dip is of the order of V, while the 
relative amplitude at the minimum is of the order of 
y Iv or flV Ie (1ik). 2) The relative depth of the dip can 
therefore be quite large. The width of the dip increases 
with increasing field, and the depth decreases. At 1iV 
2: e(flk) the dip vanishes. 

9. CONCLUSION 

Our analysiS shows that the influence of the mechani­
cal phenomena on the optical phenomena can be very 
appreciable. There are two characteristic field inten­
sities at which it is necessary to take into account the 
action of the light pressure on the atoms and molecules. 
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At I> 10 bound states appear in the standing-wave field 
and contribute to the fine structure of the absorption 
coefficient. At I> 11 the general form of the absorption 
coefficient changes: the Doppler contour gives rise to 
an absorption band with a width proportional to the field 
amplitude. 

The structure of the absorption peaks due to the bound 
states depends strongly on the standing-wave field pa­
rameters and on the width of the resonance. In the 
case of atomic resonances the peaks have a relatively 
simple form and their width is either equal to the reso­
nance width or is of the order of the frequency detuning 
of the strong field (at small detunings). The narrow 
molecular resonances can form peaks of more compli­
cated form. In particular, "quantization" of the peaks 
sets in: when the strong-field frequency is changed by 
an amount E(lik)!Ii, a narrow band is detached from the 
peak. . 

When the condition (1) is satisfied, discontinuities 
can appear in the spectrum of the atoms and can lead 
to formation of dips in the absorption coefficient. 

The appearance of narrow peaks or dips in the ab­
sorption coefficient is of interest for frequency stan­
dards. We note that although the position of the peak 
depends on the field intensity, the effect of splitting of 
one peak into tWo is determined only by the field de­
tuning. The position of the dip does not depend on the 
field. 

The authors thank S. G. Rautian and A. M. Shalagin 
for a useful discussion. 
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in a laser with methane call. Direct observation is possible 
under the condition (1), which can be satisfied at low pres­
sure and at large transit times (the diameter of the light 
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for example the intercombination transition 41So - 43PI' A 
= 6572 A, 10 -10-4 W /cm2 in Ca. 
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Nonlinear Doppler-free narrow resonances in optical 
transitions and annihilation radiation of positronium 

V. S. Letokhov and V. G. Minogin 
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The possibility of Doppler-free narrow resonances is considered for transitions between fine-structure 
levels of the ground and first excited states of the positronium atom. An analysis is given of the conditions 
necessary for the observation of narrow saturation resonances in the case of single-quantum absorption in 
IS-2P transitions, and narrow two-photon absorption resonances in IS-2S transitions. It is shown that it is 
possible to obtain 2oy-annihilation lines from the positronium atom with widths much smaller than the 
Doppler width. 

PACS numbers: 36.1O.Dr 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

ments of the transition frequencies of this atom, pro­
vide a unique possibility for a test of relativistic quan­
tum theory. It is well known that there are two experi­
mental methods at present for investigating the positro­
nium energy levels, namely, the direct microwave 
method in which the fine-structure intervals are deter-

Studies of the structure of the energy levels of the 
bound system consisting of an electron and a positron, 
i. e., the positronium (Ps) atom, and precise measure-
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