
the polarizing power of the mirror is not constant over 
the spectrum. The asymmetry was not observed for the 
Fe54-enriched iron mirrors either,· for which the real 
part of the coherent-scattering amplitude was close to 
zero, as indicated by the high polarizing efficiency (P 
'" 1) of these mirrors due to compensation of nuclear 
and magnetic scattering amplitudes. 

Since it was not our aim to investigate the spin-orbit 
effect but merely to obtain a quantitative experimental 
estimate for these factors in the case of reflecting ma
terials used in practice, we did not look for the ideal 
conditions under which these effects might be seen. 
The theoretical estimates reported by Handel[Z-41 do, 
in fact, refer to such ideal conditions, i. e., complete 
compensation of the real parts of the nuclear and mag
netic scattering amplitudes, sufficiently large imagi
nary part of the amplitude, and particular purity on the 
reflecting surface layer, which is quite difficult to 
achieve in an experiment. 

On the basis of our measurements, we can find no 
evidence for the polarization asymmetry reported by 
Berndorfer[ll and consider that this effect is more 
likely to have been due to technological factors and not 

the spin-orbit contribution. 

It also follows from our experiments that Handel's 
proposals[41 regarding the use of spin-orbit effects for 
measuring the potential due to the electric surface di
pole layer, and for producing on this basis an electric 
neutron polarizer, are far from experimental realiza
tion. 

In conclusion, we are indebted to G. M. Drabkin and 
E. F. Shender for useful discussions of the experiment 
and the possible spin-orbit effects, and to N. V. 
Borovikova for preparing the samples for the experi
ment. 
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The upper bound Id/~< 5.5XIO- 19 cm on the proton electric dipole moment (EDM) d is derived 
from the experimental upper bound for the EDM of the cesium atom in a state with F = 4. Similar 
measurements on an F = 3 state might improve this result by a factor of 1.5. An upper bound on the 
magnetic quadrupole moment of the nucleus (which might be induced, for example, by the EDM of the 
valence nucleon) is also derived from the same experiment. The search for the proton EDM in experiments 
with polar molecules is discussed. 

PACS numbers: 13.40.Fn, 14.20.Ei, 35.IO.Di 

1. INTRODUCTION 

It is well known[ll that elementary particles can have 
electric dipole moments (EDM) only if time-reversal 
invariance is violated. Up to now, T-odd interactions 
seem to have been observed only in the decay of KO 
mesons. From this it is clear why it is of interest to 
seek EDM of elementary particles. In particular, ele
mentary-particle EDM would be of interest because of 
the light they might shed on the structure of the T-odd 
interaction. 

Experiment gives the following upper bound for the 
neutron EDM, dn: I dnl e I < 1O-a3 cm. [al The difficulties 
in measuring the EDM of charged particles-electrons 
and protons-are obvious. Nevertheless, the idea of 
seeking the electron EDM via the EDM it induces in a 
neutral atom has proved to be very fruitful. At first 
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glance the situation here would seem to be hopeless in 
view of Schiff's well-known theorem, [3J according to 
which the EDM of a system of nonrelativistic particles 
in equilibrium under the action of electrostatic forces 
will vanish provided the intrinsic EDM of each particle 
has the same spatial distribution as the charge of that 
same particleo As Sandars showed, [41 however, owing 
to relativistic effects the induced EDM of a heavy atom 
not only is not small, but on the contrary, is much en
hanced as compared with the EDM of the electron in
ducing it. Calculations[4-71 show that the enhancement 
factor is -130 for cesium and - 500 for thallium. Ex
periments with atomic cesium[Bl and thalliumC91 resulted 
in the following bounds for the electron EDM: I dele I 
<3x10-a4 cm and I dele I <7xlO-a4 cm. 

In the present study we derive an upper bound for the 
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proton EDM from an experiment with atomic cesium. 
This bound is of considerable interest despite the fact 
that it is much higher (weaker) than the bound said to 
have been derived from an experiment with TIF mole
cules. [10,11] The point is that the interpretation[10] of 
the TIF experiment is not entirely convincing. The 
bound on the proton EDM that actually follows from the 
TIF experiment may be, say, an order of magnitude 
higher. Worse than that, at present there is no prac
ticable way in sight to extract an unambiguous bound for 
the proton EDM from the experiment in question. This 
situation will be discussed in more detail at the end of 
the present paper. 

2. NUCLEAR MAGNETIC QUADRUPOLE MOMENT 
INDUCED BY THE EDM OF A VALENCE NUCLEON 

We begin with a general treatment of the effects due 
to the presence in a. nucleus of a valence nucleon having 
an EDM. We write the relativistic Hamiltonian for the 
interaction of the dipole .moment d of a spin-~ particle 
with an external field F IL" in the form 

H,='/,d,o"o.,F.,., ,¥.=-i,ol,',l., 

0.,='/, (1"'-"'1.). 
(2.1) 

Then we obtain the following expressions for the charge 
and current densities: 

p,=-dv n(If+",n If), 

i,=icd rot (If+'l'If). 

(2.2) 
(2.3) 

Now we introduce a normalized two-component SchrB
dinger wave function 1/1 into Eqs. (2.2) and (2.3) in place 
of the Dirac bispinor >If, retaining only terms up to the 
second order in vic. The result is 

p,=-dv n {1/:+ [0,,- 8m~'c' (0" (p"+p') +2 (op') On (op,» ] ¢}, 
. d 
]'=-2 -rot ('P+[o X(p'+p) ]1/:). 

mp 

(2.2a) 

(2.3a) 

Here p' and P are the momentum operators acting on 
Iji+ and Iji, respectively. 

We begin with the first term in (2.2a), which corre
sponds to the ordinary contribution of the valence nu
cleon to the EDM of the nuclells. The relativistic cor
rections to the motion of the nucleus as a whole are 
negligible. But then, in view of Schiff's theorem, [31 

the EDM of the nUCleus, by itself, affects the EDM of 
the atom only via the interaction of the nucleus with the 
magnetic field produced by the electrons, and also via 
possible effects associated with the finite size of the 
nucleus. The EDM induced in the atom by this magnetic 
interaction turns out to be very small, of the order of 
dmZor/m p (m is the electron mass), as can be shown 
without difficulty. Nevertheless, we postpone discus
sion of the effects due to the finite nuclear size to 
Sec. 4. 

The relativistic corrections to Pd turn out to be of two 
kinds. Some arise from the motion of the proton in the 
nucleus and reduce simply to a renormaHzation of the 
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resultant EDM of the nucleus. Although these effects 
are not especially small, they are of no particular in
terest in view of Schiff's theorem. The other relativis
tic corrections have a structure of the form 

(1 is the orbital angular momentum of the nucleon) and 
correspond, in particular, to an octupole moment of 
the nucleus induced by the EDM of the valence nucleon. 
The contribution of these corrections to the EDM of the 
atom is also small, being of the order of d(m/m p'lZ2 cr. 

Now let us consider the effects due to the space cur
rent jd' We shall make use of the nuclear shell model 
to simplify expression (2.3). Judging from the Schmidt 
plot, the errors introduced by this approximation may 
amount to 30-40% for the CS133 nucleus of interest to us. 
We begin by averaging the operator (p' +p)/2m p over a 
state of the valence nucleon with a given orbital angular 
momentum 1. Actually, we are talking about the cur
rent that produces the orbital magnetic moment of the 
nucleus. Assuming a point nucleus, we express the 
corresponding magnetic field in the form 

lelli--t [ 1 ]] H=-- VX V -XI . 
2mpc r 

(2.4) 

After performing some calculations involving the Max
well equation curlH=41Tj/c, we obtain 

1-- Ii 
-(p'+p)=-[\6(r)X I] 
2mp 2mp 

from which follows 

Ii --
jd=-d--[VXI(oV)6(r) ]. 

2m/.c 

(2.5) 

(2.6) 

Here the bar indicates averaging over a state of the nu
cleus with a given total angular momentum i. As is 
easy to show, the tensor 1mfI n is symmetriC; moreover, 
the term proportional to 13_ in this tensor obviously 
does not contribute to jd' Taking these remarks into 
account, we obtain 

j'm=d_li_em,"!L[i,i.+i.i,-~6,.i(i+l)] V.V ,,6(r), (2.7) 
2m. - 2 3 

1 1(1+1)+'/, 3 [/(l+l)-'/d' 
g='4'+ 2i(i+1) I; i'(i+1)' . 

For the CS133 nUCleus, in which the valence proton is 
in a g7/2 state, we find g = - 40/189. The vector poten
tial produced by the current jd is 

(2.8) 

The physical interpretation of the effect under dis
cussion is clear. Just as the orbital motion of a 
charged particle leads to a magnetic dipole moment of 
the system, the orbital motion of a charge having an 
EDM leads to a magnetic quadrupole moment of the sys-
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tem. In the present case it is natural to take the tensor 

(2.9) 

as the nuclear magnetic quadrupole moment operator. 
We shall characterize this operator as usual by the 
quantity 

(2.10) 

For CS133 this expression reduces to 

80 d 
Mcs=---f.1p, 

9 lei 
(2.11) 

in which /lp = I e Iii/2m pC is the nuclear magneton and e 
is the electron charge. The nuclear magnetic quad
rupole moment can obviously differ from zero only if 
i:" 1. 

We note that Eqs. (2.5)-(2.10) are equally valid for a 
nucleus that contains a valence neutron having an EDM; 
thus, such a nucleus also acquires a magnetic quad
rupole moment if i :" 1. 

3. THE EDM INDUCED IN AN ATOM BY THE 
MAGNETIC QUADRUPOLE MOMENT OF ITS NUCLEUS 

As will be evident from what follows, the relativistic 
effects in the atom are essential to the phenomenon un
der discussion. Hence we write down at once the Hamil
tonian for the interaction of a relativistic electron with 
the vector potential A of Eq. (2.8): 

in which a = Yoi' represents the Dirac matrices for the 
electron. 

The cesium atom has a 68112 ground state, and the in
teraction (3.1) can cause mixing with it of states of op
posite parity in which the atom has the same total angu
lar momentum F. As a result, the atom acquires an 
EDM. Since the dipole matrix elements 68 -6p are 
very much larger in cesium than all the others, we 
shall consider only admixtures of 6p states to the 68 

ground state. The electronic part of the interaction 
(3.1) is obviously an irreducible second-rank tensor 
and therefore cannot mix 81/2 and Pl/Z states, even in the 
presence of relativistic effects. It therefore remains 
only to calculate the admixture of the 6P3/Z state. 

The relativistic wave functions of the electron can be 
written in the form 

'l' = ( g,:, (r) g"d ) 
P .' /. 0 . -1!-. (r) (crr.1 ) __ , I 

(3.2) 

Here the nJ! are spherical spinors. Let us consider 
the radial functions g andf. Because of the singularity 
of interaction (3. 1) (it is proportional to 1/r 3) the main 
contribution to the matrix element of Hi comes from 
the region of small r, where the nucleus can be re-
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garded as unscreened and the energy of the ele~tron 
can be neglected as compared with the potential. It can 
be shown (see, e. g., (121) that in this region we have 

rg(r) = -c (--=-~-x)J21(x), r!(r)=CZaJ,,(x); (3.3) 
, 2 dx 

x=(8Zr/a)"'. X=(_1)H"'_'(j+'/,), 1= [(j+'/,)'-Z'o;'] 

C= (-1) J+'I.-, (2Ry/e'v') ./,. (3.4) 

Here Ry=me4/2li 2 is the Rydberg constant, a=li 2/meZ 

is the Bohr radius, and II is the effective principal 
quantum number. 

A straightforward but cumbersome calculation of the 
matrix element that mixes the 81/2 and P3/2 states in 
cesium leads to the following result: 

IHI) d ""Z' 'R ( )_"'R 16 {1'35 <Pll~ i $,/. = -- IX Y Vp'\'s -:- _ -. 
ea mp b3 -,JV3. 

(3.5) 

Here and below the upper number of the pair refers to 
a state in which the atom has the total angular momen
tum F = 4, and the lower one, to a state with F = 3. In 
this case the relativistic enhancement factor is 

(3.6) 

The dipole matrix element of interest to us is 

'I Y'I 
(i='I,. j='/" F; F,=Fle:!i='I,. j='I" F; F,=F>=eap { II: l'3 '. 

(3.7) 
Using (3.5) and (3.7), we obtain the following expres

sion for the contribution D1 from the effect under dis
cussion to the EDM of the cesium atom: 

(3.8) 

Using the known values of the effective quantum num
bers, 116s = 1.87 and 116P = 2.35, and the dimensionless 
radial matrix element, 1) p(68, 6p)"'- - 5. 8, we obtain the 
following numerical result: 

0.78 
£J ,=d1O-' {-1.25 . (3.9) 

By comparing (3.9) with the experimental upper 
bound I Dc./ e I < 3. 7 X 10-22 cm for the EDM Dcs of the 
cesium atom in the F=4 state, [61 we obtain the follow
ing upper bound for the proton EDM: 

I die I <4.7 . 10-" em. (3.10) 

We note that one could improve the bound (3.10) by a 
factor of about 1. 5 by measuring the EDM of the cesium 
atom in the F = 3 state. 

Finally, we can derive an upper bound to the mag
netic quadrupole moment of the CS133 nucleus from the 
experiment with atomic cesium. Comparing (2.11) with 
(3.10), we obtain 

(3.11) 
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in which res =6.1 x 10-13 cm is the radius of the CSl33 

nucleus. The upper bound given by Sandars in[151 is 15 
times higher. Since no details are given inCl5J, it is 
impossible to determine the reason for this large dis
crepancy. 

4. THE EDM INDUCED IN AN ATOM BY THE DIPOLE 
MOMENT OF ITS FINITE NUCLEUS 

Now let us consider another mechanism by which the 
EDM of a valence nucleon can induce an EDM in an 
atom. As Schiff pointed out, C31 a system of particles 
can have an EDM even in the absence of relativistic ef
fects provided the charge and EDM distributions differ 
from one another in at least one of the particles. The 
interaction between an electron and the dipole moment 
of a finite nucleus, which gives rise to an EDM in the 
atom, can be written in the form 

H,= S dr' [pd(r')-pq(r') 1 dV,,_e_. 
. Ir-r'l 

(4.1) 

Here r is the coordinate of the electron reckoned from 
the center of the nucleus, and Pq and Pd are the nuclear 
charge and dipole-moment densities, respectively, each 
normalized to unity. 

Retaining only the lowest-order nonvanishing term in 
the expansion of (4.1) in powers of r' /r, we obtain 

H,=~ Sdr' [pq(r') -p,(r') 1 d, r,/ r/ 'I, V m \' .. ~. 
2 r 

(4.2) 

The charge density Pq is obviously spherically sym
metric, except possibly for corrections of the order of 
Z-l. Even for deformed nuclei, where these correc
tions may be an order of magnitude larger, they can 
still be neglected. As for Pd' it is natural to assume 
that it coincides with the density distribution of the va
lence nucleon. Finally, we shall assume that the dipole 
moment of the nucleus is equal to the intrinsic EDM of 
the valence nucleon: d = du. 

In view of all this we can rewrite Eq. (4.2) in the 
form 

Here the angle brackets indicate averaging over a nu
clear state with the given angular momentum i. 

Now let us consider the cesium atom specifically. 
Since we are interested primarily in the mixing of 6s 
and 6p states, it is sufficient to retain only the vector 
part - (-~ )(V 10m. + V mOl. + V.Olm )41TO(r) of the "electronic 
factor" V I V m V.r -1. Then standard manipulations lead 
to the following expression for the cas'e of CS133 (i =t, 
1 =4): 

28 

1 
H,=-ed(7r,'-3r,')iV 4:16(r). 

18(l 

What can be said about the mean square radii 
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(4.4) 

TABLE I. 

III' [16] 
He,' [!O] 
SCZI":l 
V2J51 

CO::!7S9 

2.82±D.34 
3.88±O.40 

12.39±O.63 ["] 
13.10±O.63 1" j 
1421±O.38 [" j 

2.66±O.33 
2.B6±0.34 

1:>"67±1.57 ["] 
12.89±O.72 LIS j 
13,99± 1.0; [" j 

O.03±O.!O 
O.!6±O,OB 

-0.()1±O.C6 
O.Ol±O.(\") 
O.Ol±O.Oj 

As is known (e. g., from the scattering of electrons 
from nuclei), the charge of the nucleus can be regarded 
with good accuracy as uniformly distributed throughout 
a sphere of radius ro = 1.2 x 10-13A 1/3 cm (A is the mass 
number of the nucleus). Then r; = (t)r~. As regards 
r~, it is natural to assume that it is equal to the mean 
square magnetic radius r~ of the nucleus. The last 
quantity has been measured for tritium, He3, SC45, VOl, 
and C059. Since there is no significant difference be
tween r~ and r~ for any of these nuclei except He3 (see 
Table I), we assume that r~ =r; for cesium, too. As a 
result, we obtain the following interaction Hamiltonian 
for cesium: 

(4.5) 

It should be pointed out that for l?- 1, the effect under 
consideration is essentially due to the orbital quad
rupole moment of the nucleus. Unlike the effect dis
cussed in the preceding sections, it is directly depen
dent on the nuclear radius Yo' 

Hamiltonian (4.5) mixes both the 6PlIz and the 6P3/Z 
states with the 6s 1l2 ground state. Admixtures of higher 
P states can be neglected as before because the corre
sponding dipole matrix elements are small. A calcula
tion differing little from the one discussed in Sec. 3 
gives the following expression for the EDM induced in a 
cesium atom by the EDM of a valence proton on account 
of the finite size of the nucleus: 

(4.6) 

(4.7) 

6[ ('(,,+1) (1+2) +Z'a'] (2Z,.,,), +T,-3 _ 
R,·.= - -2.2. 

,. f(2, +])1'(2,+0 a 
(4.8) 

Here the R are the relativistic enhancement factors for 
the mixing of the Pl/2 and P312 states to the ground state. 
To simplify the writing of formula (4.6) we have ne
glected the small differences in energy and dipole ma
trix elements between the 6P1tZ and 6P3t2 states. 

On comparing Eqs. (3.8) and (4.6), we find that the 
EDM of the cesium atom due to the finite size of the 
nucleus is rather small as compared with that due to 
the nuclear magnetic quadrupole moment: 

D, =~( ~)' R.+2R,. {_I/"",,{ -0.17. 
DI m aa R 1/25 0,10 

(4.9) 

Thus, this effect does not considerably change the 
bound (3.10) found in the preceding section. 

Now let us discuss what limitations on the proton 
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EDM can be derived from an experiment with atomic 
thallium. [9] Both stable thallium isotopes, T1203 and 
Tl205, have spin i=!, so neither can have a magnetic 
quadrupole moment. According to the shell model, 
each of these isotopes has an S1/2 valence proton. Thus, 
interaction (4.3) reduces for thallium to the form 

(4.10) 

The ground state of the thallium atom belongs to the 
6s26P1/2 configuration. Here the dipole matrix elements 
for the transitions 6p-7s and 6s-6p are large, so it 
will be accurate enough to consider only admixtures of 
the 6s27s state and states belonging to the 6s6p2 con
figuration to the 6s26P1/2 ground state. If the total angu
lar momentum F of the atom is zero, the EDM of the 
atom will obviously also be zero. We shall therefore 
consider states with F = 1. 

A calculation similar to the one described above gives 
the following expression for the contribution to the EDM 
of thallium from a 6sz7s admixture: 

(4.11) 

In calculating the contribution from states belonging to 
the 6s6pz configuration it is convenient to use the meth
od of second quantization, the application of which to a 
related problem is discussed in[19]. This contribution 
is found to be 

(4.12) 

in which E is the average energy of the 6s6p2 band. The 
relativistic enhancement factors for thallium are Rl/Z 

:::: 7.9 and R 3/Z :::: 4. 9 (see (4.7) and (4.8». The values 
P(6P1/Z' 7s):::: 2. 2, p(6s, 6p):::: -1. 7, E -E6P1 /z =71300 
cm-t, vsp=1.58, v7s =2.19, and vss=0.99 for the other 
parameters can be derived from an analysis (presented 
in[19]) of the experimental data on the thallium spectra 
and oscillator strengths. 

In fact, it follows from a comparison of the calcu
lated and experimental values of the thallium hyperfine 
splitting constants, and also from numerical calcula
tions of the wave functions made by O. P. Sushkov and 
V. V. Flambaum, that the normalizing factor (3.4) for 
thallium, and hence also expressions (4.11) and (4.12), 
are actually larger-the latter by about 30%. Taking 
this into account, we find 

(4.13) 

It is very difficult to estimate Iir Z with any reliability. 
In calculating the bound on the proton EDM from the re
sults of an experiment with TlF molecules, Sandars ap
proximated the potential for the valence nucleon in the 
thallium nucleus by an infinitely deep square well of 
radius ro and obtained the following result: r~ -r~ = lirz 
= (4/15)r~ =0. 27d. [10] A similar calculation for SC45, 
Vi1 , and C059, all of which have a valence proton in the 
I7Iz state, gives Brz =0.13d, which is clearly in con-
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tradiction with experiment (see the table). It is almost 
obvious that these calculations underestimate r~ (or r~) 
and correspondingly overestimate Brz. Actually, ac
cording to a communication from V. B. Telitsyn, cal
culations using the more realistic Saxon-Woods poten
tiallead to Br2 =0.12r~ for thallium and to Br2 
= - 0.03 r ~ for the excited 1712 state for the proton in 
y89, which is at least in qualitative agreement with the 
experimental data given in the table. However, even 
this calculation is not accurate enough for our purposes. 
It is enough to make an error of 15-20% in calculating 
r ~ (and such an error seems quite possible in these cal
culations) to reduce the value of Brz obtained for thal-

. lium, for example, by several more times. Neither is 
an experimental determination of r ~ for the thallium 
nucleus practicable at present. We recall that the con
tribution from the magnetic moment to the scattering 
of an electron by a nucleus is Z2 times smaller than the 
contribution from the nuclear charge, and Z = 81 for 
thallium. An experimental determination of the mag
netic radius of F19, in which, as in thallium, the va
lence proton is in an s state, would be very useful in 
this connection. 

Thus, in view of the appreciably higher accuracy of 
the cesium experiments, it is evident from formulas 
(3.9), (4.9), and (4.13) that atomic cesium is a much 
more suitable material for investigating the proton EDM 
than atomic thallium, even if Sandars' value Brz/r~ 
= O. 27 for the latter is correct. 

5. CONCLUSION 

ThUS, the following bound on the proton EDM follows 
from the experiment with atomic cesium with allowance 
for the correction (4.9): 

idlei<5.5·1O-'" em. (5.1) 

The greatest uncertainty in this result is that associated 
with the error involved in using the shell model in cal
culating the nuclear magnetic quadrupole moment; this 
error may be as large as 30-40%. The errors in the 
atomic calculations, judging from similar calculations 
of the cesium hyperfine splitting, can hardly exceed 
15-20%. 

The upper bound to the proton EDM that is said to 
follow from the results of an experiment with molecular 
TIF[11] is 35 times lower than (5.1). However, this 
bound is essentially based on the estimate Br2/r~ 
=0.27 which, as was pointed out in the preceding sec
tion, is probably much too high, and at present there 
are no practicable means for improving it in sight. Fur
ther, an additional error (which is apparently not easily 
controllable) is involved in the calculation of the molec
ular wave functions. At any rate, a simple estimate of 
the effective electric field acting on the EDM of the 
valence proton in the thallium nucleus in a polarized 
TIF molecule leads to a value that is several times 
smaller than that given by Sandars et al., [10,11] even if 
the value Brz/r~=0.27 is used. ThUS, the upper bound 
to the proton EDM given inCll ] seems to be much lower 
than is justified by the experimental results on which it 
is based. 
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Nevertheless, Sandars' idea of measuring the proton 
EDM via the nuclear magnetic resonance in polar mole
cules is very attractive. However, lower and more 
reliable bounds can probably be obtained by using mole
cules containing heavy nuclei with spins i> t (i. e. , 
cesium). Such a nucleus can have a magnetic quadru
pole moment, so the effective electric field acting on 
the EDM of the valence proton will be larger than in the 
case of thallium, where it is due entirely to the fact 
that lir z differs from zero. The advantage is essen
tially the same as the advantage described above of 
atomic cesium over atomic thallium. 

In concluding I want to point out the following circum
stance. Despite the difference by a factor of 2 x 105 be
tween bound (5.1) and the corresponding bound for the 
electron (I d/ e I < 3 X 10-24 cmCSl), these two bounds may 
not differ so greatly in physical significance. The point 
is that in many models of the T-odd interaction (see the 
review by Wolfenstein in[ZOl) the EDM of an elementary 
particle is proportional to its mass (or to the quark 
mass). 'In this case the proton EDM will be m/m - 2 
x 103 times larger than the electron EDM. Of course 
from this pOint of view the best bound is doubtless that 
on the neutron EDM (Idn/el <10-z3 cm[Zl). However, the 
experimenters should not allow themselves to be hypno
tized by these remarks, for we are talking about a poor
ly explored area of physics that may have big surprises 
in store for us. 

I sincerely thank A. I. Valnshtein, V. F. Dmitriev, 
O. P. Sushkov, V. B. Telitsyn, V. V. Flambaum, and 
S. 1. Eudel'man for valuable discussions. 

I)The modulus of p is determined from experimental datal13J 

. on the cesium oscillator strengths. The sign is determined 
by the follOWing considerations. In calculating the mixing of 
sand p states, the wave functions for both states were taken 
as positive in the limit r -0. Then, since the radial quantum 

30 SOY. Phys. JETP, Vol. 44, No.1, July 1976 

numbers of the states differ by unity, the wave functions 
must have opposite signs in the limit r - 00. Hence p, which 
is determined mainly by the behavior of the wave functions at 
large distances, must be negative. 
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