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A new system of equations for studying the interaction between light and nonlinear sound is proposed. 
The solutions of the inhomogeneous Burgers equation that describes hypersound generation in prescribed 
light fields are studied amdytically and numerically. The dynamics of growth of the harmonics and the 
total intensity of the wave and the pressure profiles are determined, the latter up to the establishment of 
stationary conditions. An analysis of the general equation indicates the necessity of taking into account the 
acoustic nonlinearity if the linear sound absorption is weak. This is due to the large value of the introduced 
parameter "y. 

PACS numbers: 43.25.+y 

1. INTRODUCTION 

In the study of stimulated Mandel'shtam-Brillouin 
scatteri~g (SMBS) and the process of the generation of 
hypersound by laser radiation, [1,2] a situation can arise 
in which consideration of acoustic nonlinear effects is 
necessary. This circumstance was noted by Polyakova [3] 

and discussed by other authors. [2-6] Their reasoning 
is based on the known results of the theory of nonlinear 
sound waves[7J and reduces essentially to the following. 
In the case of the free propagation of a disturbance, 
which is specified at the boundary x= 0 in the form of 
a harmOnic oscillation, distortion of the wave takes 
place until a sawthooth wave is formed at a distance x 
= LdlS= A/21TfM (where A is the wavelength, M is the 
Mach number, f is the nonlinear parameter). For the 
appearance of nonlinear effects at distances x ~ Ldls , 

it is necessary that the sound absorption be sufficiently 
small: L rl1S «L_=O'- 1 (a is the sound absorption co­
efficient), i. e., the acoustics Reynolds number is 
large. 

According to estimates [1_3] the nonlinearity begins to 
show at room temperatures T- 300 OK in the case of 
hypersonic intensities of the order of 102_103 W/cm2, 
which is achieved in experiments on 5MBS. Moreover, 
when the temperature is lowered, the coefficient of 
linear attenuation at frequencies -1011 Hz falls in crys­
tals from values of 0'-103 cm- l to very small values, 
0'-10- 3 cm- 1 , [8] which contributes to the appearance of 
the nonlinearity. However, because of the difficulties 
of experimental observation of the hypersonic wave, the 
obtained data were inadequate. t2] The fact of generation 
of the second harmonic of the hypersound is known. [9] 

In view of the lack of mathematical tools, the theoret­
ical investigations have been carried out at the estimate 
level. Moreover, these estimates are based on the re­
sults of the free propagation of sound of finite amplitude, 
since the theory of nonlinear acoustics of waves gen­
erated by distributed sources has not yet been devel­
oped. A number of results have been obtained recent­
ly, [10_12] which enable us to estimate more accurately 
and to treat the interaction of light with sound with ac­
count of the nonlinearity of the latter. Preliminary re­
sults have been given by one of the authors. tlO] 
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In the present work, a complete set of equations has 
been formulated for the calculation of the indicated in­
teractions. With the help of these equations, the sim­
plest problems on the generation of hypersound and 
5MBS have been solved. Perspectives of further studies 
in this direction are discussed. 

2. FORMULATION OF THE PROBLEM. INITIAL 
EQUATIONS 

The study of 5MBS and the process of excitation of 
hypersound in the field of laser radiation is usually 
carried out by the method of slowly changing ampli­
tudies, which allows considerable simplification of the 
initial coupled set of Maxwell equations and the equations 
of hydrodynamics. [2] Such an approach is specific for 
the consideration of interactions in media with strong 
dispersion, in particular for nonlinear optics. [13] In 

those cases in which acoustic nonlinearity appears, it is 
necessary to include the amplitude of the higher acoustic 
harmonics in the description, since even for very high 
frequencies of laser ultrasoundj- 2nco /A - 1011 Hz (co 
is the velocity of sound, n the index of refraction, A 
the optical wavelength), dispersion is as a rule unim­
portant. The appearance of harmonics, which are not 
taken into account within the framework of the method 
of slowly changing amplitudes, leads to nonlinear at­
tenuation of the sound wave, which can exceed the usual 
attenuation and Significantly change the dynamics of the 
process. 

The derivation of reduced equations for the complex 
amplitudes of the pump wave E~ and the Stokes wave E s 
in the considered problem does not differ from the 
standard method and in the case of backscattering leadS 
to equations of well known form[2]: 

(1) 

(2) 

Here k., is the extinction coefficient of the light, {3 is 
the compressibility of the medium, Y is the coefficient 
of nonlinear optical-acoustical coupling, P is the complex 
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amplitude of the sound pressure wave, W s and w, are 
the frequencies of the Stokes wave and the pump wave. 

To derive a simplified nonlinear acoustic equation, 
we begin with the wave equation for the sound field 

a" ba c' () 
_P -c.'v'P'---v'P'=-....:!.-.YV'(E')+L.(p"). 3 
at' 'P. at 8n 

Here b is the dissipation coefficient, Lz(p'Z) denotes 
symbolically the nonlinear terms that are quadratic in 
p', t71 which are not written out for reasons of brevity • 
Setting 

E·=IJ.E"Es· exp[i(Qt-qx+~x) ]+c.c. (4) 

in Eq. (3), where q=G/co and A=k~-ks -q,.and trans­
forming to a co-moving set of coordinates moving along 
with the wave with the speed of sound, we obtaln t10] 

op' £ ,op' b o'p' Yq ( ~ )" . ( n ) 
---p ------=- 1-- A ASSlll QT+Ill-- . 
dx co'po aT 2eo'po QT' 16n q P 2 

(5) 
A transformation has been carried out in Eq. (5) 

from the complex amplitudes of the laser waves to the 
actual amplitudes and phases: E,=A,exp(irp,), Es 
=As exp(irp s), while the quantity e denotes the parame­
ter of acoustic nonlinearity, iP=Ax+rp,-rpS+11/2. Sim­
ilar transformations of Eqs. (1), (2) give the follow­
ing system: 

(6) 

(7) 

(8) 

In order that the set of equations (5)-(8) be complete, 
it is necessary to add to it the eoupling between the 
parameter of the sound field pi and the actual amplitude 
p of the acoustic pressure: 

2 " ' 
p=-)p'(x,'t)sin(QT+Ill-~ )d(QT). 

no -
(9) 

The relation (9) expresses the fact that only the ampli­
tude of the fundamental amplitude p of the sound field 
enters into Eqs. (6)-(8), while the behavior of the field 
p'is determined by the interaction of an infinite num­
ber of harmonics, described by Eq. (5). 

It is not difficult to generalize the set (5)-(9) to the 
case of the interaction of waves at arbitrary angles, to 
the nonstationary case or to the case of nonplane waves. 
However, even in the simplest situation (5)-(9), when 
the light waves propagate counter to one another, the 
equations are rather complicated, and it is necessary 
to resort to further simplifications for their analysis. 

3. GENERATION OF NONLINEAR HYPERSOUND 
IN A GIVEN LASER RADIATION FIELD 

The basic difference of the system just obtained from 
that usually employed lies in the nonlinearity of the equa­
tion of hypersound generation (5). We consider the prob-

59 SOy. Phys. JETP, Vol. 44, No.1, July 1976 

n 

s 

FIG. 1. Profile of the pressure wave at various distances 
from the boundary of the medium at A = 20: curve I-for ax 
=0.3; 2-forax=0.5; 3-forax=0.7; 4-forax=0.9. 

lem of the excitation of intense hypersound in the field 
of two opposing light waves with constant amplitudes 
AI' and As. We shall also assume that the optical dis­
persion of the medium permits synchronous excitation 
of sound of the difference frequency G=w, -Ws= 'buJJ,co/ 
c and set A = 0 and iP = 11/2. Transforming to dimension­
less variables 

6=QT, z=bQ'xI2c.'po=<XX, ll=2ep'lbQ, 

we reduce Eq. (5) to the form of an inhomogeneous 
Burgers equation: 

all all o'll 
a;- -iiTe - ao' = A sin a. 

(10) 

(11) 

The variable n has the meaning of the running Reynolds 
number, z is the distance in units of the characteristic 
damping length of the sound of frequency G. The number 
A = ey,g:A,As/161Ta2 can serve as a criterion for the 
appearance of nonlinearity. The case A «1 corresponds 
to excitation of linear sound. At A» 1, effective 
generation of the harmonics should occur. 

Equation (11) is linearized by the Hopf-Cole substi­
tution n = 2U/U just as in the case of the homogeneous 
Burgers equation. The equation thus obtained allows 
separation of the variables, and the temporal part re- " 
duces to the Mathieu equation. Specifying the boundary 
condition in the form n(z = 0, 6) = 0, we find the solution 

ll=2:aln[t.a •• exp(-t..·~A) z)ce,.( ~ ,A)], 
(12) 

(the notation used is that from the book of Struttt14l). 

Equation (12) enables us to follow the evolution of the 
wave profile. The results of the calculation from Eq. 
(12), with account of the first three terms of the series 
and with representation of the Mathieu functionswithac­
curacy to the tenth harmonic, are shown in Fig. 1 for 
the value A = 20. InclUSion of a large number of te'rms 
of the series (12) makes it possible to increase the ac-
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FIG. 2. Ratios of the amplitudes 
II" of the first several harmonics 
of sound at different cross sec­
tions of the medium atA =16. 

curacy of the calculation at small z. Simultaneously 
with the numerical treatment of Eq. (12), we have car­
ried out numerical integration of (11) with the help of a 
specially chosen difference scheme, which allows us to 
describe correctly the discontinuities that are formed. U5] 

Similar results were obtained by this method for the 
temporal shape of the wave. In addition, it has been 
used for the investigation of the growth dynamics of the 
harmoni-cs (Fig. 2) and of the total intensity of the wave 
(Fig. 3). As is seen, the growth of the harmonics fol­
lows a different rule than in the case of free propaga­
tion. 

It follows from the given data that the wave profile 
becomes stabilized and at z» 1 it ceases to depend on 
the distance traveled by the wave; since Xo -Xn < 0, it 
follows that at z » 1 only the first term will be significant 
in the sum (12) and at large distances from the boundary 
we have[lO,H]: 

(13) 

This expression is the solution of the stationary equa­
tion 

dII d'II 
II-+-=-AsinB, 

dB dS' 
(14) 

which is obtained from (11) for II independent of z. 

The stationary profile is shown in Fig. 4 for various 
values of A. It is not difficult to estimate the distance 
zo-the contribution of the solution (12) to the stationary 
regime (13). At A« 1, the distance zo-1 (at these dis­
tances, the transient processes are attenuated and the 
boundary conditions no longer have an effect). At A 
»1, the difference Xo-xa"'s.fA and, in order that the 
second term in the sum (12) be small in comparison 
with the first, it is necessary that z ,fA - 1. Conse­
quently, at large A, the distance at which the steady 
state sets in is estimated as zo- A ~ 1/2. The stationary 

50 l reI. units 

! tr,T 

FIG. 3. The dynamics of the 
total sound intensity at differ­
ent values. of A: curve 1-
for A = 8, 2-for A = 16, 3-for 
A=32. 
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FIG. 4. Form of the stationary profile of the wave at different 
values of A: curve I-for A=8, 2-for A =16, 3-forA=32, 
4-for A »1. 

form of the wave at A » 1 is determined from the equa­
tion IIdII/d8= -A sin8: 

II=2A'" cos (B/2) sign B, -n""B""n. (15) 

This corresponds to the upper curve in Fig. 4. 

Thus, in the limit of large Reynolds numbers, the 
profile no longer has a sawtooth shape, as was the case 
for free propagation of the wave. The more exact 
asymptotic expression is 

II=2A"'[cos(O/2)-3 exp{-2A"'B}/(1+2 exp{-2A"'B})], O<B""n. 

(16) 

Hence we can estimate the thickness of the shock front 
at A- 1/ 2• Consequently, the quantity Al/2 can serve as 
a measure of the number of harmonics partiCipating ef­
fectively in the interaction. This is confirmed by Fig. 
2-in the case A = 16, we have four interacting har­
monics; the others are negligibly small. 

We now determine the intenSity of the hyper sound in 
the saturation regime. We use Eq. (14). Integrating 
it over 8, we obtain 

dII 1 1 
_+-II2 =Acose+-c, 
de 2 2 

c = ~S2" II' dO 
~ , 
... Jt n 

(17) 

where C is proportional to the intensity of the hyper­
sound. After linearization of Eq. (17), we find C= -Xo. 
Then 

l.c= I 1.0 I poco'a.'/b2Q'. (1S) 

AtA«I, we have IXol"'A2/2andlac =y21,lscr/ 
8c2pocga2, which agrees with the usual linear result. 
In the other limiting case A » 1, the asymptote yields 
I Xol '" 2A and lac = Yco(I,ls)l/Z/nec, i. e., the growth of 
intensity of the sound is slowed in the increase in the 
intensity of the pump due to the nonlinear damping. 

The solution of the inhomogeneous Burgers equation 
(11) with harmonic dependence of the right side on 8 is 
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of greatest interest for physical applications; however, 
this solution and its analysis are rather complicated. 
For elucidation of the qualitative features of the process 
of generation at A» 1, it is useful to consider the two 
simplest cases, replacing the right side of (11) by the 
linear functions 

(6)={-A(H6In), 
/. A (i-6In) , (19) 

f,=A6/n, -n<6<n. 

We shall seek a solution in the form II=a(z)/1,2(8). For 
a(z) we get the equation 

a'±a'/n=A, (20) 

solving which, with the condition a(z = 0) = 0, we obtain 

a,=(An)'" th[z(A/n)"'], a2=(An) 'I. tg[z(A/n)"']. (21) 

The first case corresponds to nonlinear limitation of 
growth of the sound amplitude. Here the second har­
monic generated by the wave of fundamental frequency 
is in antiphase with the harmonic component of double 
the pump frequency. The second solution corresponds 
to the regime of "explosive instability." Here in -phase 
generation of harmonics occurs, which leads to an un­
bounded increase in the amplitude of the sound. In other 
words, the energy brought into the medium by the dis­
tributed external force does not have time to reach the 
front and be dissipated in it; destruction of the sample 
can serve, for example, as the limitation mechanism. 

It is important to note that the first of the formulas 
(21) gives the qualitatively correct representation of the 
process of hypersound generation in the case of har­
monic external stimulation (11). The characteristic 
distance at which steady state is reached and the station­
ary value of the amplitude (cl. with (15» turn out to be 
the same here. Therefore, the first model will be used 
by us in the description of nonlinear damping of sound 
in 5MBS. 

4. SOME PROBLEMS OF 5MBS WITH ACCOUNT 
TAKEN OF ACOUSTIC NONLINEARITY 

We now consider the stationary 5MBS process for 
a pump that significantly exceeds its threshold value, 
when it is possible to neglect the terms k.,A" k.,As in 
Eqs. (6), (7). We also set A=O-the case of complete 
synchronism, q, = 11/2. In the absence of optical losses, 
as is well known, these equations have the integral 
Ws A! -w,A~ = const. If the scale of the optical non­
linearity X DI is much less than the interaction length L 
of the waves, then this constant can be set equal to zero, 
which corresponds to scattering in a semi-infinite 
medium. Assuming the following relation of the scales 
everywhere below: X DI « L« k;, we write down the 
set (5)-(9) in the form 

61 

op' 1; ,op' b "'p' , . 
---p -----="(.A, slU~h 
ox <,."P. 0, 2c.'p. iio:' ' 

p =~ S P' (x, ,)sin ~hd(~h). 
n • 
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(22) 

Here, for simplicity, we have neglected the difference 
between w ~ and w s, and denote 

The behavior of the solution of the system (22) near 
the boundary can be determined by finding the deriva­
tives f1'p'(O, 7') aX' and d"A(O)/d:x!' in terms of the bound­
ary conditions A,(x=O)=Ao, p'(x=O, 7')=0. With ac­
curacy up to three terms, such a calculation gives 

{24) 
where 

Thus the dynamics of the process will be determined 
by the ratio of the scales of a-I and XDl • 

In the case of strong linear damping (axlll =a» 1), 
there will be an increase in the pressure from zero to 
maximum over distances - a-I and then a slow decrease. 
Its character is determined by the solution of the set 
(22) under the assumptions that the terms ap' lax and 
(e/dpo)p'ap'/a7' are small in comparison with aP': 

,,(,Ao' ( Z )-' p=-- i+- , 
a a 

( z ) -'f, 
A,=A. 1+-; . (25) 

This argument is supported by the numerical integration 
of the system (22)£16] given in the review of Starunov 
and Fabelinskii. [2] 

In the other limiting case of small linear damping 
(a« 1), it follows from (24) that the amplitude of the 
fundamental of the sound reaches a maximum at dis­
tances - XDI' which is in agreement with the well known 
solution of the system (22), linearized for sound, in the 
case a =0: 

p=('Y,A,'!1,)"'thz, A,=A,sechz. (26) 

However, the amplitude of the sound second harmoniC 
here is not small in comparison with the amplitude of 
the fundamental, since 'Y» 1. This indicates that in the 
case of small linear damping of hypersound, and in the 
appearance of optical saturation (X"I« L), the acoustic 
nonlinearity must in prinCiple be taken into account. 

For the qualitative description of the process in this 
case, we replace sin07' in Eqs. (22) by the sawtooth 
function/(07'), in correspondence with the first of Eqs. 
(19). Setting p '(x, 7') = Po(x) /(07'), we reduce the sys­
tem (22) to the form 

dp, eQ, , -+--p, ='Y,A" 
dx 3"(('oJp.1 

This can be reduced to a single equation 

(27) 

(28) 

The limiting approach to linear sound 'Y - 0 enables 
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us to obtain the well-known solution (26) from Eq. (28). 
However, in condensed media, we usually have y» 1. 
For example, for quartz 'Y =26, for water, 'Y = 25, for 
C~, y= 12. 5. Thus allowance for the acoustic non­
linearity in the case of smaH linear damping of the 
sound and x.1« L is Significant. New scales appear 
here and the regularities are qualitatively different in 
comparison with the case that is linear in sound y= 0 
(Eq. (26». 

Equation (28) can be integrated once: 

dA (.,., )'{' 
_I = ± _It_I' A1'(1-CA:(t-0I ),". 
dx 1-1 . 

(29) 

For completion of the boundary conditions AI(x=O)=Ao 
and PO<x= 0) = 0, the arbitrary constant C should be equal 
to A02 <,.-1>. The solution (29) is conveniently analyzed 
in the phase plane (Fig. 5). By virtue ofthe second of 
Eqs. (27), we can judge the behavior of the amplitude 
of the pressure Po(x) from the shape of the phase surface 
for A; its value is proportional to the slope angle qJ of 
the radius vector of the representative point, 

Figure 6 shows the curves AI(x) and Po(x), obtained 
by numerical integration of (29). For comparison, the 
solutions of (25) are given by the dashed lines, without 
taking into account the acoustic nonlinearity. It is easy 
to see that the curves of the acoustic pressure differ 
greatly from one another. The nonlinear absorption 
leads to the appearance of a pressure maximum and the 
subsequent decrease of its amplitude is proportional to 
x .. 1 /x. Since saturation of Po(x) no longer sets in, the 
scattering properties of the medium are weakened and 
the process of reduction of AI (x) is slowed. At large 
distances AI - Po, this is a purely nonlinear dependence 
(in the linear case, we have Po- A~). 

Upon decrease in Po(x), the nonlinear damping of the 
sound gradually ceases to be the determining effect and 
account of linear damping will be necessary. Such an 
account can be carried out within the framework of the 
method with local dependence of the pressures on the 
field strength (cf. with (25». We use the stationary 
solution (13), in which we shall assume the number A to 
be slowly dependent on x. The condition of applicability 
of this approximation is the smallness of the distance 
at which the solution (12) assumes the stationary value 
(13) in comparison with the scale of the optical non­
linearity: 

(30) 

The inequality (30) reduces to the condition y» 1, 
which is always satisfied. Thus, the running scale of 
the acoustic nonlinearity is connected with the scale of 
the optical nonlinearity, but is always smaller than it. 

o ._ 
<r~ -. 

FIG. 5. Form of the phase plane of 
Eq. (29) with account and without 
account of the nonlinearity of the 
sound; the dashed curve is for 'Y = 0, 
the solid curve for 'Y = 14. 

" 
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FIG. 6. Dynamics of the pressure 
wave p (curves 1, 1 ') and the light 
wavesA, (curves 2, 2 ') in the case 
of small linear sound absorption: 
1, 2-with account of the acoustic 
nonlinearity (')' = 14); 1',2' -with­
out account of the acoustic non­
linearity ('Y = 0). 

This allows us to neglect the derivative a/ax in Eq. 
(11), and the system (22) reduces to the single equation 

(31) 
2 ·s bQ i) [ (0 eYAo')] p=- --a In ce, -,--- sinOd8. 
n, 8 0 2 4nb'Q2~ 

For simplification of its analYSiS, we approximate the 
dependence P(AI) by the more convenient functions. We 
denote by N 2= EYA~/41Tb2sj.8 the value of the number A 
on the boundary. At N2A~ / A~« 1, the quantity P = (bO/ 
e)N2A~/A~; in the OPPOSite case, N2AUA~» 1, we have 
p=16(bO/!::}NAI/31TAo (the latter follows from Eq. (15». 
We shall assume that 

bQ N'ANA,' 
p= e 1+(3n/16)NA/A,' 

(32) 

Equation (31) with the approximations (32) is easily 
integrated, and its solution is represented in the form 

A, {[ (3n)' 20: ] 'f. 3n }-' A,=- - +-(x+x,) -- (33) 
N 16 "I 16 . 

Equation (33) describes the transition from the regime 
with strong nonlinear acoustic effects to the purely dis­
sipative stationary regime. At large distances, the 
pressure amplitude is proportional to A~ and decreases 
according to a hyperbolic law. At x» X.l, we have AI 
=Ao(ax~I/2x)1/2 (cf. (25». 

Since the found solution (29) closely corresponds to 
the problem of sound generation in the field of light 
waves incident on the crystal from the outside (see, 
for example, Ref. 17), we estimate the effect of the 
nonlinear damping for just this situation. Let the pump 
wav~ with intensity I~(O) be incident on the quartz crys­
tal of length L from the left, and the wave at the Stokes 
frequency with intenSity Is(L) from the right. In order 
that the Stokes wave emerging from the crystal have 
the intenSity Is(O) = I~(O), it is necessary that Is(L) 
=I~(L). However, the values of I~(L), calculated from 
Eqs. (26) and (29) (without account and with account of 
the nonlinearity of the sound), will diverge. Thus, for 
example, at 1;(0) = 40 MW / cm2, L = 1. 5 cm, the value 
I~(L) calculated from Eq. (26) amounts to 55 kW / cm2 • 

The formulas (29) used give the value I~(L) = 22 MW / cm2 • 

H, at room temperatures, when the linear damping 
of the hypersound is large, practically all the light 
scattering takes place in a thin boundary layer of the 
medium with dimension of the order of a-I, then at low 
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temperatures, the situation is different. The nonlinear 
damping of the sound increases the role of the volume in 
the process of light scattering (see ·Fig. 6); the small 
duration of the giant laser pulse leads to non-stationari­
ty of the 5MBS, which limits the length of interaction 
to a quantity of the order of 10-1_10- 2 cm. Whereas 
this suffices for the development of 5MBS at room tem­
peratures, at low temperatures such a length does not 
assure the effective transformation of the light. 

All that has been said above enables us to suggest the 
following scheme for the generation of intense hyper­
sound. Two laser beams of equal intenSity 10 and a 
frequency difference corresponding to the backward 
5MBS are directed against one another on a crystal of 
thickness L= xnl/fi placed in a liquid helium cryostat. 
Here the maximum intenSity of the hyper sound amounts 
to Co Y1o/nc E • For example, for quartz and at an in­
tenSity 10= 100 MW/cm2 (TL -10- 7 sec), we get L= 5 
x 10-2 cm, lac = 300 W/cmz (a similar calculation from 
linear theory yields an estimate that is larger by a 
factor of 20). We note that even for crystal lengths of 
the order of a centimeter, intense hypersound cannot 
be extracted from the crystal, because of its nonlinear 
absorption. 

Retuning the frequency of one of the laser beams and 
directing the light beams on the crystal at the corre­
sponding angle, we can change the frequency of the 
generated hypersound. 

The authors thank R. V. Khokhlov for interest in the 
work, and S. A. Akhmanov, N. S. Bakhvalov, Ya. M. 
Zhileikin, A. L. Polyakova, V. S. Starunov and I. L. 
Fabelinskii for useful discussions. 

II. L. Fabelinskir, Molekulyarnoe rasseyanie sveta (Molecu­
lar Scattering of Light) Nauka, 1965. English Translation, 
Plenum, 1968. 

2V. S. Staruno~ and 1. L. Fabelinskii, Usp. Fiz. Nauk 98, 
441 (1969) [SOy. Phys. UsP. 12, 463 (1970)]. 

3A. L. Polyakova, Pisma Zh. Eksp. Teor. Fiz. 4, 132 (HI66); 
7, 76 (1968) [JETP Lett. 4, 90 (1966); 7, 57 (1968)]. 

41. L. Fabelinskil, Izv. Akad. Nauk SSSR Ser. Fiz.35, 874 
(1971). 

5N. N. Lavrinovich, Zh. Eksp. Teor. Fiz. 60, 69 (1971) 
[SOy. Phys. JETP 33, 39 (1971)]. 

6S. B. Krivokhizha, Trudy (Works) of the Phys. Inst., Acad. 
Sci. USSR 72, 3 (1974). 

10. V. Rudenko and S. L. Soluyan, Teoreticheskie osnovy 
nelineinoi akustiki (Theoretical Bases of Nonlinear Acoustics) 
Nauka, 1975. 

6p. Klemens, in: Physical Acoustics, v. HIB (Warren Mason, 
Ed.) New York. 

9R. G. Brever, Appl. Phys. Lett. 6, 165 (1965). 
100 • V. Rudenko, Pisma. Zh. Eksp. Teor. Fiz. 20, 445 (1974) 

[JETP Lett. 20, 203 (1974)]. 
11A. A. Karabutov, E. A. Lapishin and O. V. Rudenko, Prod. 

Sixth Internat. Symp on Nonlinear Acoustics, Moscow State 
Univ. Press, 1975, p. 28. 

12A. A. Karabutov and O. V. Rudenko, Zh. Tekh. Fiz. 45, 
1457 (1975) [Sov. Phys. Tech. Phys. 20, 920 (1975)1. 

13S. A. Akhmanov and R. V. Khokhlov, Problemy nelineinoi 
optiki (Problems of Nonlinear Optics) (VINITI, 1964). 

14M. J. O. Strutt, Lame, Mathieu and Related Functions in 
PhYSics and Technology, (Russ. transl. ONTI, 1935). [Ger­
man ed. reprinted by Edwards Brothers, 19441. 

15N. S. Bakhvalov, Chislennye metody (Numerical Methods) 
Nauka, 1974. 

16K. Grob, Z. Physik 201, 59 (1965). 
11M. J. Brienza and A. S. De Maria, Appl. Phys. Lett. 11, 

44 (1967). 

Translated by R. T. Beyer 
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electromagnetic fields 
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Atoms and molecules may exist in coupled states in the strong field of a standing electromagnetic wave. 
The absorption spectrum peaks (against the background of the Doppler contour) acquire aJine structure 
when the distance between levels begins to exceed the line wiilth. This occurs for atoms in fields - 10 
W/cm2 and for molecules in fields -0.1 W/cm2. The peak width is investigated as a function of the 
frequency detuning of the strong field for broad and narrow molecular resonances. Discontinuities arise in 
the atomic spectra when the condition E(h k) > hy is satisfied and they may produce dips of the absorption 
coefficient. The case of a strong field (~ Ikw/cm2) is considered when the general shape of the absorption 
coutour changes, viz., the Doppler contour is replaced by a band whose width is proportional to the field 
amplitUde. 

PACS numbers: 31.30.0s 

1. INTRODUCTION. fective modulation of the levels (the dynamic stark ef­
fect) has been investigated in detail, principally in con­
nection with the theory of gas lasers. (1-3] In this the­
ory it is very important that the atoms move with con­
stant unperturbed velocities. We consider in this paper 

A strong inhomogeneous electromagnetic field acts on 
atoms and molecules in two ways: the stark shift alters 
the energy levels and the particle velocities. The ef-
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