
3)rr the number of layers N~ is large, then the cancellation of 
the linear terms is complete at qb« 1 (q is the momentum 
perpendicular to the layers and b is the distance between the 
layers). On the other hand if N i ~ 2 or 3, then there is no 
complete cancellation and the dipole forces should stabilize 
the long-range order, but an investigation of this question is 
beyond the scope of the present article. 

4)Thus, the magnetic interactlon between two uniformly mag­
netized closely-located monatomic layers with sides I and 
m along the axes x and y is ~escl"ibed by the formula 

where d' = 12 + m 2, v2 is the "v<>lume" of the planar unit cell, 
and S(1,2) is the average spin of the atom in the layer. 

5)It is interesting to note that if we consider the region of the 
crystal near the boundary, then the summation over p has a 
finite limit on one side, and as a result the linear terms are 
not completely cancelled out in the expression for Q;. The 
terms linear in p" also remain if p~ ~a31. 
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We show that the anomalous properties of liquid 'He can be explained by assuming that the fluctuation 
spectrum of its spin density has a deep roton minimum. This means that 'He is close to a phase transition 
to an antiferromagnetic state. Comparison between theory and experiment confirms this assumption. We 
find the spin-roton parameters: t. = 0.09 K, ko = 0.7 PF' M = 0.06 m. We determine the temperature 
dependence of the specific heat up to Tz:. 1.5 K. For 0.05 < T < 0.5 K the main term in the specific heat is 
ex: V T. A temperature of Tz:. 0.5 K has the meaning of the degeneracy temperature of the spin-roton gas. 
We find the quasi-particle spectrum and the Landau Fermi-liquid theory parameters. We determine the 
wavevector dependence of the magnetic susceptibility X. At k = ko the value of X is 50 times larger than 
the susceptibility of a perfect Fermi gas of the same density. 

PACS numbers: 64.50.-b 

1. PHYSICAL PICTURE 

Liquid 3He can be satisfactorily described by Landau 
theory only for T< 0.1 K. At T > 0.1 K the specific 
heat, viscosity, and other physical characteristics of 
3He have a different order of magnitude than the values 
predicted by Landau and Pomeranchuk. [1-3] The strong 
difference between the properties of 3He and those of a 
gas of quasi-particles can be explained if we assume 
that the liquid is close to a phase transition. Four 
types of instability are possible in a Fermi liquid which 
are connected with the two forms of its excitations­
zero and spin sound. The first kind of instability is 
connected with long-wavelength density fluctuations. 
This instability arises when the velocity of the virtual 
zero sound is much smaller than the quasi-particle ve­
locity on the Fermi surface. It is clear that such an in­
stability can not be realized in 3He as real zero sound 
can propagate in it, which has been observed experi­
mentally. 

The second type of instability is connected with short­
wavelength zero sound which has a roton gap A for k 
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"" 2PF' Such an instability is destroyed when the liquid 
goes over into the solid state. As the zero sound spec­
trum is unknown for k"" 2PF it is necessary to consider 
the theoretical arguments for and against the existence 
of soft zero sound rotons in 3He. The arguments for 
such a possibility are based upon the fact that 3He un­
der pressure becomes a solid. Moreover, in liquid 
4He , which differs from 3He only by the statistics of the 
particles and an unimportant difference in the mass of 
the atoms, there are sound excitations with a roton gap. 
The argument against consists of the fact that a phase 
transition into the solid state is always a first order 
one and it seems doubtful that it takes place when A 
« e F, when the rotons strongly affect the properties of 
the liquid phase. In particular, 4He which in the solid 
state is very much like 3He undergoes a transition into 
the solid state before the roton gap decreases so much 
that it becomes necessary to take the effect of the ro­
tons on the nature of the transition into account. If, 
nevertheless, it turns out that when the density changes 
A becomes much less than f'F prior to the occurrence 
of the phase tranSition, the exchange scattering ampli-
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tude of the quasi-particles r must have a positive sign. 
This statement follows from the symmetry properties 
of the amplitude, according to which a strong attraction 
connected with the exchange of a soft roton in the direct 
channel leads to a strong repulsion in the exchange 
channel. Experiments indicate the opposite: the scat­
tering amplitude in the exchange channel is strongly at­
tractive. Therefore, if there is in 3He also a zero­
sound excitation with a roton gap a, then a - e F, and 
not a« f F' 

The third type of instability means that the liquid is 
close to the ferromagnetic phase transition and it is 
connected with the long-wavelength spin density fluc­
tuations. As the static magnetic susceptibility of 3He 
is an order of magnitude larger than the susceptibility 
of a perfect gas of the same density it would be natural 
that just this type of instability can be realized in 3He. 
However, although there is a strong argument in favor 
of this possibility, it is logically contradictory. Indeed, 
there is an exact relation between the magnetic sus­
ceptibility X and the specific heat C(T)(2l: 

as T - O. This relation differs from the usual gas 
formula by the factor (1 + ZO)"l which characterizes the 
exchange amplification of the quasi-particle scattering 
amplitude. In an almost ferromagnetic liquid Zo is 
close to - 1 and the quantity (1 + ZO)"l must be very sen­
sitive to a change in the 3He parameters, e. g. , its den­
sity. Experimentally, however, 1 + Zo hardly changes 
when the density varies from 0 to 29 atm. Yet another 
argument against this kind of instability is based upon 
the fact that the long-wavelength fluctuations have a 
small phase volume and affect the properties of the 
liquid when not only 1 + Zo« 1, but also In(l + ZO)"l» 1. 
For 3He we have 1 + Zo ~ O. 3 and we could not explain 
the anomalous properties of 3He when we have such a 
"weak" small parameter. 

The fourth type of instability is connected with the 
Short-wavelength spin density fluctuations and means 
that the liquid is close to an antiferromagnetic phase 
transition. The magnetic susceptibility of such a liquid 
has a maximum at k= ko, where ko - PF, while the spin 
fluctuation spectrum has a roton gap a« f F' In the 
present paper we construct a quantitative theory of liq­
uid 3He based upon the assumption that just this insta­
bility is realized in 3He. 

We describe the spin fluctuation spectrum for k~ ko 
by three parameters: a, ko, and an effective roton 
mass M, and assume that a« EF • Two of these param­
eters are determined from the requirement that for T 
« a our theory must go over into the Landau theory 
which is exact as T - O. The third parameter is de­
termined by comparing the theoretical and experimental 
temperature dependence of the specific heat for T - a. 

Once the parameters have been determined the theo­
ry allows us to find: the specific heat for T< 1. 5 K, 
the unknown Landau-theory parameters, the quasi-par­
tical spectrum, the magnetic-susceptibility dispersion 
for k ~ ko, and so on. Moreover, the theory shows a 
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connection between the various physical characteristics 
of 3He. For instance, the specific heat for T > 0.5 K 
is connected with the sound speed and with the jump in 
the Fermi occupation of the particles. USing these con­
nections we can find the phenomenological parameters 
a, ko, and M from three experimental pOints on the 
C( T) curve and afterwards establish the whole C = C( T) 
curve, determine the sound velocity, the magnetic sus­
ceptibility, and many other quantities. We emphasize 
that in such an approach the requirement that our the­
ory agrees with Landau's theory is automatically satis­
fied. 

The theory which is exact as a - 0 is based upon the 
fact that the contribution of the spin fluctuations to the 
self-energy part ~, to the scattering amplitude r, and 
to the specific heat C is a non-analytical function of a 
and when a« f F it is larger than the contribution from 
the other degrees of freedom, such as the total density 
fluctuations. As a-o, the self-energy ~(e) has a 
square-root singularity at f = 0: ~ex,[e. This leads 
to a strong amplification of the effective mass m* »m 
and a small jump in the Fermi occupation of the parti­
cles: a« 1. When a= 0 there is, in general, no Fermi 
surface and the quasi-particle pole in the particle 
Green function becomes pure imaginary and corre­
sponds to a single-particle virtual excitation with a dis­
persion law which is quadratic in P - PF • The specific 
heat also has a singularity at T = 0 as a- 0: C ex .fT, 
which limits the applicability of the Landau theory to 
the region T< a, In the quasi-particle scattering ampli­
tude r the exchange of a single roton leads as a- 0 to 
a Ii-function-like dependence of r on the scattering 
angle, and the exchange of two rotons to a threshold 
singularity. 

The physical reason for such a strong effect of the 
rotons on the properties of the liquid is due to the fact 
that spin fluctuations for ko,to 0 have a large phase vol­
ume. As a- 0 the whole region of the spectrum near 
the roton minimum is equivalent to a single state with 
k = ko and w = a and a quantum-mechanical situation is 
realized with two close-lying levels: the "quasi-par­
ticle" and the "quasi-particle + roton" states combine 
strongly. It is very natural that such a situation can 
be described exactly as one can neglect transitions to 
the remaining states. 

We make more exact the term "theory which is ex­
act as a- 0." The fact is that the transition to an anti­
ferromagnetic state is a first order one, i. e., it pro­
ceeds when a,to 0 and it is not clear that the condition 
E F » a is satisfied. Quantitatively this problem can be 
considered only for the simplest models which show 
that one can allow a> ae, where a- E F(k o/2P F)9. When 
a> ae the strong roton-roton interaction begins to play 
a role and this increases as a-1/2 when a decreases. 
For 3He the ratio ;lj € F - 0.02 and (kol2P F)9 - 10-4 so 
that we have grounds for neglecting the anharmonicity 
of the spin rotons. 

The impossibility to determine exactly the region of 
applicability is characteristic of any phenomenological 
theory. For instance, as T- 0 the Landau theory 
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ceases to operate for T - T c, where T c is the tempera­
ture of the transition to the superfluid state. The Lan­
dau theory does not predict the quantity T c and in 
principle a region T c «T « f F might not exist. In our 
case we shall assume that in 3He the condition .1c «.1 

« E F is satisfied. In that case, the rotons affect, on 
the one hand, the properties of the liquid strongly and 
it is necessary to take them exactly into account while, 
on the other hand, effects connected with their interac­
tion are still small. Apparently when the pressure in­
creases sHe solidifies before .1 reaches the dangerous 
value~. In the present paper we restrict our consid­
erations to SHe at a low pressure of P = O. 28 atm. 

2. PARAMETRIZATION OF THE SCATTERING 
AMPLITUDE 

We consider the static quasi-particle scattering am­
plitude r(k, Ph Pa) for Ph Pa - k F and k < 2p F' From Lan­
dau's equations for r it follows that there are two par­
ticle-hole channels for it, with a momentum transfer 
k for one of them and Pi - P2 for the other one. 

(1) 

It follows from (1) that ra depends strongly on k and 
r i on Pi - Pa, and in first approximation we may assume 
that r a is a function of k only and r 1 of Pi - Pa only. In­
deed, the k-dependence of ra is determined by ladder 
diagrams for which the momentum k is transferred in 
the direction of the minimum number of integrations 
over the intermediate momentum, while the dependence 
of ra on Pi - Pa is connected with a large number of in­
tegrations and is thus weaker than the k-dependence. 
This fact is just the basis of Landau's theory. No graph 
contributing to r can depend strongly both on k and on 
Pi - P2 so that it is possible to separate the singularities 
in each channel. 

We have thus an approximate expression for r: 

f=f.+f, (Pl-P2) +f2(k), 

where r 0 is a slowly varying function of k and Pi - P a . 
We shall assume that r 2 has a steep maximum at k =ko 
which corresponds to the exchange of a spin roton. We 
introduce the dependence of r 2 on k and r 1 on Pi - pz 
taking into account that r changes sign under an ex­
change of particles: 

"fa", y, ,=Vf.+tJ'a,tJ"yD(P,-P,) -tJ,a"tJ2"D(k). (2) 

Here D has the meaning of the paramagnon distribution 
function in the static limit 

D-' (k') =~'+1'(k2!k.2_1)2+1']2(k2!ko'-1)'+ ... , (3) 

lI=a2p~/1rzV is the density of quasi-particle states. 
As k - 0 the quantity r becomes r k of Landau's theory. 
The parameter ~2 in (3) is a measure of how close the 
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liquid is to the phase transition to the antiferromag­
netic state; it will be connected with the roton gap in 
the spin fluctuation spectrum. The coefficients y2 and 
1)2 in (3) determine the magnetic-susceptibility disper­
sion. 

Writing r in the form (2) corresponds to the usual di­
vision of the scattering amplitude into a potential and a 
resonant part which is used in quantum mechanics[4J; 

, ro corresponds to the potential and D to the resonance 
scattering. The next approximation consists in ne­
glecting roo This approximation is justified by the 
smallness of the factor v in (2). Below we determine 
the jump a and show that v is two orders of magnitude 
smaller than Vo of a perfect gas at the same density. 
In the resonance part of r this smallness is compen­
sated by the closeness to the phase transition point. 

As ~2 - 0 there occurs in ro a singularity of the kind 
IIro - (ko/2P F )4/h which is weaker than the singularity 
in D and contains an additional small factor (ko/2PF )4. 
This singularity is connected with the anharmonicity of 
the rotons and arises when we take into account graphs 
of the form: 

(4) 

The small factor (ko/2P F )4 determines the magnitude of 
the roton phase volume. When ~y > (k o/2p F)4 the neglect 
of vro is thus justified not only as compared to D, but 
also as compared to terms - 1. 

Writing r in the form (2) is the usual Hartree- Fock 
approximation for r but the expansion is not in terms 
of the bare interaction between the 3He atoms, but in 
the parameter ~2 which characterizes the closeness to 
the transition point. We can improve this approxima­
tion by evaluating graphs such as (4). It turns out that' 
it is more important to express the zeroth approxima­
tion for D correctly, i. e., to take into account the next 
terms in the expansion of D- i in powers of k 2/k ~ - 1. 
This is connected with the fact that they give a correc­
tion to the small quantity ~2, while the graphs (4) cor­
rect quantities of order unity. 

We note that the graphs (4), which are small when 
~y > (ko/2PF)4, change the character of the phase tran­
sition to the antiferromagnetic state from second to 
first order. This statement is proved in [5J, where I 
have considered a similar situation which arises during 
the condensation of mesons in nuclear matter. For 
3He the strong inequality h »(ko/2P F )4 is satisfied so 
that we shall neglect the contribution from graphs such 
as (4). 

3. CONNECTION WITH LANDAU'S THEORY 

In the limit k - 0 and Pi = P2= PF the scattering ampli­
tude r depends solely on the angle between Pi and P2 
and can be written in the form 

"i"=A (x) -<J,<J,('!,A (x) +D(O)), X=P,P2!P;, (5) 
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The function A (x) is connected with D and has a Lorentz­
ian form: 

3 2 >< 
A(x)=-2 D(k'=2p/(l-x)) ""-A" . . (6) 

J( ><'+(x-xo)' 

The quantities x, Aoo, and Xo are connected with~, Y, 
and ko: 

A _ 3ko'n 
,,- 8pF'61 ' 

ko' 
Xo= 1- 2pr' = cos 80 • (7) 

According to the Landau theory the physical charac­
teristics of a Fermi liquid can at T = ° be expressed in 
terms of the coefficients of the expansion of rw in 
spherical harmonics: 

'Vr"=<D (x) +o,o,z (x), 

<D (x) =~<D,P,(x), Z(x) =~Z,P,(x). 

The quantity r" can also be expanded in the PI functions: 

'Vrk=A (x) +o,o,B(x) , 

A(x)=~A1P,(X), B(x)=r.B,P,(x). 

In our case A{x) is determined by Eq. (6) and B(x) 
= - tA (x) - D(O). There exists a connection between 
~I' Z I and A" B I which was found by Landau: 

(8) 

The first two harmonics of ~ are well known from 
experimental data on the sound velocity and the specific 
heat: ~o = 10. 77; ~1 = 6. 25. We show that the large 
magnitude of ~o and ~1 follows from the theory, In the 
next section of this paper we shall express the auxiliary 
quantities ~ and 'Y in terms of the "physical" parameters 
Il and M (see (26». There follows thus from (26) and 
(7) a connection between ~, Aoo and Il, M: 

><=2- -ko' ( D.M ) 'I, 
• PF' 2ko' ' 

(9) 

In deriving (9) we used the relation m* 1m = 1 + ~d3. 
We determine the first harmonic ~1 from (6), (8). Up 
to terms ex){ the harmonic ~1 has the form 

It follows from this relation that ~1 increases as 1l-1/ 2 

as Il-O. To show that also ~0»1 as Il-Owe turn to 
the relation between the sound speed and ~o or ~1 [2]: 

, P,.' 1+<Do 
c =3m' i+<D,!3 . 

We shall show below that the sound speed is an analytic 
function of Il (see (37» so that it follows from the rela­
tion~lex~-1/2 as ~-O that also ~oex 1l-1/2• We empha­
size that the large magnitude of ~o and ~1 is a direct 
indication that 3He is close to a phase transition. In a 
normal Fermi liquid ~o, ~1 -1. The sound speed in 
3He which differs only by a factor two from its value 
for a non-interacting Fermi gas is in the Landau theo-
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ry expressed in terms of the anomalously large quanti­
ties ~o and ~1' The analytical dependence of c on Il 
is thus the result of the cancelling of the large quanti­
ties ~o and ~1' 

To determine the parameters 1;, Y, and ko from a 
comparison with experiments we need three conditions. 
Two conditions follow from the fact that the first two 
harmonics inA(x) calculated from Eq. (6) and their ex­
perimental values should be the same, The third con­
dition arises from the requirement that the calculated 
and experimental T-dependence of the specific heat at 
T - Il should be the same, (see (57», USing the calcu­
lated values of ~o and ~1 we get from (6), (8), and (57) 

ko"'0.7pF' xo"'0.74, 80",42°, 

£,,,,o.063, 1''''7.5, ><"'0.025. 

Since x« I, we shall put x = ° in all quantities which 
are insensitive to the exact values of~, 'Y, and ko: 
A(x)=Ao/i(x-xo)· 

Because of the /i-function-like x-dependence of A the 
expansion of ~ and Z in spherical harmonics will con­
verge slowly. The number of harmonics which we 
must take into account is ex X -1 ~ 40. The magnitude of 
each harmonic in ~ and Z, taken separately, is there­
fore of no interest. We separate from ~ and Z the part 
which depends strongly on x and which is the result of 
the coherent addition of different harmonics, while we 
expand their slow part in a fast converging series in 
the PI' We turn to the equation which connects A with 
~. [2] 

S dQ., 
<D (n" n,) =A (n" n,) + A (n" n,) cD (n" n,) -,- ~ A+ (A<D). 

'!:t 
(10) 

We look for ~ in the form ~ = A + '-4A)+.j;. The func­
tion ~ is a solution of the equation 

iii=«AA)A)+(Aiii). (11) 

We have separated from ~ the contribution connected 
with the exchange of one or two rotons. We note that 
taking the two-roton exchange into account in rw we do 
not exceed the accuracy when we neglected them in 
r". The two-roton graph in r" contains an integration 
over d 4q, and in rw over dn. The two- roton contribu­
tion to rw does therefore not contain the small param­
eter (kol2PF)4~ 0. 02. We consider the quantity (AA) 
as ){ - 0, when up to terms ex x the quantity A = 2Ao/i{x 
-xo): 

(AA)= 2A o' e(1+x-2xo') 
7[ [ (i-x) (I +x-2xo') j' 

(12) 

The square root singularity of (AA) for x = 1, i. e., for 
8= 0, is connected with the fact that as x-I two /i­
function-like maxima in (AA) merge and for x= 1 the 
square of a /i-function is integrated. 

The singularity at x = 2x ~ - 1, i. e., at 8 = 280, has a 
threshold. When 8 > 280 the momentum conservation 
law does not allow quasi-particles to exchange two ro­
tons at once during scattering. If we take into account 
that x*O, but K «I, for 11-xl>){ and 11+x-2x~1 
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> x Eq. (12) remains the same as for x = O. As x- 1 
the quantity (AA) tends to a finite limit cc x -1, and as 
x- 2x ~-]. toa value cc x-1/2. The x-dependence of the 
quantity <P is not sensitive to the value of x as many­
roton exchange does not lead to strong threshold singu­
larities. Only the derivatives of ~ have discontinuities 
when x= O. The expansion of ci> in terms of P, con­
verges fast and we cut it off at the third term: 

~=iD,+iD ,x+iD,'/, (3x'-i). (13) 

The coefficients ~, are connected with the A, and <P,: 

<f> _ A,' 
1- (21+1) (21+1-A,) (i+21+1ll ,)' . 

Since the zeroth harmonic Ao is close to unity as a-a: 
1-AoccA1 / 2 , while the first harmonic is close to three: 
3 -A1 cc A1/2, writing A in the form (6) leads to cor­
rectionscc xccA1/2 to the terms of the same order as 
1-Ao and 3 -A1• We must thus find the first two har­
monics ~, using the experimental values of Ao and A1 
rather than starting from the approximate expansion 
of D in powers of k 2 /kg - 1. Experimentally 1-Ao 
'" 0.1 and 27+ l-A1 '" 1 so that we can replace A by 
2 Ao1i(x - xo). The zeroth harmonic of A is then the 
same as its true value and the difference between the 
first harmonic and its experimental value leads to cor­
rections - x besides terms - 2l + 1 -A1• The correct 
way of taking the limit x - 0 consists by the same token 
in replacing Aoo in (6) by Ao. For the quantity (AA) of 
(12) the difference between Aoo and Ao is unimportant. 
Using the numerical values of Ao and Xo we get from 
(12) and (13) 

cD (xl = 1.836 (x-x,) +0.;)3 0 (x-O.I) +9+2.85 x+0.09 (3x'-1). 
[(I-x) (x-O.l) j" 

(14) 
The last term in (14) gives a 2% correction. We can 
also perform a similar calculation for the function 
Z(x): 

Z (x) =-0.616 (x-x,) + 0.059 [(1 ~;~~~~ I) l' 0.45-0.013x. (15) 

The expanSion of Z in terms of the P, can already be 
cut off at the second term which gives a 3% correction. 

Taking into account the fact that x is finite changes 
Eqs. (14) and (15) in a narrow region near x= 1 and x 
= O. 1. The width of that region is cc . ..t« 1. As all ob­
servable quantities can be expressed in terms of inte­
grals of <P and Z and as their singularities are only 
square root ones, we can put x = O. 

Relation (14) gives us the possibility to determine the 
frequencies of the higher zero sounds in 3He; it ex­
plains the good agreement of experiment with a theory 
in which only two harmonics of <P are taken into ac­
count. Although the convergence of the expansion of <P 
in terms of the P, is slow, the total contribution from 
the higher harmonics is small on the background of the 
zeroth harmonic <Po'" 11. Taking these harmonics into 
account therefore makes little change in the value of 
the zero sound velocity determined by Abrikosov and 
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Khalatnikov [61 in a theory with the two harmonics <Po 
and <Pl' When conSidering the higher zero sounds it is 
necessary to take into account the next harmonics as in 
the equation for determining their velocity the large 
zeroth harmonic does not occur. 

We note that Eq. (5) is in agreement with the sum 
rule 

.E (A,+B.l =0, 
I 

which is connected with the symmetry of the scattering 
amplitude. To prove this we rewrite (5) in the form 

vfA(x) ='/,D(p,-p,) -a,a,(1/2D(p,-p,)+D(0», 

I p,-p,j =PF[2(I-x) l"'. 

It follows from (16) that A + B = D(P1 - P2) - D(O) and 

.E (A,+B,) = .E (A,+B,)P,(l)=D(O)-D(O)=O. 

(16) 

We can enhance the accuracy of Eqs. (14) and (15) if 
we give up the expansion of ~ in terms of the P, and de­
termine <P from (11) which after integration over the 
angle ~ becomes 

Q(l') 

<l>(x)=A(x)+ ~ S <l>(x')dx' 
. 11 [(a(x)-x') (x'-b(x»]'" 

b(x) 

a(x) =xx.+ (i-x') 'I. (i-x,') 'I., 

b (x) =xx,- (i-x') '/'U-x.') '1,. 
(17) 

We could not solve Eq. (17) so that we restricted our­
selves to writing <P and Z in the form (14), (15). 

In concluding this section we note that to determine 
the parameters of the Landau theory exact values of 1; 2 
and y 2 are not important. Only the width of the Ii-func­
tion-like. maximum of the function A(x) depends on 1; 2 
andy 2. As with good accuracy we can put x = 0 the 
Landau theory parameters can be expressed merely in 
terms of the two numbers Ao and Xo from (7). 

4. SPIN FLUCTUATION SPECTRUM 

1. We determine the dependence of the amplitude r 
on the frequency w. To do this we consider r for P1 = P2 
= PF and w« kV. In that case r depends on w, k and the 
angle between P1 and P2' There is for r a representa­
tion Similar to Eq. (5) for r": 

vr(x, k, Ul) =A (x, k, Ul)+a,a,B(x, k, Ul). (18) 

r(w) is connected with its static value r(o) through the 
Dyson equation 

S dQ •• 
A (D"D" oo)=A(D" D"O)+ A(D"D"O)A(D" D" 00) ~6I1(oo), 

(19) . S dQ., 
B(D" D" 00) =B(D" D" 0)'''' B(D" D" O)B(D,. D2 , w) :;;;-611(00). 

I5n(w) in (19) is the correction to the static value of the 
polarization operator: I5n = n(w) - n(o). The main term 
in I5n which is linear in w has the form 
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nlool 
oIl(oo)=-i 2kV 8 (2pr k) , oo<kV. (20) 

One can show that Eq. (20) is valid for all k and w« kV 
and is not connected with the requirement k - 0, w - OJ 
when that requirement is met lin can be evaluated ex­
actly in the Landau theory. 

It follows from {19) that 

A, 
A, (00) 1-6IlA.J (2l+1) , 

B ( ) B, 
, 00 = 1-6IlB j /(21+1) 

(21) 

We shall take the w-dependence into account only for 
the zeroth harmonics of A and B. The fact is that in all 
observable quantities the combination M, = 3B, +A, en­
ters.· If 1 = 0, this combination has a finite limit as w 
-0, equal to -3D: 

A. D+'/,A, 
M, = ---- 3 -:--:-::--:-:-:--:-:--:= 

1-A.oIl 1 + (D+'/,A.)6Il 
(22) 

The w-dependence of Mo occurs already when Dlin - 1, 
i. e. , when w > k V~ 2, if k ~ ko. The quantities M,<o 
start to depend strongly on w only when w - kV, and the 
limit M,<o(w-O)=O 

A, 
M,,., = 1-oIlA.J(2l+1) 

A, (23) 

It will become clear in what follows that the contribu­
tion from Mo to the self-energy ~ and the specific heat 
C is non-analytical as ~ 2 - 0, so that it is necessary to 
take the w-dependence of Mo exactly into account. The 
contribution from M,<o is independent of ~2 and leads to 
corrections in ~ and C of the form 

e - 1n-'-, ( 8)' e' 
EF eZ 

( T)' e.' T -;-; Iny,. 

We shall not take these corrections correctly into ac­
count, remaining within the framework of the linear ex­
pansion of lin in w. Because of this it is necessary to 
renormalize also the zeroth harmonic Mo. In ~ and C 
there occurs the quantity 

iJ.=- 3 (D+'/,A.) [HoIl (D+'/,A.) ]-'+A,( 1 +/lIlA./3) -'. (24) 

2. The poles of B(k, w) correspond to particle-hole 
excitations with spin one. We can find them by ana­
lytically continuing B(k, w) onto the second sheet of the 
w-plane. This continuation must proceed from the . 
right-hand semi-axis Imw = 0 into the lower half-plane 
and from the left-hand semi-axis Imw=O into the upper 
w-halfplane: 

00=±i·2:c'kVB.-'(k, 0), B.(k,0)=-D(k')-A./3. (25) 

In accordance with the expansion (3) for k ~ ko the 
frequency w depends quadratically on k - ko: 

100 I =t;+(k-k.}'/2M, 

t; =2ko Vs'/:rr",0.094K, M=m':rrko/16pd"'0.06m. 

(26) 

As k - 0 we can also find the k-dependence of w as the 
value of Bo(O, 0) is known from data on the magnetic 
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susceptibility of 3He for k = 0: 

lool=kv, V=- 2V B.-' (0, 0), 
n 

Z. 
B.(O,O)=HZ. ""-2. 

(27) 

The spin fluctuation spectrum thus corresponds to vir­
tual spin-sound excitations and consists of phonons and 
rotons. 

The form of the spectrum w{k) near the maximum, 
where the phonon part of the spectrum goes over into 
the roton part, is not known. We give an interpolation 
formula for w which is exact as k - 0 and for k ~ ko. It 
is convenient to write w in the form 

1001 =oo.f(x) , oo,=2k,V/n; 

x=k/k" (28) 
D-'(x') 

f(xi=x l+'/,A.D '(x') 

In the expansion of D in powers of x 2 - 1 where x = k/ko 
we retained two terms: 

D(x') =6'+1'(X'-1)'+'1'(x'-1)' 

and we determined 1'/2 from the requirement that the 
spin-sound velocity, found from (28), be the same as 
the exact value from (25): 1'/2= 7. 

We give a diagram of the function/(x) in Fig. 1. 

5, THE SINGLE-PARTICLE EXCITATION SPECTRUM 

1. We split off the roton contribution in ~(p2, e). 
We write ~ in the form 

~={~(p', O)-~(p;, O)}+{~(p', e)-~(p', OJ} (29) 

The first difference in (29) can be expressed in terms 
of integrals over a wide range of intermediate momenta 
and the region near the Fermi surface where the form 
(2) of r is valid is not at all distinguished. We expand 
~ (p2, 0) _ ~(p~, 0) in a series in p2 - p~. The series 
converges well as this quantity is an analytiC function 
of A: 

Iwl/wo 

2 

o 

FIG. 1. The spin fluctuation 
spectrum. The frequency w 
is in units Wo = 1. 5 K. the 
momentum in units ko = 0.7 PF' 
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o~ I ~(p2,0)-~(pi,0)~(p2_p.') Op' P'~P~' (30) 

The contribution from the rotons, non-analytical in A, 
to the second difference in (29) is given by the expres-
sion 

(31) 

This expression corresponds to the Hartree-Fock ap­
proximation in terms of the effective interaction r(k,O). 
Corrections to this approximation contain the small 
parameter (ko/2PF)4 which is the analog of WD/ EF for the 
solid state. 

We can in (31) integrate over the angle between k and 
p, using the method applied by Migdal[7] to evaluate the 
phonon contribution to the ~ of the electrons 

• (,.1',. 

~(e)=-1-J dCll S dk'Sl,(k,CIl). 
16p,'a _. • 

(32) 

Using Eq. (24) we can easily integrate over dw: 

• "PI" 

~(e)=-i 3C1l,Slg,ne S dk'ln l-~,(k)llll(k,e) . 
8ap" l+/,Aollll(k,e) 

(33) 

We consider the limit as e - 0 

'1',' 
~(e)=_e_3_ S D(k')dk'=-e A,. 

8apF' , a 
(34) 

In obtaining (34) we used the connection between D and 
A (see (5), {6»: 

D(k') ='I.A. (x), k'=2p.'(1-x). (35) 

The jump in the particle momentum distribution is de­
termined by the relation 

a-'=l-~1 . ae 1:=0 
(36) 

From (34) and (36) we get the very important connec­
tion between the zeroth harmonic of A and the jump a: 

a=l-A •. 

As Ao = 4>00 + 4>0>-1 and 4>0 is connected with the sound 
velocity [2] we can directly express a in terms of the 
sound velocity: 

c'=p,'/3mm,', m,'=am', a=(1+~,)-''''().085. (37) 

We shall make clear below the physical meaning of the 
effective mass mt. It turns out that m: determines 
theT-dependence of the specific heat for large T. The 
theory therefore allows us to connect the sound velocity 
and the specific heat with the jump a. 

2. We evaluate ~ for f < eF' It is convenient, when 
integrating over dkl! in (33), to change to the dimension­
less variable x 2=k 2/kg and split ~ into its real and 
imaginary parts: 
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3k,' S' 8 Re.~ = - -.-. CIlo dx x arctg -=---( )' 
8p p -a U) x. e 

(38) 

The quantity w(x, f) has the meaning of the renormal­
ized spin fluctuation spectrum; w depends on (:;: 

iil(x, e)=xCllo D-'(Jf) 1 +_0_ +-A.-- . { ( A 'e' ) 1 e'} 
96>0 t x 2 3 oo02xZo 

(39) 

For small (:; < e F the integral comes mainly from the 
roton region xR! 1. The contribution from the phonon 
region x« 1 is small because of the small phase volume 
of the phonons. We can therefore put x= 1 in all quan­
tities which are slowly varying for xR! 1. We restrict 
ourselves to the approximation D= ~2+'Y2(xa _1)2. 
Then 

(40) 
·'(e)=£' (1 + AoZe') +-.!...~ 
s 9C1l.'· 3 CIlo" 

Using the form (40) for w we can use Eq. (38) for 
Re~: 

Re~=- 1-a e ( __ 2_)" .. 1 +~+(~+ (i+~)')"'l-'" (41) 
a 1 +e':/82" el~ a," 81" J ' 

3 ( 3 ) 'I, 
e, = A, ro,=4.9 K, el = roos To = 0.68 K. 

For small e Eq. (41) simplifies: 

-i-a 
Re ~=-1'2-e[ 1+ (1+e'/ 6.')''')-'\ 

a 
(42) 

For large e the quantity Re~ depnnds only on the ratio 
of f to e2 : 

i-a. (28'6.) 'I, , , 
Re~""'--slgne --- [1+(1+e,'/e')")-". 

a 1 +8'/e,' 

When A< f < eF Eqs. (42) and (43) are the same: 

I-a 
Re ~=- - sign 8 (21 e 16.) "'. 

a 

(43) 

(44) 

As A - 0 the self-energy ~ has thus a square-root 
branch point on the Fermi surface. We note that when 
the phonon velocity v decreases the quantity ~ also has 
a singularity on the Fermi surface, but this singularity 
is weaker than (44): 

e; 
~-eln . ,v/V - O. 

e·+8.'v'/V' 
(45) 

We can evaluate the imaginary part of ~ Similarly to 
Re1:. For small 8 

Im~=2-6.- 1- . 1-a 1&J { [1+(1+8'/~')'" ]'''} 
a 8 2 

For large e the quantity Im~ also depends solely on 
8/£2: 

i-a { (1+e'!e ')"'+11'1' Im~=--signe(~lel)'" ,~ , . 
a 1+e e, 

(46) 

(47) 

When £« £F we get from (42) and (43) an expression for 
~ =Re~+iIm~: 
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L = _ _ l-_a ---,-,-~--;2e--;-:-:-;:-c-:­
a (l-ilel/~)'''+l 

(48) 

3. The single-particle excitation spectrum is the 
same as the poles of the Green function G(p2,e). In 
our case for 10« e F 

(49) 

"The quantity mti is determined by the relation mti=am* 
and connected with the expansion (30): 

The poles of G(p2, 1') lie onthe non-physical sheet of 
the e-plane for e=Ep; Ep=ep-iyp: 

p'-p; { [2 ] "'} B.=-- \-(i-a) , 
2m; 1+1'1+A' 

(50) 
_ '-a (p'-PF')lp'-p/12 {[ 1+0+1.')"'1'" } 

1.- (1) 4(m')'~ i.' 2 -1 . 

The parameter ;\ is connected with .0. by the relation ;\ 
=(p2-p~)a/2m*.o.. 

For ;\2 < 1 Eq. (50) can be simplified: 

(51) 

As .0. - 0 the pole of G lies on the imaginary axis of 
the E-plane and corresponds to a virtual single-particle 
state. In 3He at a pressure of 0.28 atm the roton gap 
is no longer sufficiently small to distort the spectrum 
so much that yp» lOp. Using the numerical values of .0., 

a, and m ti we can get from (50) an expression for 10 p 

and Yl> as functions of y=(P-PF)/PF which are valid 
for ;\2 < 1: 

e p/EF=O.65y (t +11.9y'), 1p/BF=5y' (1-2.7y'). (52) 

The quantities el> and YI> become comparable for x=0.15 
and for large x are approximately the same. When x 
increases further, when ;\2> 1, the spectrum is linear: 
el>= VO(P-PF), VO=PF/mti, and the damping is small 
compared to 101>: Yp a:. Ip -PF 11/2. 

The single-particle spectrum of 3He is thus similar 
to the electron spectrum in a solid. Far away from and 
close to the Fermi surface there are quasi-particles 
and in the intermediate region where there is a strong 
interaction with rotons the damping Yp is larger than 
or of the order of E po The spectrum for large f - e F 

is not given by the theory as for such e the asymmetry 
of particles and holes and the cubic terms in e and ~ are 
important, and we have neglected those. 

6. PARAMAGNON CONTRIBUTION TO THE SPECIFIC 
HEAT OF 3He 

The calculation of the paramagnon contribution to the 
free energy of 3He, which is non-analytical in .0., pro­
ceeds Similarly to that of~. This contribution is given 
by ring diagrams in which r(k,O) occurs as the inter-
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action and 1m from (20) as the particle-hole loop. For 
an almost ferromagnetic Fermi liquid such diagrams 
were summed by Larkin and Mel'nikoy. [8] Up to terms 
a:. T2(T2/e~)theparamagneticcontribution to the free 
energy of 3He is given by the expreSSion 

6F=~S~T~ In H(D(k)+'/,Ao):rdCll n lf2kV . 
2 (2n)' i....J H'/.AonIClln I/2kV 

(53) 
-, 

Formula (53) corresponds to the Hartree-Fock ap­
proximation with the effective interaction r(k,O). Lar­
kin and Mel'nikov's summation of dangerous diagrams 
led to the Hartree approximation. As T - 0 the dif­
ference between these two approximations vanishes. 

The summation over the frequencies wn in (53) can 
be reduced to an integration over a contour enclOSing 
the imaginary axis of the w-plan'e. After differentia­
tion with respect to T and introducing a new integra­
tion variable k2/k~=X2 we get an expreSSion for the 
paramagnetic contribution to the specific heat C(T): 

3ko' S~ z'dz as' zT 6C(T)=-- ---- dx xarctg---. 
i6n' 8h' (z/2) az iii (x, zT) 

o 

(54) 

In (54), as in (38), the renormalized spectrum W(x, I' 

= zT), given by Eq. (40), occurs. As T-O the addition 
15C(T) can be evaluated exactly; as in ~ the addition 
15 C( T) is connected as T - 0 with the zeroth harmonic 
Ao and the jump a: 

6C='/'PFm'T(1-a) , c=co+6c='/'PFm'T, 
a=l-Ao. 

(55) 

It follows from (55) that Co=tpFmtiT. This expres­
sion for Co clearly follows from the form (49) for G. 
If we neglect the magnon contribution to~, G has the 
form G-1 = e - (p 2 - P ~) /2mti • Such a Green function de­
scribes non-interacting particles with mass m;; the 
specific heat is thus connected with mti by the usual gas 
formula, if we neglect magnons. As Co is an analytic 
function of .0. the linear T-dependence of Co is broken 
only when T - e F. 

When using (54) to evaluate 1)C we can approximately 
replace the function z2/4sinh2(z/2) by unity for small z 
and put it equal to zero for large z. Physically such a 
cut-off means that the contributions to the specific heat 
from degrees of freedom with energies e < T are ap­
prOXimately the same, while those with energies e> T 
give an exponentially small contribution. The cut-off 
parameter Zc follows from the requirement that as T 
- 0 the specific heat must be the same as (55): Zc = 7r 2/ 
3. After this we integrate over zbyparts and the inte­
gral over dx 2 can be approximately evaluated by the 
same method as for ~(e) in (38) (we also neglect the 
phonon contribution): 

1 { (2 )"'[ T' C=3 PFm'T a+(1-a) 1+T'IT,' 1+T;2 

(~ ( ~)')"']-"'}. + • + 1+ T , ' To , 
(56) 

The T-dependence of 15C therefore differs from the e­
dependence of Re~ only in a change in scalelength f 
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U.l 

o Oq If 

FIG. 2. The specific heat C, divided by the gas constant R as 
function of Tl/2 for T < O. 2 K. 

-ZcT• 

The quantity ~ Z is determined by comparing Eq. (56) 
with experiment for T - A, where (56) has the form 

1 { [ 2 ]'''} C=TPFm'T a+(1-a). 1+(1+T'ITo')'h . (57) 

For T < To the paramagnons give a correction to the 
linear law C ex T of the form T( T Z /T~). When T> To 
the specific heat like ~ depends on T1/Z 

(58) 

We show in Fig. 2 the T 1 / z-dependence of C, corre­
sponding to E q. (57) with ~ Z = 0.063. The points cor­
respond to the experimental data. [9-111 The data on 
C(T) for T - A, taken from different papers, differ 
from one another by 10%. From comparing Eq. (57) 
with experiment we derive ~ rather than ~ a. The quan­
tity ~ a, and then also A, is thus determined with an ac­
curacy of 20%. This inaccuracy by far exceeds the 
relative contribution of the spin phonons to C. In the 
present stage, therefore, when we restrict ourselves 
to a qualitative consideration, we cannot find the pho­
non dispersion from a comparison with experiment. 
For a more precise determination of the spin fluctua­
tion spectrum it is necessary to evaluate the double 
integral in (54) without applying the cut-off procedure 
in z. 

Having determined the parameter ~ a in the small T 
region where the rotons give the main contribution to 
C(T) we can determine the T-dependence of C for large 
T from (56). This dependence is given by curve 1 in 
Fig. 3. Up to T R: O. 4 K the agreement with experi­
ment is good, while for larger T the T-dependence of C 
is determined correctly: C R: C1 + caT, but the constant 
C1 is overestimated by 25%. This overestimate arises 
due to the inapplicability of the theory for T > O. 4 K, 
and is the result of approximately replacing the spec­
trum w by Wt, i. e., by changing from Eq. (39) to (40). 

To get a more exact form of C(T) for large T we 
must take into account that the spin fluctuation spec­
trum is asymmetric relative to k = ko• The part of the 
spectrum W for k< ka saturates appreciably earlier than 
the degrees of freedom connected with the region k > ka. 
It is clear that for T > wmax' where Wmax is the maximum 
value of W in the interval 0 < k < ka, the contribution 
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from this integral to C(T) will be approximately con­
stant. It is thus reasonable to take the contribution 
from the rotons for k > ko into account as before and to 
use in the region k < ko the expansion for D-1 up to the 
term ex 1/2 • For large T it follows from (53) that 

z,.T :t (ll 
arct(J'--~--~ 

oil) 2 ;uT 

and the fact that the spectrum is not determined for 
k < ko affects only the correction to the specified heat. 
The contribution from this "saturated" part of the spec­
trum to C is given by the expression 

1 k 2 { 2 1 ex I 'x' <lx' } C =- Jm·T.-"- -Mel -----A ~~-' "<'0 'J I, '2 'J . g ",," S D.L<·.l ' 
- [JF.) ~ 0) oIC( ,\ r- 1;\_ 'J 

(59) 

T,=w"z,-'=OA:J K. a=oT/T,. 

The total specific heat has the form 

C 0.39 _-. 1 00" 1 -=0.:l2a+ . +O.l/,)arclg-- . ::-. 
R (l+a')'''[1+(I+a-') '], a a 

(60) 

In the region O. 3 < a < 1 the specific heat C is with great 
accuracy a linear function of a(T): 

CI R=0.:l2a+(J.:):1=O.31 T+O.:\:\. 

According to Roberts and Sydoriak [10] in the same T 
region the experimental results agree with a dependence 
of the form 

CIR=O.20+0.2 T+0.03 T'. 

Curve 2 in Fig. 3 corresponds to Eq. (60) which de­
termines the specific heat at high temperatures more 
exactly. Apparently, the agreement with experiment 
can be improved if we do not make Simplifications of a 
computational nature when determining C(T) from Eq. 
(54). 

7. THE MAGNETIC SUSCEPTIBILITY 

The theory presented above depends on three phe­
no~enological parameters which parametrize the spin 
fluctuation spectrum and are determined from a com­
parison between theory and experiment. The number 
of physical quantities determined by the theory is much 

FIG. 3. T -dependence of C for T < 1. 5 K. Curve (1) corre­
sponds to Eq. (56), curve 2 to Eq. (60). The dashed curve is 
drawn through the experimental points from the data of[S ,10 I. 

For T> O. 5 K we have split off from C a term 0: T3. [101 
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FIG. 4. The magnetic suscepti­
bility X(k) in units Xo(O) as a func_ 
tion of klko• 

larger than the number of these parameters. At pres­
ent there is no direct verification of the results of the 
present paper as the magnetic susceptibility of 3He for 
k"* 0 is not known. The experimental difficulties of 
measuring X are connected with the fact that 3He, in 
contrast to 'He, absorbs neutrons strongly. The usual 
method of probing the liquid with a neutron flux which 
enabled one to determine the excitation spectrum of 'He 
in detail is unsuitable for 3He. 

We give an approximate expression for X which one 
can obtain by using the fact that ko is small compared 
to 2PF: 

x(k) "" (1 +~Ao+D(k») m', 
'1.0(0) " m 

(61) 

waere Xo is the static susceptibility of a perfect gas. 
To obtain (61) up to terms o::kV4p~ we neglected the k 2 

dependence of the polarization operator II. As k - 0 
Eq. (61) changes to the exact Landau formula: 

~= __ m' 
'1.0 1+Zo m . 

The quantity Zo is connected with D and Ao through 
Eq. (27). The kika-dependence of X is shown in Fig. 
4. We have used the form (3) for D. 

We emphasize that we do not know the dispersion of 
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X, like that of w. We must thus consider Eq. (61) as 
exact for k - 0 and k ~ ka, but for k < ko as an interpola­
tion formula. We believe a theoretical determination 
of the spectrum w near the maximum of w and X near 
its minimum is impossible. This is connected with the 
fact that the spectrum w integrated over a wide k-in­
terval enters into all physical quantities except X. The 
k-region where the spectrum is unknown has a small 
phase volume. As the theory is phenomenological and 
its accuracy depends on the accuracy of the experi­
ments from which the parameters A, ko, and M are de­
termined it is very difficult to separate the theoretical 
and the experimental errors from one another. In par­
ticular, X may not have a minimum at all, but mono­
tonically increase up to k = ko when k increases. Such 
a possibility would be most favorable as an experimen­
tal measurement of X in the small k range would enable 
us to verify with confidence that X has a maximum and 
thus the spectrum w a roton minimum. Our confidence 
that there are, indeed, spin excitations in 3He with a 
roton gap is based upon the agreement between theory 
and experiment which is achieved by a small number of 
phenomenological parameters. 
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