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We construct a theory of magnetic resonance in antiferromagnets. The theory contains the maximum 
possible number of independent phenomenological functions of the temperature that can be determined in 
principle from dynamic and static experiments. In the high-temperature region the equations of the theory 
are essentially those of Onsager's theory of thermodynamic fluctuations. At low temperatures, in the so­
called spin wave region, several parameters of the Onsager theory tum out to be the same. We describe this 
situation by new equations for magnetic resonance which are second-order equations in time and which can 
be derived by means of Lagrange's mechanical principle. As actual cases we consider the most lucid cases 
of a two-sublattice antiferromagnet in an external field and of the antiferromagnets CoC03, MnC03, 

FeC03, CoF" and MnF,. 

PACS numbers: 76.S0. +g, 7S.S0.Ee 

1. INTRODUCTION 

When studying magnetic resonance and spin waves in 
antiferromagnets theoretically or experimentally it is 
extremely useful to have general phenomenological ex­
pressions for the spectra which contain the maximum 
number of constants compatible with the symmetry and 
physical properties of the phenomenon. The first step 
along this path was the famous Landau-Lifshitz equa­
tion[I) which describes ferromagnetic resonance and the 
essentially long-wavelength spin waves in a ferromag­
net. The first phenomenological theory of antiferro­
magnetic resonance (AFMR) was the theory of Kittel and 
Keffer[2) (see alsO[3)) constructed in the molecular field 
approximation. Borovik-Romanov and Turov (see[4,S) 
and alsO[6)) developed a phenomenological theory of 
AFMR in the large spin approximation for T =0. The 
first attempt to construct a theory of AFMR containing 
the maximum possible number of constants was under­
taken by Gufan. (7) 

An essential step in the range of phenomenological 
theories was the hydrodynamic theory of spin waves 
constructed by Halperin, Hohenberg, and others. [8) 

Finally, a complete phenomenological theory of spin 
waves in the exchange approximation and for the case 
where there are no external fields was very recently 
produced by Andreev and Marchenko. [9) Essentially 
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they determined all possible kinds of "acoustic" oscil­
lations in a magnetic system. It turned out that while 
for oscillations of atoms there are always three and 
only three acoustic branches, for oscillations of mag­
netic moments the number of acoustic modes can be 
both less and more than three. It is determined by the 
specifiC exchange group of magnetic symmetry intro­
duced by the authors. Exchange magnetic groups dif­
fer from the magnetic groups (including time-reversal) 
introduced by Landau(10) (see also[l1)) in his time and 
are the same as the so-called color groups. 

In the high-temperature range T;S Tc (Tc is the mag­
netic phase-transition temperature) the theory of AFMR 
can be constructed in a natural way as a particular case 
of the general Onsager theory of thermodynamic fluc­
tuations (see, e. g., [12)), In fact, one can write the 
AFMR equations as Onsager equations for thermody­
namic variables: 

(1) 

Here f is the free energy of a small deviation from 
equilibrium which is, in general, an arbitrary positive 
definite quadratic form of the variables qa' The coef­
ficients I'ab are the Onsager coefficients; their form is 
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restricted only by the symmetry principle of the kinetic 
coefficients. It is clear that if the motion described by 
Eq. (1) is undamped, f must be an integral of the mo­
tion and the coefficients Y.b must therefore be antisym­
metric: Y.b = - Yb.. The symmetric part of Y.b de­
scribes damping. 

The thermodynamic variables q. themselves can be 
introduced in two ways. We can neglect in first ap­
proximation the lattice deformations connected with 
magnetostriction and we can consider the motion of the 
system of spins against the background of the spatial 
symmetry of the paramagnetic phase (this method has 
been used earlier by Gufan and one of the present au­
thors(131). In such an approach the set of quantities q. 
will be the same as the set of "vectors" Sn .. , where the 
vector index i of S~ .. describes the direction of the spins 
in space while the set of indexes nil! describes the coor-

. dinate dependence of the spin density. In our case n is 
the number of the irreducible representation of the 
space group of the paramagnetic phase, while Il! is the 
number of the function in its base. On the other hand, 
we can understand by the irreducible representation n 
either a representation of Landau's magnetic group in 
the magnetic phase[101 or a representation of the ex­
change p'oup introduced by Andreev and Marchenko. [91 
In the first case, however, it is difficult in practice to 
separate relativistic from exchange effects while in the 
second case there remains the unsolved problem of how 
to find the exchange group itself from the available ex­
perimental data. 1) 

The AFMR frequencies given by Eqs. (1) are clearly 
determined both by the static properties of the system 
such as the spin-flip fields Ho and the perpendicular Xl. 
and parallel XII susceptibilities which occur inf, and by 
the dynamic coefficients Y.b • However, a comparison 
with the results of a microscopic theory (e. g., with 
Oguchi's theory[141) and with a phenomenological spin 
wave theory (see Sec. 4 below) shows that at low tem­
peratures in the spin wave region not all coefficients 
Y.b allowed by Onsager's principle are independent. The 
fact is that, as was first shown by Dyson, [lS1 there are 
two kinds of temperature dependence for all physical 
quantities for T < Te: a series expansion in powers of 
T/Te and a dependence of the form exp(- Te/T). The 
region T« Te where only the power-law temperature 
dependence remains while all exp(- Te/T) are negligibly 
small is also the spin wave region. Knowing the be­
havior of a quantity only in the spin wave region we can 
therefore say nothing whatever about the region T- Te. 
However, in return we can conclude from the results of 
the spin wave theory which of the quantities Y.b or·of 
their combinations turn to zero as exp(- Tc/T). 

Of course, we can always turn directly to the micro­
scopic theory. However, concrete microscopic calcu­
lations taking into account anisotropy and external dif­
ferently orientated fields, e. g., in the framework of 
Holstein and Primskoff's method (see, e. g., [141) are 
extremely laborious. It is therefore always useful to 
have a phenomenological method in which the part of 
the microscopic theory is reduced to merely calculat­
ing the temperature dependence of two or three coef-
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ficients. Moreover (see the end of Sec. 4) a phenome­
nological method enables us to make a number of gen­
eralizations which go beyond the framework of present­
day microscopic theories which operate in the limit of 
large spins S. 

The phenomenological method proposed by us is es­
sentially a generalization of the usual Lagrangian meth­
od in the small oscillations theory. We shall consider 
the free energy f of the oscillations, which occurs in 
(1), as a potential energy and we shall introduce apart 
from it a Lagrangian function p. In contrast to the 
standard situation in the theory of oscillations there can 
now occur in:?, in the case when the variables are mag­
netic moments, i. e., quantities which change sign under 
time reversal, also terms which are linear in the de­
rivatives. 

The general expression for:? is of the form 

1 ~ dy,. 1 ~ dqo dq, . 
2:~~ , (I. q'-""~ '! -~-J :! ..-J' , •. 0 at 2 ,0' dt dt . 

(2) 
• b 

The coefficients P.b must be antisymmetric: P.b = - Pba' 
in order that the first term in (2) does not reduce to a 
total derivative with respect to the time. Since, as is 
clear from (2), the P.b must change sign as t - - t, they 
are, like the Yab in (1), proportional to odd powers of 
the equilibrium values of the spin density (see Secs. 
3, 4). 

The equations of motion are now the Lagrangian equa­
tions (q == dq/ dt) which with the P from (2) have the form 

~ .. ~.. Of 
L .. /·· qc ,- ,L./, •.. q" ~ - -.-. Uq., 

/, /.) 

(3) 

At first sight this equation (at least when [J. = 0) is 
Eq. (1) solved for 8f/8qa. However, in actual fact the 
tensor P.b (and Y.b) may not have an inverse and, as al­
ways, Eq. (3) is equivalent to a set of first-order equa­
tions with double the number of variables (coordinates 
and momenta), i. e., Hamiltonian equations, and not 
Eqs. (1). 

Equation (3) has an energy integral~, in our case the 
spin wave energy 

~ ri:T 1 ~ 
8 ~ La. r( -, -. - p ~ -:) La. p .•• ,q,q,'+ j. 

Jq'l _ 
,1 "I 

(4) 

which equals the sum of kinetic and potential energies. 
Equation (4) requires that the tensor [J..b be positive 
definite. 

Apart from the energy of the excitation ~ we can also 
determine its (spin) angular momentum J. To do this, 
as always in mechanics (see, e. g., [161 Sec. 43), we 
must consider the action 

, 
9' ~ S :? dt 

as function of the coordinates and recognize that when 
we vary the endpoint of the trajectory I'>q.(t) the action 
changes according to the formula 
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(5) 

We consider now how the action changes when all spins 
i. e., the above introduced quantities Sna, are rotated 
over the same infinitesimal angle fxp. Equation (5) be­
comes in that case 

M1=J6cp, (6) 

where, by definition, J is also the angular momentum. 

In the case when the angular momentum is an integral 
of motion, i. e., when the Lagrangian function Ie does 
not change under rotation around any axis (this means an 
exchange interaction or that the crystal is magnetically 
uniaxial) it can be connected with the motion of the mag­
netic moment .If, averaged over a period, by introduc­
ing the magneto mechanical ratio y* for the excitation: 

.i{=y.l. (7) 

On the other hand, we can evaluate the magnetic mo­
ment Jf(t) as the derivative with respect to the external 
magnetic field H using the normal mechanics formula 
(see[16l, Sec. 40) 

(82) (8.re) 
..K(t)= OH . = - 7ilf ' 

q. 'i q. P 
(8) 

where the derivatives of the Lagrangian function Ie are 
taken for constant coordinates q and velocities q, while 
the derivatives of the Hamiltonian function de are for 
constant q and their conjugate momenta p. We shall see 
below in Sec. 4 that Eq. (7) imposes well defined limi­
tations on the coefficients p and /1 in (2). 

The damping of the AFMR is in the Onsager version 
(1) of the theory evaluated, as always, by using the 
positive definite entropy generation: 

where Y!b is the symmetric part of the Onsager coeffi­
cients. For small damping we can always use the rela­
tion 

2 dSj 
or -;- = T dt j, 

which is averaged over a period and which also deter­
mines the relaxation time T. 

In the spin wave version a positive dissipation func­
tion 91 (see[16l, Sec. 25) is introduced 

91 = -} .E ".,eM,,, 
., 

dt 8g. 8q. 8g. (9) 

while the relaxation time T is determined from the rela­
tions 
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(10) 

We apply in what follows the proposed general scheme 
to the simplest case of a two-sublattice uniaxial anti­
ferromagnetic in an external field. Of course, the 
scheme with a Lagrangian function is applicable to spin 
waves with a finite wavevector; to do this we must in 
the usual manner take into account terms with deriva­
tives with respect to the coordinates in! in (2) and in [Jl 

in (9). Equations, similar to (9) and (1) then completely 
determine the momentum dependence of the spin wave 
damping. 

2. THERMODYNAMIC RELATIONS 

We start with a calculation of the free energy! of the 
oscillations which occurs in both versions of the theory, 
both the high-temperature and the spin-wave one. We 
consider a uniaxial ferromagnetic and a uniaxial two­
sublattice antiferromagnetic in an external magnetic 
field H. We then restrict ourselves to the first approxi­
mation in the anisotropy a and in H and we shall neglect 
the anisotropy in the basis plane. 

In the ferromagnetic case the free energy is of the 
form (z is here and henceforth the crystal axis) 

F=Fo(M') -'I,a(M')M,'-MH, (11) 

where M is the magnetic moment per unit volume, 
Fo(M2) the exchange part of the free energy, a(M2) the 
anisotropy energy which, in general, is a function of 
M2. The value of the moment M in equilibrium can be 
found from the condition 

8F 
aM"=O' (12) 

One can also find easily the energy! connected with a 
small deviation m of the moment from equilibrium. In 
the "easy axis" case and the field H along z we have2 ) 

j='I,(a+HIM)m.L'+'I'XII-'m,'. (13) 

Here a and M are given functions of the temperature, 
X~l is the susceptibility of the paraprocess, and 

X.L-'=a+H/M (14) 

is the perpendicular susceptibility of the uniaxial ferro­
magnet. It depends, of course, on the field and on a. 

The state of the simplest two-sublattice antiferro­
magnet in an external magnetic field is determined by 
two vectors Sna mentioned in the Introduction, viz., the 
antiferromagnetic vector L and the magnetic moment M. 
For a uniaxial crystal when there is no anisotropy in 
the basis plane we can write for the free energy 

F=Fo(L')+'/,P(L') (LM)'+'/,Q(L')M'-'/,a(L')L,'-MII. (15) 

We retained in Eq. (15) solely the quadratic terms in 
the expansion of the free energy in terms of the quantity 
M which is small for an antiferromagnet. This corre-
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sponds to the main approximation in powers of the ratio 
H/He of the external field H to the exchange field He. 
Moreover, we neglected the intrinsic relativistic an­
isotropy of the magnetic susceptibility (i. e., terms of 
the form M; which give the anisotropy of the suscepti­
bility in the paramagnetic phase). As in the ferromag­
netic case, all quantities Fo, P, Q, and a which occur 
in (15) are arbitrary functions of L2. 

The equilibrium values of L and M are determined 
from the conditions 

of of 
iiL ~ aM~O' 

and the second of these gives, as always, 

(16) 

where XII and XL are the parallel and perpendicular sus­
ceptibilities defined in the usual way, neglecting rela­
tivistic effects. 

The formulae for the free energy of the oscillations of 
1 and m depend on the actual situation. 

a) Easy axis, H II z. We must here distinguish two 
cases: weak field H < Ho (Ho the spin-flip field, see be­
low) and strong field. 

In a weak field H < Ho and the antiferromagnetic vec­
tor L II z. In that case 

_ 1 { z,N' ( Z)} I' H ( 1 Xit ) I f-- a--L - 1-- _ T-L - V • .c .cm.L 
2 'z.c ,. 

(17) 

The constants A and B which determine the energy of 
the longitudinal oscillations do not have a direct experi­
mental meaning and can be expressed in a well defined 
way in terms of derivatives of F o, P, Q, and so on. 

The condition that the energy of the transverse oscil­
lations be positive definite has the form 

H2';;;Ho'~aL'/ (z.c -x ), (18) 

where Ho is the above-mentioned thermodynamic spin­
flip field. The condition for stability with respect to 
longitudinal perturbations ~H2 <s;A/X Il is normally used 
together with (18). 

In a strong field H> Ho and L II x. In that case 

(19) 

The energy f is positive in fields H > Ho, but such that 
~n2<A/XL' Usually the second condition is also sat­
isfied. 

b) Easy axis, H II x. In that case 
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f ~ ~ {a + z.c'I~' (1--~)}lx' + ~aly' +~ X.L (1- I::') I,m, 
2 X L' Z.L 2 L Xli L 

+'/,/._-'my'+'/,Z,-'m,'+'/,A('+Blll,mx+'/'X.L-'mx'. (20) 

c) Easy plane, L II x, H II z. In that case Eq. (19) with 
a <0 is, of course, valid. 

d) Easy plane, L II x, H II y. In that case 

f= L'll: (l_~)I;+'/'lall/+~Y..L (l-~)lym, 
2/., L' X.L Lx" l.c 

+'/,1.: -'m..'+'/,J(J. -'m/+'/,Alx'+BHI,my+'/,x.c -'m,'. (21) 

3. HIGH TEMPERATURES 

We start with the ferromagnetic case. It is clear that 
in the case of a magnetic field which is parallel to the 
easy axis the longitudinal oscillations can be split from 
the transverse ones. As always the longitudinal ones 
appear to be purely relaxational and we shall not con­
sider them. On the other hand, it follows from Eqs. 
(13) and (1) that the frequencies will be small, propor­
tional to H - a. In the main approximation in a and H 
we must thus restrict ourselves to the exchange ap­
proximation for the coefficients Yab' This gives at once 
the simple equation 

(22) 

i. e., the linearized Landau-Lifshitz equation[l) and the 
well known expression for the ferromagnetic resonance 
frequency 

(23) 

The resonance frequency is thus determined by means 
of the quantities M, a, and X:Ll which are measured in 
static experiments and one new dynamic constant, the 
magnetomechanical ratio Y, 

In the AFMR case comparison of Eqs. (17) to (21) 
with Eqs. (1) shows that the AFMR frequencies are 
again small and proportional to - H, al/2 , We must 
here take into account that it can be seen from the for­
mula for the energy f that in any mode the oscillating 
magnetic moment m is less than the corresponding anti­
ferromagnetic vector l, or more precisely, m - Hl, 
al / 2l, It is therefore also in this case sufficient to re­
strict oneself to the exchange approximation for the 
coefficients Yab' 

The general equations with exchange values of Yab 

have the form 

~ =Yl ~X :~J+(Y2 - Y4)(LM{LX ~]+Y4L2[MX ~J. 
(24) 

~~ =h [LX ~J+(Y3 - Ys)(LM) [LX :~]+YSL2[MX :~]. 
with, in general, five arbitrary "magnetomechanical 
ratios" y. 

To find the spectrum of Eq, (24) it is impossible to 
allow extra accuracy and we must drop all corrections 
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of relative order H/He and Ha/He (Ha is the anisotropy 
field). In particular, the terms proportional to Y2 and 
Y4 in the first of Eqs. (24) are such corrections. 

We now give the formulae for AFMR frequencies. 

a) Easy axis, H II Z, H < Ho. There are two frequen­
cies: 

(25) 

Here Ho is the thermodynamic spin-flip field (18) and 
we have introduced instead of the coefficients Yl and Ys 
new Y* and y" through the formulae 

(26) 

(AFMR) frequencies will be small: w-a, H for FMR 
and w-al/2 , H for AFMR. Moreover, the estimates 
for the amplitudes of the oscillations, m - Hl, a1l2 l also 
remain valid. It is therefore again sufficient to write 
the kinetic part of the Lagrangian function P in the ex­
change approximation. 

In the ferromagnetic case 

0' I M ~ dm]. I (dm ) , x =-p mX - T-(~l-fl,) :\1-
2 dt ~ elf 

(33) 

In the equation of motion for the transverse components 
the term with the second derivative is a small correc-

In the molecular field model we have the relation tion and the low-temperature equations give the same 
result as the Landau-Lifshitz Eq. (22) with 

where Yo =glJ.o is the magnetogyric ratio for a free spin, 
and (25) becomes Kittel and Keffer's well known for­
mula(2.31 

(28) 

In a strong field H > Ho, L II x and 

(29) 

where instead of the constant Ys we have introduced a 
new magnetogyric ratio Y.L: 

In the molecular field limit Y.L = Yo. 

b) Easy axis, H II x. 

(30) 

(31) 

With the above indicated accuracy the frequency of the 
second branch is independent of the magnetic field. 

c) Easy plane, H II Z. Equations (29) remain valid for 
this case, but we must substitute for the term -H~y~: 
laIL2yV(X.L- X.,)=y~laIL21x.L. 

d) Easy plane, H II y. We have 

ia[L~-{_- ·{,~iaIL~ 
(IJ:! = --- ~ ---. (32) 

L-I. L 

The formulae for the AFMR frequencies are thus in 
the high-temperature region of the same structure as 
the formulae from the molecular field theory (see, 
e. g., (31). However, there now occurs in them instead 
of a single dynamical constant Yo three phenomenologi­
cal constants: y*, y", and Y.L. 

4. LOW TEMPERATURES 

As in the high-temperature case the ferromagnetic 
resonance (FMR) and antiferromagnetic resonance 
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i~lIP·W. (34) 

In the equation of motion for the longitudinal mode 
the term with the second derivative must be retained: 

d'm, 1 dm, 11M' -0-+ - nt.~- i. --. 
dt- y.' dt 

(35) 

In the right-hand side of this equation we included the 
general form of the relaxation term given by the dissi­
pation function [fl. However, the value of this equation 
is not particularly large as in actual fact it only de­
scribes a relaxation mode. This is not ultimately con­
nected with the large magnitude of X" as already in the 
Bloch model of spin waves X,,- T/H l/2 , T/al/2 (for de­
tails see, e. g., (171). 

In the antiferromagnetic case the Lagrangian function 
has the form 

g=PL~X ~~] +(p,-p,) (LM)L~ X~] 

~ d1] 1 dl 2 1 dl 2 

+P2L2M IX- +-11£0(-) +-(~II-I1) (L-) -f, 
dt 2 dt 2 dt 

(36) 

where f is in the various cases given by the formulae 
from Sec. 2. When writing down Eq. (36) we took into 
account the above mentioned relations between the os­
cillation amplitudes m and 1 and dropped small ex­
change terms of the kind 

( dm)' 
dt ' 

( dm) ( cll ) L- :\\-
cit cit 

and so on. 

We now find the ratios y*, mentioned in the Introduc­
tion, between the coefficients in the kinetic part of the 
Lagrangian P and the magneto mechanical moment for 
the excitation from Eq. (7). We start with the simplest 
ferromagnetic case. The Lagrangian 51' of the system 
is invariant under a rotation of all transverse moments 
m.L (in what follows we denote m.L simply by m) over a 
small angle ocp around the z-axis: 

/lm= [zXmJ/lt{J. 
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In accordance with Eqs. (5), (6) to this rotation there 
corresponds a conserved angular momentum of the os­
cillation (of course directed along the z-axis): 

(37) 

On the other hand, evaluating the magnetic moment 
..It using Eq. (8) gives 

.!{=-m'/2lvI. (38) 

As the magnetic moment.lt itself is according to (38), 
(37) a conserved quantity, direct comparison with Eq. 
(7) gives 

1.=- l/pM'. 

Comparison with (34) shows that the constant y in the 
Landau-Lifshitz equation is the same as the magneto­
mechanical ratio y* for a spin wave. 

We now consider an antiferromagnetic with an easy 
axis in a weak field (H <Ho), parallel to the z-axis. 
The Lagrangian function for transverse oscillations3 ) 

has the form 

~ dm] 2 ~ d1J J. ( dl )' 9:=pL IX - Z+P1L XnH IX- z+~JlL- -
dt dt:2 dt 

J { XJI' ( y')}, H ( Y. ) 1 " -- a--,- 1--, 1--- J-- hn---xl.- m-, 
2 L- L L y.J. :2 

(39) 

It is invariant under a rotation of I and m around the 
z -axis over the same angle I5cp: 

15m =[z X m] I5cp , OI=[zXI]l5cp, 

which according to (5), (6) gives the following formula 
for the conserved angular momentum of the oscillation: 

On the other hand, the use of Eq. (8) to evaluate the 
magnetic moment leads to 

(40) 

(41) 

In order to apply now Eq. (8) we must average (41) 
over a period of the oscillations. To do this we write 
down the equations of motion defined by (39): 

pL rz X ~] = - ..!... m -..! (J -~) I, 
Ldt XJ. L Xl. 

~ dm] 2 ~ d1] , d'i pL z, X - +2P1L XIIH z X - + f1L--
& & df 

{ X"H' I XII )} H ( X,' ) 
=- a-------v- 1- Xl. I- L 1- Xl. Dl, (42) 

Using them we can reduce Eqs. (40) and (41) for J and 
.I( (t) to the form 

J= (XLP2 + Il)L2 [IX ~!Jz +H{- p(XL - XII) +P1L2 XII}12, 

.I(t) = {- P(XL - y II) + PtL2 XII} [IX ~!} + Zz (XL - XII)l2. (43) 
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A comparison of vii with y*J in (43) gives in fact two 
relations as ]1 and J are functions of the magnetic field 
H. In particular, the fact that.1i is the same as y*J for 
H = 0 leads automatically to the fact that the coefficients 
of 12 and of [n]z are the same. Hence we have the rela­
tions 

L'(Xl.p'+J,t) = (Xl. -XII)!Y"L', 

p,L'y.II-p(Xl. -x,') = (Xl. -xJh·L', 
(44) 

which connect p, Ph and Il with the magneto mechanical 
ratio y* for a spin wave. 

The AFMR spectrum is given by Eqs. (42). It is 
here important that the second derivatives in them give 
the same contribution as the first derivatives. Using 
(44) we get from the calculation the simple formula 

fil" ,="(. (Ho±H) , (45) 

where Ho is exactly the same thermodynamic spin-flip 
field. This formula is the same as Eq. (25) from the 
Onsager version with 

"(11=,,(.+0 (exp (-TJT) ), (46) 

On the other hand, neither Eq. (25) with YII '* y*, nor 
Kittel and Keffer's Eq. (28) give the correct low-tem­
perature asymptotic behavior (45) which, however, is 
the same as the result from microscopic theories 
(cf. [14l). 

In all other variants of field orientations and signs 
the equations of motion simplify even more. In fact, if 
we neglect terms which are of higher accuracy (cf. the 
preceding section) we can use for finding the frequency 
spectrum the Lagrangian function 

9:=pL IX - T-llL- - -,T_ ~ dm~, I " ( <II )' _ 
dt :2' <it 

Calculations give for the AFMR spectrum the same 
Eqs. (29), (31), and (32) where, however, 

(47) 

(48) 

The structure of all low-temperature formulae ob­
tained in this way is the same as that given by micro­
scopic or phenomenological theories (cf. [4,5,14l). How­
ever, they allow us to find the temperature dependence 
of the AFMR frequencies more exactly and in a more 
economical way; this occurs in the spectra only through 
the spin-flip field Ho(T) and y.(T). 

In particular, in the Holstein-Primakoff approxima­
tion, i. e., in the large spin S approximation, y* (T) can 
be found immediately if we use Oguchi's results. [14l In 
his paper the energy of the spin wave system, as in 
Landau's Fermi liquid theory ([181, see alsO[12l, Sec. 
68) is determined in the form of a functional of the spin 
wave distribution function n1,2 for the two kinds of oscil­
lations in (45). In Oguchi's theory the functional has 
the form 
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where f 1•2 are the spin wave energies when we neglect 
the interaction, while fll, f12, and f22 are the analogies 
of Landau's f-functions, which in Oguchi's theory are 
small: f-1/S. FollOWing Landau and defining the ex­
act spin wave energy as 

and substituting here 

we find after some straightforward calculations that 

where Yo = g J.Lo is the "free" magneto mechanical ratio, 
while X,,- T2, XJ. = const. 

However, the difference between the low-tempera­
ture phenomenology proposed here and theories[4.5.141 
which are valid only in the limit S - 00 can in principle 
be made even more pronounced. Namely, we can drop 
the requirement that the magnetic moment of the exci­
tation be connected through Eq. (7) with the angular 
momentum. This is completely possible in metals 
where X,,(T=O) may be finite while, on the other hand, 
it seems altogether improbable that theories operating 
with the Heisenberg exchange Hamiltonian (e. g., 
Oguchi's theorl141) will give anything which is prin­
cipally different in terms of order e- s• 

There are no special difficulties in performing cal­
culations with the Lagrangian function (39) without the 
limitations (44). Their results consist in the fact that 
Eq. (46) is then violated while Eq. (48) remains. The 
AFMR frequencies will in that version of the theory 
thus again be described by Eqs. (25), (29), (31), and 
(32) where now, however, 

P (Y..c -x) -p,L'z 

u(z"p'+rl ) 

Z.L-Z 

L'(z-,-f"~rl) 

(49) 

(50) 

It would be interesting to observe the new qualitative 
features, viz. that y" *" yJ. = Y*, which arise in such a 
theory experimentally. Of most interest would be the 
feature involving the presence at low temperatures of a 
term under the square root sign in Eq. (25) which is 
quadratic in the field H. We emphasize once again that 
this difference must be of the order of magnitude of the 
exchange in contrast to the trivial relativistic correc­
tions which appear due to the dependence of H~ on the 
external field. 
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5. FeC0 3 , MnC03 , CoC0 3 

For these substances we must add to the free energy, 
given by Eq. (15) a term b[LxM]1I corresponding to weak 
ferromagnetism. 

a) FeC03 • Weak field H II z. We add to the energy of 
the oscillations f (Eq. (17)) a term b[Ix m]z. Equation 
(25) remains for the AFMR spectrum, in which we need 
only change the definition of the spin-flip field 

H,' = a-b'X.L . 
X.l-X' 

(51) 

b) MnCOs, CoC03• H II y, L II x. These materials 
have a weak ferromagnetic moment Mo which has the 
absolute magnitude XJ.I b I L. In equilibrium in an exter­
nal field we have instead of (16) 

Instead of Eq. (21) we shall now have for f 
j 

j = ')L" (X.Lll+M,) [(X.L -x,)H+M,ll,' 
- z" 

i- ~ [Ial -+- L~" ilI,('l..JI+M,) ] I; + f-[ (xJ.. -x")H+ilI,ll,,m, 
z~ z 

+'/,z,-'m.,'+'/,I.-,--'m,'+'/,Alx'+BHlxm, +'/,X.L -'m,'. (52) 

The equations of motion in the Onsager version also 
are changed. The first of the equations remains with 
the required accuracy in the old form: 

~="LrxX ar] 
dt ' L am' 

(53') 

while instead of the second one we must write 

(53") 

The appearance of the term 

with a new phenomenological coefficient a is connected 
with the fact that the symmetry of crystals which per­
mit the appearance of the term [LXM]II in the energy 
allows also the appearance of a term of the form 

(lZXL]X :~J 
in the equation of motion for m. We remind ourselves 
that ~-[zxL], we are led to Eq. (53"). 

We note also that the appearance of the coefficient a 
destroys the "eaSy plane" symmetry, introducing its 
own kind of dynamic anisotropy which exists even when 
there is no static anisotropy in the plane (Eq. (52)). 

We give only the most interesting formula for the 
"ferromagnetic" mode w1: 

where the dynamiC gap t:J. is given by the formula 
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Ll'=,,' (a.-I) 'Mo'ixii (X.c -X,)· 

At low temperatures the solution of problem (47) with 
f from (52) gives for any version of the low-temperature 
theory (as in both y* = Yl.) 

w,'/"f.'=H'+MoHI (x.c -XI')' (55) 

There is thus no dynamic anisotropy in the spin wave 
region: 

a.=1+0(exp(-TJT) ). (56) 

6. MnF2, COF2 

We consider here the easy-axis MnFz, CoFz in a weak 
field parallel to the crystal axis. Their symmetry al­
lows in the energy (15) a term b(L" My +LyM,,). This 
leads to the additional analogous expression b(l"m y 
+lym,,) in the expression (17) for the energy of the os­
cillations. In particular, the equation for the thermo­
dynamic spin-flip field Ho is changed. In fact, now 

[ (a-b'XII)L'] 'I, 
Ho= -lbIL. 

X.c-XII 
(57) 

The evaluation of the spectra of the oscillations by 
means of Eqs. (24) or (42) leads at high temperatures 
to 

,_{[,.'(a-b'x.c.~)L' ]';'}' v'b'L' 
Wl,,- +ll'(y.,'-,.') ±H'II --"-2-' 

X.c-X" 'II 
(58) 

We have here for the sake of simplicity denoted by (3 
the quantity 

~=l-~(l-~). 
,II X.c 

(59) 

The same formula is also retained in the second ver­
sion of the spin wave theory with y" "* yl. = y*. In the 
version with all gammas equal {3= X,,/Xl. and Eq. (58) 
simplifies: 

(60) 

One of the authors (I. D.) expresses his gratitude to 
A. F. Andreev and A. S. Borovik-Romanov for a dis­
cussion of the problems touched upon here. 

DOne can find a more detailed description how one must con­
struct equations such as (1) in the already cited papers by 
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Gufan!7J and by Andreev and Marchenko. [91 

2)Here and in what follows the equilibrium values of the mo­
ments will be denoted by captials: M, L, and so on, and the 
deviations by lower case letters: m, 1, and so on. 

3) As in the ferromagnetic case, the longitudinal mode is usual­
ly a relaxational mode. We shall not spend time on it and in 
the subsequent calculations we drop the index 1. of m and 1. 

IL. D. Landau and E. M. Lifshitz, Phys. Zs. Sowjet. 8, 153 
(1935) [Collected Papers of L. D. Landau, Pergamon Press, 
OXford, 1965, p. 101). 

2C. Kittel, Phys. Rev. 82, 565 (1952); F. Keffer and C. Kit­
tel, Phys. Rev. 85, 329 (1952). 

3S. Foner, Magnetism (Eds. H. Suhl and G. Rado) New York, 
1963, 1, p. 390. 

4 A. S. Borovik-Romanov, Antiferromagnetism (Antiferromag­
netism), Fizmatgiz, 1962. 

fiE. A. Turov, Fizicheskie svoistva magnitouporyadochennykh 
kristallov (Physical Properties of Magnetically Ordered Crys­
tals) Fizmatgiz, 1963 [translation published by Academic 
Press, New York, 19651. 

6A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskii, 
Spinovye volny (Spin Waves) Nauka, 1967 [translation pub­
lished by North Holland, Amsterdam, 19681. 

7yu. M. Gufan, Zh. Eksp. Teor. Fiz. 60, 1537 (1971) [Sov. 
Phys. JETP 33, 831 (1971»). 

BB. J. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898 
(1969); A. B. Harris, D. Kumar, B. J. Halperin, and P. C. 
Hohenberg, Phys. Rev. B3, 961 (1971). 

9 A. F. Andreev and V. I. Marchenko, Zh. Eksp. Teor. Fiz. 
70, 1522 (1976) [SOY. Phys. JETP 43, 794 (1976)1. 

IOL. B. Landau, Zh. Eksp. Teor. Fiz. 7, 19 (1937) [Collected 
Papers of L. D. Landau, Pergamon Press, Oxford, 1965, 
p. 1931. 

ilL. D. Landau and R. M. Lifshitz, Elektrodinamika 
sploshnykh sred (Electrodynamics of Continuous Media) 
Fizmatgiz, 1957, p. 28 [translation published by Pergamon 
Press, Oxford, 19601. 

12L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika 
(Statistical Physics) Nauka, 1967, pp. 122, 123 [translation 
published by Pergamon Press, Oxford, 19691. 

131. E. Dzyaloshinskil, Zh. Eksp. Teor. Fiz. 46, 1420 (1964) 
[SOY. Phys. JETP 19, 960 (1964)1; Yu. M. Gufan and I. E. 
Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 52, 604 (1967) [SOY. 
Phys. JETP 25, 395 (1967)]. 

14T. Oguchi, Phys. Rev. 117, 117 (1960). 
15F. Dyson, Phys. Rev. 102, 1217, 1230 (1956). 
16L. D. Landau and E. M. Lifshitz, Mekhanika (Mechanics), 

Nauka, 1973 [translation published by Pergamon Press, Ox­
ford, 1976). 

17A. Z. patashinskii and V. L. Pokrovskii, Fluktuatsionnaya 
model' fazovykh perekhodov (Fluctuation Model of Phase 
Transitions) Nauka, 1975, p. 131 [translation to be published 
by Pergamon Press, Oxford). 

18L. D. Landau, Zh. Eksp. Teor. Fiz. 30, 1058 (1956) [SOY. 
Phys. JETP 3, 920 (1956)1. 

Translated by D. ter Haar 

I. E. DzyaloshinskiY and B. G. Kukharenko 1239 


