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Einstein's equations, written down for operators, are used to calculate the gravitational exchange 
interaction between photons in an isotropic model of the Universe. Expressions are obtained for the energy 
spectrum, distribution function, and energy density of the photons. A cosmological solution that takes into 
account the exchange process is found. 
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INTRODUCTION 

In a many-particle system, quantum gravitational ef­
fects become important at densities p =1i/cl/ = 1094 g/ 
cm3 and spacetime curvatures R/ = 19 -2 = 1066 cm-2 (lg 
= ("" 1iC)1/2 = 10-33 em). These effects are due either to 
the interaction of particles with the macroscopic gravi­
tational field (such as pair creation; see, for exam­
ple, [1-3) or gravitational exchange interaction between 
the particles. [4,5) As was shown in[l), pair creation 
must be taken into account if the metric is not confor­
mally Euclidean. The effect of gravitational exchange 
interaction does not depend on the type of the macro­
scopic metric, and a qualitative discussion of its con­
sequences can be found in[4,5). 

The analysis of quantum gravitational effects and 
their influence on the macroscopic geometry is of fun­
damental importance near singularities, especially in 
view of their inescapability in classical general rela­
tivity. [6) 

In[7, 8), a proposal was made for constructing a theory 
of gravitation associated with calculating the contribu­
tion of quantum processes to the macroscopic Lagrang­
ian of the gravitational field. A somewhat different ap­
proach was discussed in(9)_a theory based on Einstein's 
equations written down for the Heisenberg operators, 
with the equations for observables being obtained by av­
eraging these operator equations. 

The present paper is based on the ideas put forward 
in[9). In §1, the operator Einstein equations are trans­
formed, after separation from the metric of the gravi­
ton operators (it is not assumed they are small), to a 
system of equations for the macrogeometry and the 
quantum field. In §2, gravitational exchange interac­
tion between photons is calculated; in §3, the first term 
is calculated in the expansion of the energy density of 
the photons and a new cosmological solution differing 
from the Friedmann solution near P'" Pg and R I k '" 19 -2 is 
found. 

§1. EQUATIONS OF THE THEORY 

We introduce operators of the metric ilk and Gil 
(ilkGiI = 6k I), the connection r Ik I, and the curvature 
Rik' retaining for them the differential and algebraic 
relations of Riemannian geometry. Further, we rep­
resent the operators ilk in the form 
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(1.1) 

where glk = (ilk) are the expectation values of the opera­
tor with respect to the density matrix and they are in­
terpreted as the metric of macroscopiC spacetime; i 
is the identity operator. The graviton operators hik are 
defined in such a way that under transformation of the 
macroscopic coordinates they behave like tensors in 
the glk space. This enables one to obtain an explicit 
expression for the inverse operator Glk in terms of the 
macrotensor ik and invariants of the matrix h/: 

I1'Gih~gil'( 1 +1,+1,+1,) -h"(1+1,+I,) 

+h''''hm'(l +1,) _himhm 'h • ., 

where 

1,='16 (h'-3hhm'h,m+2hm 'h,nhn m), 
I,~'I" (h"-6h'h m 'h,m+8hhm 'h,nhnm 

+3h,"'h" 'h,'h.'-6h,mhm nh,,'h,'). 

(1. 2) 

(1. 3) 

As is shown inUO,11J, the representation (1.1) of the 
metric leads to the following relations for the connec­
tion and curvature: 

f',,'=fr,,'+£T' ",', R",=lR,,+9' .. , 

£T',.'='I,G'm(hmi; .+hm.; ,-hiA , m), 

fjJ ih=fT' i!;l-ff"" i~ ;k+ET i/l.l IT" 1m tlI_PT i I mg-Am I. 

(1.4) 
(1. 5) 

(1. 6) 

In (1. 4), r lk l and Rlk are expressed in terms of gik in 
the usual manner, and in (1. 5) and (1. 6) the semicolon 
denotes the covariant derivative in the macroscopic 
space. 

Equations (1.1)-(1. 6) define the quantities that occur 
on the left-hand side of the operator Einstein equations: 

(1. 7) 

On the right-hand side of (1. 7), the energy-momentum 
tensor must also be expressed in terms of field opera­
tors. For the electromagnetic field (to which we re­
strict ourselves in this paper) 

(1. 8) 
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"UsiBg a number of operator identities, one can obtain 
< Maxwell's equations, which are contained in (1. 7)-(1. 8): 

(1. 9) 

Finding the expectation value of (1. 7) with respect to the 
density matrix, we arrive at equations for the macro­
scopic metric: 

(TlG,')R,'-'/,l5"(TlG,m)Rm'+(TlG,'.9'i) 
-1/2l5.'< TlG,m.9' m'> =x< TlT.'>. 

(1.10) 

The equations for the quantum gravitational field are 
obtained by subtracting (1.10) from (1. 7). We write 
them in the form 

L.'-1/2l5.'L=x (Tlf.'-< TlTn), 

L"=TlG.'.9'/+TlG,'R,'- < TlO,'.9'i> - < Tl 6.'> Ri. 
(1.11) 

Equations (1. 5)-(1. 6) also enable us to obtain the fol­
lowing expression needed for concrete calculations: 

TlG '.9' '='1 [TlG 'G '(h""' .+,.:, _,.,m) I _'I ( cA 'cA 'h":') 1 j 2 q '1ft ;1 fI" !f,j ;l 2 11 q m f .i 

+'/ TlG 'G pC '(h':' hm +2hO" h'" ·-h':' hm ·-2h' h m : 1 
" q Imp ';1 S P;1 , P;1 P,i S ). (1.12) 

The meaning of the factor TJ= (g/g)1/2 introduced into 
(1.10)-(1.12) will be explained when we consider the 
conservation law of the particle number. The operator 
equation has the form 

(1.13) 

where ji is the operator of the four-current. Using the 
relation rk / = (In TJv' - g), k we can reduce (1.13) to the 
form 

(1.14) 

As follows from (1.14), the conserved quantity <Ii) 
= (TJji) is an observable. The observables in (1.10) are 
defined similarly. 

In terms of its content, the theory considered here is 
in many respects similar to the theory of quantum grav­
itational processes in a "reference" classical space­
time (see, for example, [12,131). The nonlinear equa­
tions (1. 9) and (1.11) describe the interactions and 
transformations of the particles-photons and gravitons. 
A new element is that the "reference" space is here 
not given-the quantum gravitational processes influ­
ence its geometry. The corresponding effects are de­
scribed by the terms in Eq. (1.10) that are nonlinear in 
hi k; this equation must be solved simultaneously with 
(1. 9) and (1.11). Equation (1.11) differs mathemati­
cally from the customary one only in that similar ex­
pectation values are subtracted from all the nonlinear 
field operator combinations in it. It will be seen that 
this leads to elimination of various divergences. lJ We 
note finally that the averaging is performed every­
where with respect to the ensemble of real particles. 

A solution of Eqs. (1. 9)-(1.11) at particle energies 
E < E, =1ic/l, = 1()27 eV can be obtained by perturbation 
theory. It follows from estimates of the gravitational 
operators in the zeroth (k~(o) -l,/.\.:::: (E/E,)1/2 - "y2) and 
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first (h~(1)-l,2/.\.2::::E/E,- x) approximations that Eqs. 
(1. 9)- (1. 11) can be expressed as series in the gravita­
tional constant. 

§2. GRAVITATIONAL EXCHANGE INTERACTION IN 
A SUPERDENSE PHOTON GAS 

Let us consider the first nonvanishing quantum grav­
itational effects in a photon gas which fills an isotropic 
macroscopiC universe with the metric 

ds'=a'(Tl) (dTl'-dx'-dy'-dz'). (2.1) 

The aim of the calculations is to obtain a quantum trans­
port equation and the energy spectrum of photons with 
allowance for interaction, the gravitational contribution 
to their energy, and, finally, a cosmological solution 
a =a(TJ). 

To simplify the calculations, we restrict ourselves 
to a purely photon mOdel of the Universe, i. e., we 
ignore the spontaneous creation of real gravitons in the 
macroscopiC field and resulting from the collision of 
photons. In this model h~(O) =0 and the operators h~(l) 
describe only virtual gravitons-fluctuations of the 
metric generated over distances of the order of the de 
Broglie wavelengths by the quantum uncertainties in the 
states of the photons. From (1.10) and (1.11) we 
readily obtain the estimate 

(2.2) 

Equations (2.2) enable us to write down approximate 
equations that take into account the first nonvanishing 
quantum gravitational effects (the index (1) of h/ is 
omitted): 

-R='/,<h:'h,.+2h!:' h':':.-h~" h,~,-2h,'"h">, (2.3) 

'/, (h:" :,+h,'"" -h:" :,-h,,") _'/,l5.'(h~m ,,-h:m:") 

= 4: (-F"F" ++l5.'Fm,F,n'+<F"F">-'/,l5.'<Fm,Fm,» , (2.4) 

F'm' m=(hm'F,,+h/F'm-'/,hF'm) , m. (2.5) 

The terms ignored in (2.3) have order ).(3 and in (2.4) 
and (2.3) the order x2 • It is convenient to obtain the 
solution of Eqs. (2.4) and (2.5) on the isotropiC back­
ground (2.1) in the second quantization representation, 
expanding the operators with respect to three-dimen­
sional scalar, vector, and tensor plane waves (the 
Lifshits expansion[l41). However, if one chooses the 
Coulomb gauge for the potentials of the electromagnetic 
field, Ao =0, then the right-hand side of (2.4) contains 
a bilinear combination of only vector functions. By 
virtue of the parity conservation law, particular solu­
tions of Eq. (2.4) corresponding to virtual gravitons 
h~(1) do not contain terms proportional to vector func­
tions. Eliminating three-vector gravitons at once 
from the treatment, we write down the expansiOns for 
the operators in the form 

Aa=("Aa= (2nnc) "'E Sa(k, a) a.(a)e'" + H c A" = - ~ ("A" '!' •• , 2.' m, a 
',a 

(2.6) 

G. M. Vereshkov and A. N. Pottavtsev 2 



In the expansions (2.6)-(2.9) the index (3) means that 
we have introduced three-dimensional quantities. All 
operations with spatial indices are performed here and 
in what follows by the unit tensor Y .. /l",diag (1,1,1). 
The transverse vector S .. (k, 0') and transverse tensor 
Q/(p, 'T) have appropriate polarization indices 0' and 'T. 

The operators at+(O'), at(O') in the zeroth approximation 
(for free photons) satisfy the usual commutation rela­
tions. Below, we shall omit the indices 0' and 'T, and 
double the result of averaging over the polarizations. 

In this approximation, after substitution of (2.6)­
(2.9) into (2.4) we can perform a Fourier transforma­
tion with respect to the time. Contraction of Eq. (2.4) 
gives the connection between the operators: 

(2.10) 

where 

2p p' 
bp\,= Ilpy - ---:;- CSpy --;;- x'v, c,'¥= Ilpv +A.pv, (2.11) 

In all the other equations obtained from (2.4) by Fourier 
transformation with respect to scalar functions, and 
also in Eqs. (2.3) and (2.5), the expansion coefficients 
again occur only in the form of the combinations (2.11), 
which are invariant under gauge transformations. This 
enables us to solve the problem without recourse to ad­
ditional conditions on the field h/ . 

If the relations (2.10) are used, all the scalar equa­
tions in (2.4) in this approximation are equal to each 
other and give 

p' ",he ~ 
3 e"=4 i...l 

t,lII,q,a 

(ooQ+kq)cs.'-k'q, ell ' 
(00.00,):" ' . 

(2.12) 

The equation for the tensor gravitons is obtained by 
projecting the (a, (3) components of (2.4) onto 
Q/l a* e- fIJ ' J:+ivn: 

(v'-p')!.. (2.13) 
=xn '\" (ooQ+kqW,' (p) -k,q"Q," (p) 6,-k,q'Q," (p) -k,q'Q," (p) ell • 

e i...l (00001,) 'j, , • 

11:,101,.,0 

In (2.12)-(2.13) we have intrOduced the notation 

ell,'=-S, (k) S' (q) a •• a •• 6 (k+q-p) 6 (oo+Q-V) 

+S,'(k)S'(q) (a •• +a •• -(a •• +a •• »6 (q-k-p) 6 (Q-oo-V) 

+S.(k)S'·(q) (a .. a .... -(a •• a.~ »6 (k-q-p) 6 (oo-Q-V). (2.14) 

Real photons surround themselves with a cloud of 
virtual gravitons, which are described by Eqs. (2.12)­
(2.13). The energy spectrum of the "dressed" photons 
and their density matrix can be calculated directly from 
the Maxwell equations (2.5). After Fourier transfor-
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mations, 

t . (2.15) 
(k'-II)')a""'" 2a.l:k[F(p,k,q)¥(P~'-k)6(V+~) 

',Y."" 

where 

p'-V' 
F(p, k, q)=2p' w. (I<, q)c .. +W.(p, k,q)j,., 

W (k )= (oo.oo,+kq)6.'-k'q .. S.·(k)S ( ) 
• ,q (00.00.)'" ' q , 

W.(p, k, q) = ([k'q,Q.'(p) 6.'- (ID.oo,-kq) Q.' (p) 

-k'q.Q/(p) -k'q.Q.' (p) jS··(k)S,(q) }I (OOoIDq) '''. 

(2.16) 

(2.17) 

(2.18) 

The adopted approximations have enabled us in the cal­
culation of the right-hand side of (2.15) to perform a 
Fourier transformation with respect to only the high­
frequency time dependence. In the reduction of the 
kernels to the form (2.16)-(2.18), we have used the 
connection (2.10) between the operators, and we have 
also assumed that the photons have a dispersion rela­
tion. To find the observables, we must multiply Eq. 
(2.18) from the left by a;.w' and average. The expecta­
tion values on the right-hand side are calculated by 
means of (2.12) and (2.13). To within terms - x2 

.. ",ne ~ 
(k'-oo') (a.·.·a •• )= -;;;- i...l M (k+l-m-q) 6 (oo+cp-1jJ-Q) 

p,'\';q,U; 

l,fJlim,¢ 

X{V(p, v; k, q; I, m)6[p+(q-k)sign(Q-oo) j6[ v+(Q-oo)sign(Q-oo) 1 

where 

V( v·k _I m)=3(p'-v')W.(k,q)W.(l,m) 
p, , ,q, , 16p' (oo,OOqOO/OO m)'" 

+ W,(p,k,q)W,(p, I,m). 
2 (p'-v') (OO.OOqOO/OO m ) 'I, . 

(2.19) 

(2.20) 

It is readily seen that Eq. (2.19) describes the interac­
tion of two photons, (k, wk), (1, WI): (q, wq ), (m, wm), 

through the virtual graviton (p, v). 

The energy spectrum of the photons is obtained by 
separating the real part from (2.19). To calculate the 
spectrum, it is necessary to assume that the operators 
in (2.19) are normally ordered-this enables one to 
eliminate the gravitational effect of a photon on itself. 
After decomposition of the expectation values of four 
operators into products of expectation values of two op­
erators, averaging over the polarizations, and the 
transition from summation to integration, we have 

(2.21) 

In (2.21), 

W(k q)= (OOoooq+kq)'(OOoooq-kq) ( __ t ____ 1_) 
, OOoOOq (k-q)' (k+q)' 

+oo.'oo,'-(kq)· I~+ __ t_) 
OOoOOq \(k+q)' (k-q)' ' 

(2.22) 
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r 

N .. is the photon distribution function defined by 

A transport equation for the distribution function is 
derived as follows: From (2.19) separate the imagi­
nary part, express the expectation values of four opera­
tors in terms of those of six, decompose the latter into 
all possible products of expectation values of two op­
erators. Then, average again over the polarizations 
and go over to integration, obtainingZ) 

oN. (xlic)' J -=_._- U(k,q,l,m) (N.N,N .. +N.N.N, 
olj a' 

-N.N.N,-N,N .. N .+N,N,-N.N.) 6 (k+l-q-m) . 

d'qd'ld'm 
X6(w.+w,-wo-wm) (2n)' ' (2.23) 

where 
1 

U(k, q, I, m) = -;f [V(q-k, Wo-W'; k, q; I, m) 

+V(in-k, wm-w.; k, m; q) +V(I+k, w,+w,; k, I; q, m) )'. (2.24) 

The reciprocal lifetime of the Single-photon state with 
energy wk is determined by the expression 

(xlic)' J 
r(k)=-- U(k,q,l,m)N,(N .. +1) (N.+1)6(k+l-m-q) 

a' 

d'qd'ld'm 
X6(w,+w,-w m-wq) (2n)' . (2.25) 

The system (2.21)-(2.25) describes gravitational ef­
fects in the photon gas in the two-photon interaction ap­
proximation. A solution of these equations can be ob­
tained by successive approximations. We note first of 
all that the equilibrium solution of (2.23) is the Planck 
distribution: 

(2.26) 

where ko is a parameter related to the temperature by 
T =1'icko/a. The relaxation time has the order l/y(ko), 
and in ordinary units 

T-a'i cko'l.' =ft'c'/x'T'. 

To find the energy spectrum of equilibrium photons on 
the right-hand side of (2.21) it is sufficient to use only 
the dispersion relation wk =k for "bare" particles. As 
a result of calculating the integral in (2.21), we obtain 

, xlic {f, 1 [( k,k' 3k,'k + 3ko';) ( -"W E' (nk) 
w.'=k- - U "'-.i ~ -n- + ~ -;;;-;: e "I To 

11=1 

-e""" Ei ( - ;~) ) + ( 3:'0' + 2~:'k' )( e-'''''" Ei ( ~~ ) +e"'''" Ei ( - :: ) ) ] 

n'k' k 'k'} + __ 0 +_'_ . 
15 12 

(2.27) 

Note that the expressions for the energy spectrum in 
the region of large and small k differ weakly from one 
another: 

( 17 ko'xnC) 
w.'=k' 1 -12 -a-' - , k<:.ko, 

(2.28) . 

( 1 ko'xnC) 
w.'=k' 1-8~ , k>k,. 
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The distribution function of the photons with allowance 
for their gravitational interaction is obtained by substi­
tuting (2.27) into (2.26). The total density matrix of 
the system of particles and gravitational field in this 
approximation is determined by the expressions 

(akt.,a •• >=N.6 (k-k') 6 (w-w') 6 (w-w,) , 

+ (') ( , 9 " ~ (w,wq+kq)' (c.',·c,,>=6 p-p 6 v-v) - (x"c)' "'-.i ' N,N. 
4 '.' p w,Wq 

X {6 (k+q-p)6(w.+w.-v)+6 [p+ (k-q) sign (w.-wo») 

X6[ v+(w.-wo)sign(w,-wo)]}, 

(/;·,'/.,>=6(p-p')6(v-,') (xnc)' 1: [. (w.w:+kq), 
'.' 2p w,w. 

+ 4 (w.'w.'-(kq)') + 4(w.w.-kq)' (w"w,'_(kq)2)'] 
~--'-:..:...,---'-'- - N.N 

p'(p'-v')m.mo (p'-v')'w,w. (p'-,')'w.'w,' • 

X {6(k+q-p) 6 (w.+wo-v) +6[p+ (k-q)sign(w,-wo) I 

(2.29) 

(2.30) 

X6[v+ (m.-mo)sign (w.-wo) ]}. (2.31) 

Equations (2.30)-(2.31) can be obtained directly from 
(2.12) and (2.13) by multiplying these equations by their 
Hermitian conjugates and averaging. The operators of 
the photon field were ordered in the calculation. 

§3. COSMOLOGICAL SOLUTION 

A cosmological solution taking into account the above 
quantum gravitational effect in the photon gas can be 
found from Eq. (2.3). Substituting the expansions (2.7) 
and (2.9) into the right-hand side of (2.3), we obtain 

(3.1) 

6 aU 1 ~ (' ') [1 + ) 1 .+ )]. . , . -;;; =;;- "'-.i pp -vv 3"' (c.,,·c., + 2 (!,."!.,, e"'-' "-'i'-" '". 
p,v:p',\" 

In the following calculations, we use (2.30) and (2.31) 
and go over from summation to integration. Equation 
(30 1) takes the form 

aU (xlic) , d'kd'q 6,=--.-J W(k,(J)N,N.-(? )' . a a _~ 

(3.2) 

In (3.2) the kernel W(k, q) of the integral is equal to the 
kernel (2.22) in the expression for the photon energy 
spectrum. This result is a consequence of the self­
consistency of the Einstein and Maxwell equations. Us­
ing the fact that the integral in (3.2) does not depend on 
the time in this approximation, we integrate this equa­
tion once. We have 

1 (xlic)' J d'k d'q 
a"=Ro'-S-a'- W(k,q)N,N. (2rr)' (3.3) 

The constant of integration R02 is found by comparing 
(3.3) with the (0,0) component of the Einstein equations. 
Obviously, its value is determined by the principal 
term in the energy-momentum tensor of the photons. 
We therefore rewrite Eq. (3.3) as follows: 

1 a'2 
flo' - 2'" R = 3 --;;< = XE, (3.4) 

where 

2lic d'k 1 xli'c' J d'k d'q 
E =7 J kN. (2,,)' -2~ W(k,q)N.N. (2n)' (3.5) 
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is the energy density of the photon gas with allowance 
for the gravitational exchange interaction. It is clear 
from the calculations that the ordering of the operators 
in (2.30), (2.31), and (3.1) eliminates the self-interac­
tion energy of the photons and the gravitational energy 
of the vacuum. 

Calculation of the integrals in (3.5) gives 

(3.6) 

1 . d'k d'q 
"2 J W(k,q)N.Nq (2;j"' 

k,' J~ ~J (x'+6x'y'+y')Jn\ (x+y)/(x-y) \-2xy(x'+y') 
=-- . dxdy 

32n' 0 0 (e<-1) (e'-1) 

= L68n'·IO-'k,'. 

The energy density f can now be represented as a func­
tion of the particle density n =0. 244ko31a3: 

e=4.3Ilicn"'-0.282xli'c'n'. 

Thus, we have calculated the first term of the Sakharov 
expansion. (5) 

The cosmological solution is obtained by integrating 
(3.4). Using the numerical values of (3.6), we write 
the solution in the form 

" ,,'ko'xlic, , 
a'=~'l+ao, 

where 

(3.7) 

Going over to the cosmological time 

t=f-J adT], 

we obtain 

~"k '(xlic)':' a+(a'-a ')'" 
--_0 __ -- ct = a (a'-a,') '!'+ao' In ---'---

~5 ~ 
(3.8) 

It is interesting to note that the cosmological solution 
(3.8), which takes into account the gravitational ex­
change interaction, does not formally contain a singu­
larity. 

§4. DISCUSSION OF RESULTS 

Our results enable us to discuss the question of 
whether allowance for quantum gravitational effects in 
a many-particle system resolves the singularity prob­
lem. The approximate solution (3.8) is valid, as fol­
lows from (2.2), when a2 » ao2• Values a - ao are at the 
limit of applicability of the approximation, and there­
fore, on the basis of (3.8), one can say that there is a 
tendency for the singularity to disappear in the quan­
tum theory. The extremal parameters of the photon 
gas when3) a =ao = 10-4 cm calculated from our equations: 
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n,,=59.1i(xlic)- =OA7(Gllh') . 
To=6.2:;(hclz) =1.~;;(//(·--;r;) . 

agree with the usually quoted dimensional agruments. 

In reality, the problem is complicated by the fact 
that near the extremal state one can no longer keep the 
picture of macroscopic spacetime as a continuous mani­
fold nor of photons as objects existing in this spacetime. 
Even from Eq. (3.8) it follows that the transition from 
contraction to expansion occurs over the time "quan­
tum" t -lll c = tl , and strictly speaking it cannot there­
fore be considered in the theory formulated here. The 
inadequacy of the description of photons follows from 
(2.27) and (2. 28)-it is easy to see that when a - ao we 
have w2 < 0, i. e., there are no solutions that represent 
the electromagnetic field as a collection of particles. 
It would seem that we can get away from these difficul­
ties only in a theory that combines the physics of quan­
tum gravitational processes with canonical quantization 
of spacetime. 

However, despite its limitations, the theory of quan­
tum gravitational processes in a self-consistent "ref­
erence" spacetime does enable us, we feel, to discuss 
some of the characteristic features of physical phenom­
ena at extreme densities and curvatures. 

We thank R. V. Vedrinskii, Yu. S. Grishkan, V. A. 
Savchenko, and S. V. Ivanov for discussing the results 
and Ya. B. Zel'dovich and A. A. starobinskii for their 
interest and valuable comments. 

I )This will be seen in the actual calculations. 
2 )The terms corresponding to nonbound second-order processes 

cancel in the derivation of Eq. (2.23) for the reason given 
at the end of Sec. i1 (see Remark 1). 

3) According to the data on the microwave background ko "" 102T 
in (2.26). 
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