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A solution has been obtained for the "parquet" equations for the vertex r(P"P2;P3'P,) of the direct four­
fermion interaction in a space of dimension d = 2+E. For the existence of such a solution it is necessary 
that the interaction have a symmetry of the type of S U(2)-invariance, and that the coupling constant G be 
positive. For high energies G P 2> 1 this solution is scale-invariant and corresponds to a stable fixed point 
of the Gell-Mann-Low equations. It is shown that a similar solution approximately satisfies the system of 
equations in four-dimensional space d = 4, where all the integrals in the equations tum out to be 
convergent. With the help' of this solution the contribution of the so-called "non-parquet" terms is 
estimated, terms which have not been taken into account in the equations. It is shown that these terms are 
numerically small. The solution can be used as a zeroth approximation of an iterative method of solution of 
the exact equations. 

PACS numbers: 11.80.Jy 

1. INTRODUCTION 

The direct point interaction of fermions 

(1) 

for 0", =Y",(l +Ys)/2 (the V-A variant) describes well in 
the Born apprOximation aU weak interaction processes 
at low energies. However, since the cross section for 
this interaction increases with energy, (1- GZEz, and 
only the S-wave participates in scattering, at an energy 
E-1~ GeV the growth of the cross sections runs into 
contradiction with unitarity, and it becomes necessary 
to take into account terms of higher order in the cou­
pling constant. Ul 

In order to determine such higher-order contributions 
one cannot make use of perturbation theory, since the 
interaction (1) is not renormalizable in the usual sense. 
For this reason the renormalizable Weinberg-Salam 
scheme[Z] for the weak interactions has acquired popu­
larity in recent years. Unfortunately, this scheme re-

11 SOy. Phys. JETP, Vol. 44, No.1, July 1976 

quires the introduction of a series of new particles and 
is' not quite simple. Also, the strong interaction scheme 
which is based on the intermediate nonabelian gauge 
vector fields is not simple. All other types of renor­
malizable interactions (e. g., the Yukawa 7rNN interac­
tion, or meson self-interactions of the type Xcp\ as 
well as the electromagnetic Yee interaction) lead to the 
well known problem of "vanishing charge, ,,[3] i. e., the 
vanishing of the physical coupling constant in these the­
ories in the limit of a point interaction, i. e., in the 
local limit. This manifests itself also in the fact that 
the effective coupling constant gZ(p2), which character­
izes the interaction at a momentum pZ, increases with 
pZ, in distinction from the asymptotically free gauge 
theories, where it decreases. Theories are possible 
where gZ(PZ) _ g~ = const for pZ - 00, the so-called theo­
ries with a "fixed point." This is the kind of possibility 
that will be explored for the four-fermion interaction 
in this paper. 

The weak interaction has been investigated in a num­
ber of papers by means of disperSion relations. This 
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has allowed one to find,[4] up to arbitrary constants re­
lated to the cross sections of physical processes, the 
corrections of order GZ and G! to the Born approxima­
tion amplitudes at energies smaller than lOS GeV, and 
to obtain a restriction[5] on the weak interaction cr()ss 
sections at high energies. 

In the present paper the weak interaction is investi­
gated by means of the so-called "parquef' integral 
equations for the vertex function, formulated in 1958 by. 
one of the authors[S] (for the· case of boson fields, cf. 
also(7). The iteration of these equations with the ze­
roth approximation in the form of the Born term leads 
to the usual divergences of perturbation theory, how­
ever, outside the framework of perturbation theory the 
equations may have finite solutions. [S,9,] 

In the paper by Abrikosov et al. £10] the two-limit 
technique has been used to obtain a solution which in 
the local limit leads to a vanishing coupling constant of 
the four-fermion interaction. However, the two-limit 
technique does violence to'the symmetry of the problem 
(the antisymmetry of fermion vertices). This is par­
ticularly manifest with the Thirring model as an exam­
ple. [11] We consider below the possibility that the inte­
gral equations have in reality a solution of a different 
kind, which decreases so fast'with the increase of mo­
menta that the integrals are convergent. In this case 
the dependence of the solution on the cutoff momentum 
disappears completely, and instead of the vanishing 
charge there appears the situation corresponding to-the 
fixed point. 

In Sec. 2 and Appendix 1 we write out the integral 
equations for the V -A interaction. In Sec. ·3 we give 
general argumentsU 2-14] in favor of the fact that these 
equations have finite solutions which exhibit asymptotic 
scale invariance. 

In a space of dimension d=2+£ (8< 1) such a solution 
is obtained in Sec. 4. In order to obtain it the spin ma­
trices and integrals are continued to an odd number of 
dimensions. m,16] To first order in 8 the solution is ob­
tained both by summing the highest order diagrams by 
means of the renormalization group, £1 7J and by solving 
the parquet equations. It is shown that for £ > 0 the in­
tegrals in the parquet equations for this solution con­
verge. Although this solution cannot be extended to 
£ = 0, it serves as an illustration of the basic idea of 
this paper, which consists in the fact that the Hamilto­
nian renormalized in the usual sense may have a re­
normalizable finite solution. 

In Secs. 5 and 7 we discuss the possibility of con­
structing a solution of the parquet equations in real 
four-dimensional space d =4. In Sec. 6 it is shown that 
for the existence of such a solution it is necessary that 
the number of interacting fields be larger than two, 
that the Hamiltonian contain neutral currents and that 
the weak interaction be constructed in an SU(2)-invari­
ant manner with G > O. In Sec. 7 it is shown that a fi­
nite solution is obtained only for a definite relation be­
tween the coupling constants of the neutral currents of 
the type (iI",v",){ee) and (iLJ.l){ee). The asymptotic values 
of the effective coupling constants are small, which al-
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lows one to neglect in the first approximation the 80-

called "non-parquef' terms. 

Section 8 is devoted to an investigation of the equa­
tions for the fermion propagator, which must be solved 
together with the parquet equations. 

The physical consequences of the obtained results are 
discussed in Sec. 9. 

2. THE PARQUET EQUATIONS 

We consider the Hamiltonian of the SU(2)-invariant 
interaction 

H=I/.F,lol.+'/,G,JJ, (2) 

where 

N N 

lo=,E (W,'¥,), 1= 1: (W,'t'¥.) 

are respectively the isoscalar and isovector currents. 
Here l' are the Pauli matrices acting on the doublets 

'¥,=c:). i=1"",N, 

For brevity, the spin matrices Oa have been omitted, 
i. e., in fact 

_If 

1,=1,.= L (W,O. '¥ ,) 
I-I 

etc. We show that the integral equations for an inter­
action of a Simpler form (e. g., with Go = 0 or with 
N = 11) do not have finite solutions. 

The currents J 0 and J can also be written in the form 
Jo=¥>It, J=¥T'>It, where 

This is the form of the equations which we will use be­
low. 

The parquet equations have been derived in Ref. 6 in 
the following manner. We define the fermion-fermion 
scattering amplitude T as a sum of contributions of all 
connected Feynman graphs with four external)ines. We 
split this amplitude into the parts ii, .$s, .$, ~ (Fig. 1): 

(3) 

Here ~s is the total contribution of all diagrams con­
sisting of two blocks connected along the s-channel by 
two fermion lines (carrying the total momentum Ps = PI 
+pz). It satisfies an integral equation similar to the 

'ft(' 
4 z 
FIG. 1. 

Zamolodchikov et al. 12 



:i=(-[~~]=[X] 

1(- x:it. 
b )(~ 

FIG. 2. 

Bethe-Salpeter equation (Fig. 2a) 

1 - - d'k <I>'=-J (T-<I>')S(k)S(p,-k)T--., 
2 (2n)" 

where 

(4) 

is the Green's function (the Green's functions are the 
same for electrons and neutrinos, since we neglect the 
electron mass), and the factor t arose out of the identity 
of the fermions. 

In the same manner, denoting by Pe =PI - Ps the total 
t-channel momentum, we obtain (cf. Fig. 2b) 

J - - ~k <1>= - (T-iP)S(k) TS(k-p,) --. 
(2n)"< 

(5) 

and ii> = (.j, )1:2 is the total contribution of the graphs con­
sisting of two parts connected by two lines (a fermion 
and antifermion) respectively along the t- and u-chan­
nels. 

Here R denotes the sum of all graphs which cannot be 
split into parts connected by only two particle lines. 
The simplest graphs of this type are shown in Fig. 3. 

With the help of the identity 0OtYjJ.0a =XOtlLaPv, where 

(6) 

the contribution to T or .J,s, .J, of any graph can be writ­
ten in the form2 ) 

1'=-'/. (r .•• (0.) " (0,) ,,+ fRO,etO.)" (TO,) ,,- (2=1)}, 

<il'=_I/, (Ill :.,(0.) 31 (0,) .,+Ill;., (TO.) 31 (TO,) ,,- (2= 1)}, 

(7) 

Then Eq. (4) can be rewritten in the form of the fol­
lowing system of equations 

13 

k.(p,-k). (k' « -k' ~ 
XXT",,·X."·'k'(p._k)' ~ )~ p. » (2n)'i ' 
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(8) 

Similarly we obtain four other equations for <p}, <Pi, 
<P~ and <P;. 

We shall look for an approximate solution of these 
equations, such that the integrals converge, but con­
verge slowly, and in the integrals large integration mo­
menta are important. In this case one may consider 
that r fOta =rfgOtB , where r f is a functiqn of a scalar 
argument (and similarly for r IOtB and all the quantities 
<p OtB ), since the integrals which are the coefficients of 
terms of the form POtPB converge faster and are conse­
quently numerically small (cf. infra). 

For the scalar functions rand <P one can write the 
equations 

W'=2J{[f -w'jf +3[f -Ill'jf} ~(k2)~«p,-k)') d'k 
j j, j , " k'(p.-k)' (2n)'i' (9) 

w/ = 2 J {[f,- Wljf, +[f, - Wj'jf,-

_ 2[f _ III 'jf} ~(kZ)~«p,_k)Z) d'k 
, " k'(p,-k)' (2n)'i . 

The complete set of equations is listed in Appendix 1. 

We shall show below that the nonparquet graphs of 
Fig. 3b, c give a small contribution, and can be ne­
glected in the first approximation. Thus only the sim­
plest graph of Fig. 3a contributes to R: 

R"" RO=-'/2 {Fo[ (0.)" (0.) ,,- (0.),,(0.),,1 

-Go[ (TO.)" (TO.) ,,- (TO.) "(TO.),, l}. 

The equations (9) for <P with R '" Ro are called the "par­
quet" equations. They form a closed system and for a 
given Green's function S(P) =f3(P2)jjJ allow one to con­
struct the vertices T, i. e., the functions 

f,=Fo+W;,+W,'+lll j ", f,=Go+Ill/+Ill/+Ill? (10) 

In order to determine the functions f3(p2) it is necessary 
to compete the system (9)-(10) with the Dyson-Schwing­
er equation (or the unitarity equation for S·l(p». 

The main attention here is devoted to the analysis of 
the parquet equations (9)-(10), which contain the main 
difficulties. In the equation for f3 we restrict ourselves 
to simple estimates. 

3. THE SCALE-INVARIANT SOLUTION AND 
EFFECTIVE COUPLING CONSTANTS 

If the vertex r decreases in the region of large mo­
menta, for p~ - - p~ - 00, guaranteeing the convergence 
of the integrals in (4), (5), then the bare values of the 
charges Fo and Go vanish (otherwise Eqs. (10) would be 
violated as p~- co). According to the general arguments 
of dimensional analysisU Z-14l the system of equations 

FIG. 3. 
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for r and (3 in the high-momentum region will under 
these conditions have a scale-invariant solution of the 
form 

r,(p,z, p,', Po', P.', p.', p,') = (p,',}-').."F,(p'"/p,', ... , p,'/p,'l, 

~(p')=(P'/i.')', (11) 

where 

-y=d/2-1+211, i=j, g. (12) 

Here d =4 is the dimensionality of space, a is a posi­
tive number by virtue of Lehmann's theorem, and >..Z is 
a normalization momentum. 

The strong coupling condition (12) reflects the fact 
that in the Feynman graphs to each new isoscalar and 
isovector vertex there corresponds a factor 

j(p') =r,(p') ~2(p') (P')"I'-', g(p') =r,(p') ~'(p') (p')dl '_', (13) 

respectively, and called effective coupling constants. 
Here r/ji)=r/pz, ... ,p2) and the factor (pZ)d/Z-l is a 
phase-space factor. The condition (12) denotes that the 
effective coupling constants for the scale-invariant so­
lution are constants: 

j=j,=F, (1, ... 1), g=g,=F,(1, ... 1), 

i. e., the contributions of all the graphs are quantities 
of the same order as p~ - 00. 

4. FERMION INTERACTIONS IN A SPACE 
OF DIMENSION 2 + e 

A. The method of analytic continuation in d 

In a space of dimension d = 2 perturbation theory leads 
to logarithmic divergences, and the problem of the 
four-fermion interaction can be solved by means of 
summing the leading logarithmic terms. Therefore, in 
order to understand the general properties of the solu­
tion of the above equations in a real four-dimensional 
space we first consider the case of a nonintegral di­
mensionality d = 2 + e. Here for small e « 1 the solution 
can be obtained in closed form by summing the highest 
terms in e in perturbation theory. 

In second order of perturbation theory the amplitude 
for fermion interactions is determined by the graphs of 
Fig. 4. Their contributions contain products of the y­
matrices ordered according to the continuous lines in 
Fig. 4. In analytically continuing these products there 
appears a difficultyt151 related to the fact that the quan­
tity eaaro cannot be continued to nonintegral d. However 
the contributions of the graphs contain only products of 
pairs of the quantities eaaro which are tensors (and not 
pseudotensors as are the eaaro for d =4) which by virtue 
of their anti symmetry and covariance can be repre­
sented in the form 

where 1(4) = 1 and 1(2)"* 00 (the latter owing to the fact 
that in two-dimensional space e",aro=O). In the contri-
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butions of the graphs of Fig. 4 this quantity enters mul­
tiplied by terms of the order € =d - 2 or even of order 
EZ. Ther~fore in first order in e the tensor does not 
contribute and in the correction of the next order de­
pends on the choice of the function I(d). 

B. Perturbation theory and the Gell·Mann-Low 
equations 

For the construction of the amplitudes r f and rg for 
e < 1 we use the method of E-expansion[181 and the tech­
nique of the renormalization group. We consider the 
interaction (2) with Go> O. The corresponding two-di­
mensional model has an asymptotically free solution. [191 
As will be seen, in a space of d = 2 + £ dimensions it 
leads to a theory with a "fixed point" with numerically 
small effective coupling constants g1- E, I1-Ez. All 
quantities can be found in the form of a series in pow­
ers of E. 

We first consider the amplitudes r f and rg in per­
turbation theory. In second order in the coupling con­
stants Fo and Go for E - 0 the most important are the 
diagrams of Fig. 4b and e, since they contain E in the 
denominator, in distinction of the graphs of Fig. 4c, d, 
where e cancels in their denominators (cf. infra). 

For d = 2, i. e., e = 0, the contributions of Fig. 4b 
and e to r f differ only by sign and by the fact that the 
first depends on p! whereas the second depends on p~. 
This leads to a cancellation of divergences in their 
sum, analogous to the cancellation in the Thirring 
model. 3) The corresponding two-dimensional model 
(with Go=O) is scale-invariantfor arbitrary Fo. It 
cannot be investigated by means of the e-expansion 
method used in this section. 

We consider the contribution of the diagram of Fig. 
4b: 

(b) F,'+3G,' S k,,(k-p.). d"k 
r,., = 2 X"" X",,, k'(k-p.)' (2l1)";' (14) 

with its contribution to r g (i. e., r;b» differing only by 
the substitution of G~-GoFo for (F5+3G5)/2. The con­
tribution of the diagram of Fig. 4e to r f and r g is given 
by the same expression with Ps replaced by Pu and the 
appropriate sign change, or F 0 replaced by - F 0 (the 
isospin coefficients are given in Appendix 1). The ten­
sor Xa .. a~ is defined in (6), and for nonintegral d the 
normalization of the Feynman integrals is chosen such 
that 
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where A2 - co is the cutoff momentum. 

Calculating the integral by means of the standard 
methoduS,lSJ we obtain 

F.'+3G.' (P.')';'-·\' +0(£'), 
411: e/2 

where the contributions r:b ), rr) and riel are obtained 
from here by means of the replacement of the isospin 
structure. Here 0(e2) denotes the contributions of the 
higher-order terms in e (some of them are related to 
the contribution of the tensor e",,.8pe,,,v8a)' Therefore, 
not taking into account the contributions of the graphs 
of Fig. 4c, d, we obtain in highest order in 

f, = F, + _l_(F" + 3G,') 
(p.') '1'- (P.') ,;: 

411: el2 
(15) 

(G.'-G.F,) (p,')',"-A" (Go'+F,G,) (P.') 'I'_A" 
f,= G, 

2n e/2 2n e/2 

Let us show that the contributions of the graphs of 
Fig. 4c, d are indeed small. For the graph of Fig. 
4c we have 

where pt =Pl - P3 and Tr 0,. 'Y,. = g,.v Tr 1, where Tr 1 = 2 
for d = 4. Here a cancellation of singularities has oc­
curred for d = 2 n. e., the quantities e in the denomina­
tor cancel) and the matrix element has become trans­
verse. USJ A similar cancellation occurs in r:~~ (which 
differs from r j~~ by the substitution F~ - G~) and also 
in the graph of Fig. 4d. Its contribution is 

(d) _ ( + 3d.) d-2 r(Cl 
[,., - 1 F, 2.VTr 1 loh 

i. e., is of even higher order in E. The same is true of 
the graph ri~~. 

For the sequel it is convenient to introduce the di­
mensionless coupling constant: bare 

f.=.\'F./ (-b)d/Zf (dl2) , g.=;\'G,I (4n) d!1f (dl2) 

and renormalized 

j,=,!F,/(4:t) "'r (d/2), g,=i.'G,/(4n)d;'f(d(2); 

here;\, a quantity of the order of the particle masses, 
is the normalization momentum. The coupling con­
stants are equal to the values (13) of the effective cou­
pling constants for p2=A2 or p2=;\2, respectively. 

We shall assume thatfo, gO(Jege)« 1, but that 

. (p'/A') ',"-1 
!. e!2 ' 

(or that 2f.[(P2/A2)E/2 -l]/e-l, 2ge[(P2/A2)'/2 -l]/e-l) 
and sum the leading terms by means of the renormal-
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i = ----c::>- + FIG. 5. 
a 

ization group. U7J Since in the approximation under 
discussion the renormalization of the wave function is 
absent (it is determined by the diagrams of Fig. 5 and 
higher-order diagrams which yield a contribution of 
order g~ - e 2), i. e., j3 = 1, the effective coupling con-' 
stants are expressed in terms of the vertices r I and 

-2 -2 -2 r g' Making use of their values (15) for Ps =P. = P , we 
obtain, differentiating (13) with respect to In(? /A2) the 
following system of Gell-Mann-Low equations117J • 

dg 

dln(p'II.') 
.!....g-4g', 
2 

(16) 

where (%)eg2 is a correction of order e3 corresponding 
to the higher order terms which have not beeri written 
in (15) 4) (in e), terms which have the form 

3 • (P)"'-A" 
8" Goe £/2 ' 

for p~ =p~ =ji; they are obtained for fed) == 1. 

The solution of the second equation is 

g(P') =g, ( :~: ) , , / { 1 + ~, [( f: ) ,/2 - i ]}. (17) 

where gl = f/8 is the limit to which g(p2) converges for 
p2 _ co if ge> O. With the choice ge = gl, or for any other 
ge> 0, when 

g, ( P' ) ,IZ - -;z :;p 1, 
g, 1. 

the renormalization group equations have a scale-in­
variant solution. 

The solution of the equation for f 

j(p') ='1 ,eg (p') + (1,- 'I.eg,) (p'I").') ,{, 

converges for ji - co to the constant value f - (i) egl 
(i. e., is stable) only in the case when the second term 
in it vanishes, i. e., when the physical values of the 
coupling constants are related by Fe = (i)eGe• We shall 
discuss the meaning of this relation in Sec. 6. 

C. Anomalous dimensions 

We now determine the dimensions A of the field IJI in 
the scale-invariant theory. The second order diagrams 
for ~ = (1 - (3-1(p2»j1 are represented in Fig. 5. Calcu­
lating according to the method described above we find 
that the contribution of the graph of Fig. 5b does not 
contain terms of the order e, and the contribution of the 
graph of Fig. 5a isS) 

A (-'/i')'-l Trl 
I=2(!.'+3g.') p. np. n=N-2 -, . e 

The renormalization group equationstl71 for (3 have 
the form 
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dln~ _?(' , 
dln{ji'/}.') -- t +3g In. 

According to what was said above, for large p2 one 
may assume that g2 = g~, f2 = f~. Then 

~(fi') = (fi'/}·')" ti='/"ne'. 

where A> 0, in agreement with Lehmann's theorem. 
Thus, in units of length, the dimension of the field is 

['¥ (x) ] =- (,/,+'/,e+'/"ne'). 

The strong coupling condition (12) to order £2 yieldS for 
the index y of the vertex the equation 

"(='/,e+'/,,e'n. 

D. The solution of the parquet equations 

We find the solution of the system of parquet equa­
tions for r f and r go in ad = 2 + e-dimensional space. 
For equal and large momenta p~ = p2 this solution must 
correspond to Eqs. (17) and (13) for ~ = 1, i. e., it 
must yield 

r.=j./(jJ')'/" r,=g.l(jJ')'·', g,=el8, t,=3(el8)'. 

To fir.st order in e the system of equations for r f and 
r .. becomes substantially Simpler and can be solved by 
methods applicable in the logarithmic case. [7,9,20] The 
first of the simplification consists in the fact that cI>s 
depends under these conditions only on three variables 

s=max {p.', fJ,', fi.'}, ~=max {P,', fi.', jJ.'}, 1]=jJ.'. (18) 

One may consider, without loss of generality, that the 
momenta Pi and P2 are large, i. e., ~ > b ~ 11. If the mo­
mentaPi andP3 (or Pi andP4) are large, then ~- b-11 
and cI>s will depend on one variable, which is confirmed 
by perturbation theory calculations. 

The system of equations for space like values of the 
momenta is closed and does not require knowledge of 
the solution in other regions for its solution. We carry 
out a Wick rotation ko-iko[B] thus passing to an Euclid­
ean metric. We consider the vertex for ~ ~ 11 - b since 
such a region will suffice for our purposes. [7] We in­
troduce the notation 

Then the system of parquet equations can be written in 
the form 

2 • 
lDi(X,y)=---;- S {[rj(x)-ID,'(x)]r.'(z,y) 

2 ~ 

+3[r,(x) -(jIg' (x) ] fg' (:, y) }de - --;- S ([r,(z) -WI' (z) ] ft' (z, y) 

+3[r,(z)-ID,'(z)]i,.(z,y)} dz. (19) 

The lower limit has been chosen in such a manner since 
only this region contributes to the first order in E. In 
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this order there are similar simplifications in the other 
equations (cf. Appendix 1). 

The solving of a system of the type (19) is difficult, [17] 

owing to the fact that the function cI>(x) = cI>(x, x) can only 
be defined if the quantity cI>(x, y) is known, and the latter 
depends on two variables. A further simplification oc­
curs if in place of this system one solves the system of 
Sudakov equations, [7,20,14] which is equivalent to (19). 
The Sudakov equations are obtained by cutting the re­
ducible graphs for T, i. e., graphs consisting of two 
parts connected by two particle lines only (d. Sec. 2) 
along the smallest momentum. For our case these 
equations have the following form: 

6 Z 6 ~ 
1D.'(x,y)=---;- Sr,'(x,z)f,(z)dz---;- S r,'(z)dz, 

¥ Z 

2 • 4 ~ 

Ill,' (x, y) =--; S [r/ (x, z) -2r,. (x, z) ]r,(z)dz + --;- S r,' (z) dz, . . 
(20) 

6 ~ 6 ~ 
Ill," (x', y") =---;- Sf/(x",z)f,(z)dz---;- S r,'(z)dz, .. ." 

2 ~ 4 ~ 
Ill,' (x', y") =- --;- S [U (x', z) +2r,. (x', z) ] r,(z) dz ---;- S r,' (z) dz. 

.. ~ 

Here q(x, y) or r;(x", y") are the vertices when the mo­
menta Pi and P2, or Pi and Ph respectively, are large. 
They are defined as follows (cf. for more details see 
Appendix 1): 

rt'(x, y)=Ill,'(x, y)+Ill,'(x) , r,'(x, y)=g,/.\'+Ill,'(x. y)+ID/(x), 

r,"(x', y")=Illt'(x')+Ill,"(x', yU), 
r,"(x", yO) =g,/A'+Ill,r(x) + Ill," (x", y'), 

where 

are quantities analogous to (18) for the u-channel. We 
consider thatfo=O, since it was shown thatfo=o(e 2). 

Adding, we obtain for q(x, y) and r;(x, y) the equa­
tions 

6 • 
f.' (x, y)=- - S r .. (x, z) f,(z)dz, 

e . . (21) 

• 8 -
r.-(x, y) =-~ S [f.'(x, z)-2r:(x. z) ]r,(z)dz + - J r; (z)dz. 

e e . 
Let us first find the solution for x = y. Differentiating 

with respect to x we obtain r,(x) = gi/Xi' r/x) =0. This 
solution coincides of course, with the answer one gets 
from the use of the renormalization group, (17). Dif­
ferentiating (21) with respect to y we obtain 

r!'(x, y) =_3/,g,[X-"'y-"'-y"'X-'I,], 

r,' (x: y)='I,g,x-"'y-·I'+'I.g,y"·:r;-'I" 
(22) 

Similarly one can determine the vertex in the other re­
gion of momentum values, when Pi and P4 are large; 
here (cf. (22» 
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We note that 

these combinations correspond to the state when the 
particles have in the s-channel a definite total isospin: 
o or 1 (for more details, cf. Sec. 7). 

Finally, we determine the functions (x) which we shall 
also need in the sequel. Substituting r ,.(x) = gIl x into 
(20) we obtain 

1Ilt'(x)=-3g,/4x, 1Il,'(x)=g,/2x. 

E. Convergence of the integrals in the parquet 
equations for E > 0 

(23) 

We substitute the solution (22), (23) obtained by 
means of the Sudakov equations into the system of par­
quet equations (19) and show that it guarantees the con­
vergence of the integrals. In distinction from the Suda­
kov equations, which are valid only to first order in E, 

the equations (19) may serve for E - 2 as a good model 
of the real four-dimensional equations. We show that 
if the vertex decreases as a function of the largest mo­
mentum, as in (22), then all integrals turn out to be 
convergent. For the four-dimensional space such a 
discussion is carried out in Sec. 7. 

Substituting the solutions (22), (23) into the right-hand 
side of (19) yields 

;1g, s~{ 3 5X''''} dz 3 g, 
tD,'(x)=--. -. -+-. -=---. 

2h X'z ' Z"I Z 4 x (24) 

As can be seen, the integrals converge in the region of 
large momenta z - "", and the expression obtained coin­
cides with <Pi from (23). Similar considerations apply 
also to the other equations of the system (19). 

5. SOLUTION OF THE FOUR·DIMENSIONAL 
EQUATIONS BY MEANS OF THE 8-EXPANSION 

In this and the following two sections we shall find an 
apprOXimate solution of the system (9) of four-dimen­
sional equations. We are looking for a solution for 
which 

a) the integrals converge slowly, and large integra­
tion momenta are important in them, 

b) in the zeroth approximation the <p s depend on the 
variables ~, 17, 1: (d. (18», but not on ratios of the type 
pUp~. 

As we have seen in Sec. 4, both these properties are 
true in a space dimension d = 2 + e in first order in e. 
Therefore, if a solution of this type exists, it can be 
found by means of the method of e-expansion in the ver­
sion described below. 

The transition to a nonintegral dimension d occurs, 
as we have seen, in the system of integral equations 
(A.1), written out in Appendix 1. At d = 4 these equa­
tions coincide with the system (9) and at d * 4 they differ 
from it, first, by the factors a(d), b(d), c(d) appearing 
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in the right-hand sides of (A. 1) as a result of the elimi­
nation of the spin structure, and, second, by the fact 
that the scalar integrals are defined in a space of 
d = 2 + e dimensions. In the two-dimensional case, when 
d = 2 and a(2) = b(2) = 1, c(2) = 0, the equations (A. 1) coin­
cide with the system (19) considered above. 

We consider the system (A. 1) for the real four-di­
mensional case d=4, when a(4) =2, b(4)=c(4)=t, but 
we leave the scalar integrals defined for nonintegral d. 
Let us attempt to solve it in the following manner. We 
formally find its solution by means of the e-expansion,6) 
but make use of it for E =2. Substituting this solution 
into the right-hand side of the equations, we show that 
owing to the small numerical factors large momenta are 
important in the integrals even for e = 2, i. e., the 
property (a) is satisfied. Therefore the solution will 
approximately satisfy71 the system (A. 1) also in the 
realistic four-dimensional case. 

In order to determine in first order in e the solutions 
of the system (A. 1) with a = 2, b = c =t and with scalar 
integrals defined for d = 2 + e it is again convenient to go 
over to the appropriate equations of the Sudakov type. 
This yields (in place of (21»: 

. " 
ft' (x, y) = ~ - ~ S [1',. (x, z)f,(z) +31'. (x, z) f,(z) Jdz 

),.' e 

1 • 
+ -; S [ (2N-l) 1' .. ' (z) +01', (z) f,(z) -91',' (z) )dz, . 

(25) 

1'/(x,y)=£_-±-'s [f/(x, y)f.(z)+f/(x, z)f,(z) 
,: E , 

2 ~ 

-21'/ (x, y) f,(z) ]dz + --; S [ (N+4) 1',' (z) -21', (z) f,(z) ]dz, 

where N is the number of doublets 

( Vi) . 
'l'i = ei 

of fermion fields and x = ~E/2, Y =17'/2 and z = (k2)'/2 are 
the same variables as in (19). 

In the equations (25) the Green's functions have not 
been taken into account (cf. (11», L e., one assumes 
that the terms of order ~ may be neglected in the ze­
roth approximation. However, taking ~ into account 
leads only to the substitution e - e + 4~ in the equations 
(25). For more details, cf. Sec. 8. 

Let us first determine the solution of the system (25) 
first for x = y. Differentiating, we obtain for the effec­
tive coupling constants j(x) = rt<x)x and g(x) =xr ,.(x) the 
system of Gell-Mann-Low equations 

(26) 
dg e 

. = - g-g'(N+4) +2jg. 
dln(~/)"') 2 

We discuss the solution of this system in the next sec­
tion. 
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FIG. 6. 

6. STABILITY AND SYMMETRY 

The phase plane of the system of Gell-Mann-Low 
equations (26) is represented in Fig. 6. The arrows 
indicate the "flow" of the effective coupling constants 
as the momentum increases. The system has "fixed" 
points situated on the singular solutions I =a(1.2)g and 
g=O, where 

a"" == N+1± (N'+20N+28) 'f, . 
2N+3 

Their coordinates are 

g:'" =e/2(N+4-2a""') , 

g:"=O, t."'=e/(2N-I), 

The first and fourth are respectively a stable and un­
stable node. The two others are saddle-points and are 
stable, in the sense that if the physical values of the 
coupling constants are situated on the singular solution 
for g > 0 for the second point and I > 0 for the third, 
then with the increase of momentum the effective cou­
pling constants will tend to constant values. 

The presence of the saddle points in the phase plane 
allows one to fix the form of the interaction. If one 
breaks the SU(2)-symmetry of the Hamiltonian (2) by -
setting 

H='I ,F,I,I,+'/,G"I,I,+G,I +1_, 

then in the GG,,-plane there will appear a singular point 
of the saddle type. The corresponding singular solution 
is G = G", i. e., corresponds to the SU(2)-symmetric 
form of the Hamiltonian H (cf. Appendix 3). Similarly, 
an attempt to write the isoscalar current in the nonuni­
versal form, e. g. , 

. N 

1,= Ec,w,,¥, 
io=:l 

with Cj * 1, also does not lead to a stable solution. 

7. THE DEPENDENCE OF THE VERTEX ON 
MOMENTA OF DIFFERENT ORDERS 

From (25) we determine the function rj(x, y). Know­
ing that for x = y 

f, (x) =/,/x, f,=g,/x, 
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where /1 and g1 are the asymptotic values of the effec­
tive coupling constants, we obtain 

ft' (x, y) =-'/ .. e[ (1-6,')x-o"y->+o"+3( 1-6,')x-o,.y-'+o,,], 

r,.(x, y) ='I .. e [(1-6')x-o,.y->+o,._ (1-6,')x-O"y-,+O,,]. 
(27) 

Here 6~=1+4{f1- 3g1)/e and 6f=1+4{f1 +g1)/e are num­
bers. Substituting the quantities 11 and g1 obtained 
above leads to values which do not depend on e 8): 

_N-2 
60' = N+4-2a' 

N+6 618 = ___ . 

N+4-2a (28) 

Here, e. g., for the second fixed point 

2N+3 

We note that for N > 2 both quantities 6~ and 6f are posi­
tive. 

In Appendix 2 one can find the vertex in the case when 
both momenta P1 and Ps (or P1 and P4) are large. For 
q,S(x) we obtain 

!ll,'(X)=-~(f.'+3g,')' 
ex 

8 
cD/(x) = -(g,-f,)g,. 

ex (29) 

We now substitute the quantities (27), (28) into the 
system of parquet equations, similar to what was done 
in Sec. 4 (subsection E) and convince ourselves that all 
integrals converge and that the solution can be extended 
to e = 2 in th-e four-dimensional space. At the same 
time we show that the solution (27), (29) obtained by 
means of the Sudakov equation satisfies the system 
(A. 1). 

The system (A. 1) has the property that it relates the 
vertices r f and r 6 (which have definite t-channel iso­
spin). This substantially complicates the solution. In 
order to determine r s and r u it is more convenient to 
consider vertices which have definite isospins respec­
tively in the s- and u-channels. They are related to the 
vertices r f and r 6 by the following relations: 

(30) 

Since the interaction (2) conserves isospin these ver­
tices are expressed in the parquet equations only in 
terms of themselves. For the t-channel a similar 
property is exhibited by 

f,'=2f/+1':'"IN, f.'=2f,'+l',"IN . (30') 

We introduce the notation r}, where T = 0, 1 is the 
value of the isospin in channel i, i = s, t, u. Defining 
r} with the help of equations analogous to (30), (30'), 
after some algebraic transformations the system (A. 1) 
can be rewritten in the form 

2c' {'. . . 
cD/(x'Y)=-e- f [fr'(x)-cDT'(x)]fT'(z,y)dz 

, 

(31) 
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The values of the coefficients CS = - 2, Cu =t, ct =N 12 
correspond to the transformations of the spin structures 
respectively in the diagrams b, e, c of Fig. 4. 

The solution (27), (29), (A. 2), (A.4) obtained by 
means of the Sudakov equations can be written in a uni­
form way 

f/(X,y)=_8_(1-0/)X-','YV-', 4l>"(x)=~(1-0Ti)'~, (32) 
2c' 2c, x 

where o~ are expressed by the Eqs. (28) and (A. 3). 
Substitution of this solution into (31) yields 

(33) 
If o~ > 0 the integral converges. It can be seen from 
Eqs. (28), (A. 3) that all o~ > 0, except 

6.,'= (2.\'+5) (1-a)/2(N+4-2a); 

the latter is positive in the second fixed point and is 
negative in the other two, since in them a > 1. There­
fore only the second point corresponds to a finite scale­
invariant solution. As has been seen in Sec. 6, this is 
possible only if the physical values of the coupling con­
stants are related by Fe =aGe• It is this solution which 
will be considered below. 

Numerically the quantity o~ turns out to be small. 
For example, for N = 3, or N = 4 o~ is respectively 0.12 
or 0.22. This allows one to extend the solution to E = 2, 
i. e., to the real four-dimensional space. Indeed the 
contribution to <I>~ from the region of small integration 
momenta k2 <x, where it is essential to assume that the 
solution has the property (b) (cf. Sec. 5), contains the 
small quantity o~, since this contribution is of order of 
unity, whereas the contribution from the region k2 > x 
is of the order 1/o~. The contribution from the region 
k2 < x to the other <I>~ is not small compared to the con­
tribution from the region k 2 > x), but therefore the <I>~ 
themselves are small compared to <I>~ (e. g., the func­
tions <I>~ (x) which determine hand gl contain the small 
quantity9l (1- opa and all o~ except o~, are close to 
unity for N=3 or 4). 

Thus we have shown that in the four-dimensional 
space the vertex nJ.p~, p~, p~, p~, p~, p~) in the region 
p~ =p~» p~, p~ - P~ has the following scale-invariant 
form: 

r,'=-'/, (p,') -0,' (p,') -(1-0")10 (p.'lp,', p.'lp,'). (34) 

If in the zeroth approximation yg does not depend on the 
ratio pVp~ (property (b) in Sec. 5), then it can only be 
determined by means of the e-expansion. If the vari­
able t =max(p~, P~, p~) differs from 1/ =P~ we obtain for 
r~(~, 1/, t) (cf. (18»(l4J 

19 

, 
f T'(;. '1. ~) =c' J rr' (;, z, z) f/ (~, z, z)dz+r/(;,~, ~) 

, 
= ~ (1-oT') [(1-0;) (;./2)- .... (~./2)-.... '(Tl'/')-(.-2 .... ) 

2c' (1-20/) 
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From here we have, to accuracy og, 

10' (p,'lp,', p,'1 p,') = (p.'1 p,') '.'= (p.'lp.') "'. (35) 

The relation obtained in this way may be used as the 
zeroth approximation of an iteration method, substitut­
ing it into the right-hand side of the four-dimensional 
parquet equations. The analysis carried out above 
shows that: 1) no divergent integrals appear, i. e., 
there is no "vanishing charge," 2) at high energies the 
zeroth approximation apparently determines the princi­
pal part of the. exact solution. One can therefore expect 
that the iteration method will be numerically convergent. 

The last assertion is not in fact proved, since in this 
paper the iterations have not been carried through. The 
problem of carrying these through seems possible and 
quite interesting. Effecting the first iteration will allow 
one to consider the problem of validity of the property 
(b) (Sec. 5), and if it is not valid, to determine the cor­
rect form of the function y~ (in place of (35». 

We note that for small e the nonparquet graphs of 
Fig. 3b, c contain an extra factor gr2 (k is the order 
of the graph), compared to the parquet graph, and are 
therefore unimportant. They also do not contribute to 
the zeroth approximation for e = 2 since in this case gl 
remains numerically small: we have (at the second 
fixed pOint) gl/2 = O. 05, 11/2 = - 0.03. Owing to the 
rapid convergence of all the integrals except the inte­
gral over the last momentum, there appears a factor 
11 (k - 1)! in the contributions of these graphs. This 
factor seems to compensate, at least for not too large 
k, the growth of the number of graphs. 

Similar considerations show that the structures of the 
form Pa Pa which have not been taken into account above 
also do not contribute to the zeroth approximation. 

8. THE EQUATIONS FOR THE PROPAGATOR 
AND AN ESTIMATE OF THE INDEX ~ 

We have found above the solutions to the parquet 
equations under the condition that f3(p2) = 1. We now 
substitute into them f3 in the form (11). It is easy to 
notice that this simply leads to the substitution 
e - e + 411 (x = WE/2+2t:. etc.) in Eqs. (27), (29) and in the 
expressions for hand gl' In order to find A it is nec­
essary to complement the system of parquet equations 
with an equation for the propagator. 

The Dyson-Schwinger equation turns out to be incon­
venient in our case, since in order to solve it,it is nec­
essary to know the vertex to a higher accuracy, [9J than 
was done before. We therefore utilize the unitary ex­
pansion of S-l(p) with respect to "jets," as formulated 
by Polyakov. [22J 

In view of numerical smallness of the asymptotic val­
ues of the coupling constants 11 and gl we restrict our 
attention to the first "three-jet" term of this expansion, 
which in this case yields the largest contribution. We 
then obtain for S(p) the equation 

1m S-' (p)= S [.,(p. k. q-k, p-q)Tr[O. 1m S(k)O., ImS(k-q) 1 
d'kd'q 

XO, 1m S(p-q)o"r.,.,(k, q-k, p-q, p)--, -. (36) 
n 
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In the case of the power-law form (11) the propagator is 

e(po) 1m ~=sin (n~) (p2/,,2)'e(p), 

where 8(p)=8(PZ)8(po) andP2=p~_pz. 

We estimate the integral in the right-hand side under 
the assumption that the vertex functions r ",II vary slowly 
inside the integration region and are equal to 

(37) 

We do not know whether this form of the vertex is a· 
good approximation. However, the calculations carried 
out in this section show how one can determine the in­
dex~. 

The equation (36) for the vertices of the form (37) has 
the following form 

[ II' ( 1) 3g.' ( 1 ) + 3 ] 2' . 3 A ImS-I(p}= T N+ T +-2- N- T T/lgl" sm riLl 

- - - - - ~k~ xI Tr[O.kO.(k-q) ]O.(p-q)O. e(k)e(q-k)e (p_q) __ q_. 
(_p')2+24[k'(k_q)2(p_q)'JI' n' 

The integral with respect to d4k equals the discontinuity 
across the cut of the quantity 

I Tr[O,kO, (q-k) ] 
I., = [ (-k'-iO)( _ (q-k)'-iO) r-' :t'i 

d'k 

This is easy to see if one notes that the discontinuity of 
l,.v appears, as usual, when the integration path is situ­
ated between the singularities of the denominator. The 
divergent part of l,.v does not have a discontinuity, and 
the convergent one equals 

[( 1+~ ) q.q,] r'(2+~)r(-2~) (q')t+24 
discI.,=4in'sin(2nM 1+2~ g"--;j2 r(4+2-")r'(1-~)rI' 

A similar calculation of f d4q yields 

( P' )-. 8n [r(2+M ]' 
ImS-I(p)=p J! f(3+3~)f(5+3-") r(1-~) 

[ f ' 1) 3g' ( 1) 3 ] X ~(I"i+? ++ N--;;- +-;;-llgl . 2 _ _ __ 

This equation has the apprOximate solution 

~ (N) =1/.[ lhil (N+I/Z \ +-'/,gl'(N _I/,) +'/,jlgl] 

(A(4) = O. 06). For the reasons mentioned above the val­
ue of the index obtained here may be valid only in order 
of magnitude. 

9. CONCLUSION 

In the Hamiltonian (2) considered above the fermion 
fields are grouped into doublets 

Such a combination of fields is characteristic for the 
unified theories of weak and electromagnetic interac-
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tions. [2J In order to include the hadrons, one intro­
duces by analogy with the leptons the quark doublets 

(::) , 
where 

n,=n cos e+" sin e, ",=-n sin e+" cos e, 

8 is the Cabibbo angle. The charmed quark[Z3J is intro­
duced in order that the Hamiltonian should not contain 
neutral strange currents, which have not been observed 
experimentally. Without taking the strong interactions 
into account the point quarks p, p', n, A may be con­
sidered as particles of the same nature as the leptons. 
Their inclusion into the Hamiltonian leads Simply to an 
increase of the number N of doublets for the realistic 
weak interactions apparently N = 4 or N = 8 (if the quarks 
are colored[24J). 

The Hamiltonian (2) can be rewritten in the form 

The interaction of the charged currents is character­
ized by the part Go(iI" /J.)(eve ), that of the neutral cur­
rents is characterized by the parts ~(Fo+Go)(j:i'/J.)(ee) 
and ~(Fo-Go)(iI,.v,.)(ee). The second part describes the 
interaction of the lower components of the doublets with 
the lower components and the interaction of the upper 
components with the upper components (with a coupling 
constant Gn =~(Fe + Ge», and the third describes the in­
teraction of upper components with lower components 
(with the coupling constant G~ =~(Fe - Ge». 

Above we have obtained the relationj=ag, where 

2N+3 

between the effective coupling constants j and g at high 
energies GeP2» 1; the above solutions are valid in this 
region. For N = 4 the slope is a = - O. 56, for N = 8, 
a = - 0, 36. For smaller energies the value of a may 
change substantially. However, if a<O and is of the 
same order of magnitude as for high energies, one 
should expect that I G~ I > I Gn I. In any case the relation 
Gn + G~ = Ge must hold, If the quantity a is close to zero, 
the cross section of the process produced by the neutral 
currents must be four times smaller than the cross sec­
tion of the process mediated by the charged currents. 

One obtains a unique prediction for the sign of the 
Fermi constant Ge at low energies. Since the straight 
line g = 0 is a singular solution (cf. Fig. 6), Ge cannot 
change sign as the energy decreases and for large en­
ergies one must have G e > O. Experimentally the sign of 
Ge can be determined, e. g., from experiments on de­
termining the asymmetry which appears in the scatter­
ing of polarized charged leptons and antileptons with 

. 1 [25J energIes> 100 GeV on nuc eons. 
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APPENDIX 1 

For reference we write down the complete set of par­
quet equations in the notations of Sec. 2 

.<11 '= (d) J {[r -<II 'Ir '+3[f -<II 'Ir ,} ~(k') ~«p,-k'» d'k 
_.I a / / / ". (p.-k)' :rt"'i ' 

<II,'=a(d) J {[r,-<II,'lr,.+[r,-c))!lr: 

-2[r -III']r '} ~(k·)~«p.-k)·) d'k 
• ., (p,-k)' :nd/ 2j' 

III "=-b(d) J {[f -<1J "If"+3[f -Ill "If '} ~(k')~«p.-k)') fldk 
J j I 1 ,g I (Pu- k )2 n,dl ':; , 

(A. 1) 

"(k')"( ( k)') ddk 
+2[f -<1> "jf "}'" I' p.-

, " (p,-k)' :rtd/'i' 

!J>/=- C;d) J {2N[f,-Illr'lr/ + ; [f/-!J>/If," + ; [r;-!J>/'jf/ 

+ 3e If-!J> 'Jf "+ 38 Ir -Ill "If'} ~(k') ~«p,-k)') d"k 
2 f ! , 2 ' " (pl-k)' :rtd/'i' 

'~,'=- c(d) J {2N[f,-Illg'lfi +~[f.-!J>,'lf/ +~[rj-Ill/Ir,' 
2 2 2 

-~[r -Ill 'If "- ~[f -Ill 'If '} ~(k')~«p,-k)') ddk _ 
2 • , • 2 ' " (p,-k), :rt'''i 

The coefficients 

a(d) } = _~ _ ~ ± fed (d-1) (d-2) (d-3) d-2 
bed) 2 d ) 2d ,c(d}=-2-

appear from the transformation of the spin structure. 
The function f (d) is defined in Sec. 4 A. For d = 4 we 
have a(4) = 2, b(4) = c(4) =t and the system (A.1) coin­
cides with the system of four-dimensional equations (9). 
Ford=2 we have a(2)=b(2)=1, c(2)=O and the system 
(A. 1) coincides with the two-dimensional system (19). 
In Secs. 5 and 7 one can find the solution of the system 
(A. 1) for a = 2, b = c = t but with scalar integrals defined 
for nonintegral d = 2 + e. 

In the system (A. 1) q, r~, rj denote the vertex 
r ,(P1PZP3P4) in the regions where the momenta Pl and Pz, 
Pl and P3, Pl and P4, are large, respectively. Hence 
the amplitude T has for large Pl and P3 the following 
form 

1'=-'I,[f,'(O.)" (0.),,-1','(0.),,(0.),,1 

-'i,! r,'{o.t)" (o.t) ,,- f?(O.T) "(OaT),, I. 

For small e, 

f/(s', tj')=F+<II,'(s')+Ill/(s', tj')+<II,"(s'), 
f,'(s", tj") =F+<II/(s") +<11,' (s") +<11," (SU, tj'), 

f,'(s', '1') =G+!J>g'(s') +!J>,'(s', tj') +11l."(s'), 
f,"(s', tjU) =G+I1l,'(s")+I1l,'(s") + Ill." (s', tj"), 

t {-Z -Z -Z} t -Z . where ~ =max Ph P3' Pt ,17 =Pt and the varIables~, 
17; ~", 17" are defined in Sec. 4 C. 

APPENDIX 2 

We list for rt and r" expressions similar to Eqs. 
(27). Here x = (e)£/Z+211, Y = (17t)£/z+zlI. We have 
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(A. 2) 

E 
I' '(x, y) = -[ (l-/l,')x-'" v-'+'''-(1-6 ")x-·," v-'+""I 

B "L.IV " 

where 

Il" _ 2N+5-5a Il i _ (2N+5) (1-a) 
o - 2(N+4-2a)' ,- 2(N+4-2a) , 

b," = ~_+9-:-5a 1\ ' = 9-5a 
2(N+~-2a)' , 2 (N+4-2a) 

(A. 3) 

And finally, for 4>(x) we obtain expressions similar to 
(29): 

Ill/"(x) = ~[(1-6,")'+3(1-1l,")']' 
4x . 

I1l,U(x)= :.x [(1-/lo')'-(1-6,")'), 

Illo'(x) = :x {(t-Il,')'-H-/loU)'), 

()),'(x)= :x [(1-/l,')'-(1-/l,")'I. 

APPENDIX 3 

(A. 4) . 

We show how the presence of saddle points in the 
phase plane allows one to fix the form of the interac­
tion. We break the SU(2) symmetry of the Hamiltonian 
(2) and consider the interaction 

H='/,F,lol,+'/,G"J,l,+G,lj __ 

For the effective coupling constants we obtain the Gell­
Mann-Low system of equations (cf. Sec. 5): 

t'='!,ef-f' (N-'I,) +'/,g,'-fg,-2fg, 
g:='I,eg,-g; (N+ 1) -5g'+2!g,+2gg" 

g'='/,eg-Ng'-4gg,+2fg. 
(A. 5) 

The straight line g = g e = f / a is a Singular solution on 
which the fixed point 

g,=g,,=!.Ia=el2 (N+4-2a) 

is situated. In agreement with Sec. 6 this point is a 
saddle pOint in the f g plane, and is a saddle point in the 
gge plane for N < 8 (the corresponding singular solution 
of the linearized system (A. 5) is gl/(8 - N». Thus, for 
N < 8 the stability of the scale-invariant solution can be 
guaranteed only if the initial (physical) values of the 
coupling constants are situated on the singular solution. 
Physically, this means that only the SU(2)-invariant 
form of the interaction can exist. 

In phase space there are also other singular solu­
tions, on which other fixed points are situated. It 
would be very attractive to have a situation where a fi­
nite solution exists only at one SU(2)-symmetric point, 
similar to the fg plane (cf. Sec. 6). 

I )For N = 1 the Fierz identity «ev)(ve) =' (vv)(ee» implies that 
the isoscalar interaction coincides with the isovector interac­
tion: (~w)(~w) == (~T'JI)(;hw). 
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2)The Fierz identity (cf. footnote I» does not hold in the pres­
cence of isospin structure. 

3) At d = 2 the matrices 0" can be chosen such that they coincide 
with the Thirring ,),-matrices 00 =')'0 = O"x' 0 1 =')'1 = iO"y. For d 
= 2 the Fierz identity (cf. footnote I» is not valid. 

4)Terms of order tf2 have been omitted, since, as can be seen 
from the solution g ~ 1', and f - 1'2. 

5)Tr 1 cannot be exactly established with our method of analyt­
ic continuation. 

6)E yen to first approximation in l' this solution differs from 
the solution 22) of the system (A. 1) with a(2) = b(2) = I, c(2) 

_=0, obtained in Sec. 4. It is natural to expect that for l' =2 
(22) will not be an approximate solution. of the system (9), 
since it does not reflect the symmetry of the four-dimensional 
problem (the Fierz identities, -cf. footnote!). 

7)Here we do not discuss the property (b). It can be investi':' 
gated by means of iteration of the equations (A. 1) with tile 
zeroth approximation in the form of the solution obtained 
below (Sec. 7). 

8)The whole E-dependence is included in the variables x = ~e/2+26 
and y =rl'/2+26. For the role of ~ cf. Sec. 8. 

9)This assertion remains valid also if the region of small k 2 

is taken into account in (31), (0:,;; k 2 ,,; y). The quantities f l , 

gl change insignificantly. [211 
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Verification of a possible asymmetry in the polarization of 
thermal neutrons after reflection from a mirror 

A. I. Okorokov, V. V. Runov, A. G. Gukasov, and A. F. Shchebetov 

B. P. Konstantinov Institute of Nuclear Physics, USSR Academy of Sciences, Leningrad 
(Submitted January 28, 1976} 
Zh. Eksp. Teo~. Fiz. 71, 4frSO (July 1976) 

The neutron polarization asymetry observed previously by K. Bemdofer [Z. Phys. 243, 188 (1971)] has 
not been confirmed by experiments with a polarizing neutron guide. In view of the spin-orbit effects 
currently discussed in the literature, measurements have been carried out of the polarization of neutrons, 
singly reflected from magnetic and nonmagnetic mirrors. It was found that the polarization asymmetry was 
absent to an accuracy of 10-4_10- 3• 

PACS number1l: 28.20.Cz 

When the polarization of thermal neutrons transmitted 
1 .. t 'd . t' t d [1] through a po arlzmg neu ron gul e was mves 19a e , 

a polarization asymmetry was found, depending on the 

direction of the magnetic field of the pola;izer and the 

direction of the curvature of the uniformly bent neutron 
guide. The difference in the polarization of the neutron 

beam was found to be up to ~p", 30% with maximum 
polarization p", 80%. This experimental result was un-
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