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The scattering cross section of neutrons by magnetic excitations in the electron liquids of normal and 
ferromagnetic metals is determined. When the quantization of the orbital motion is inessential, the 
scattering by Stoner excitations gives rise to the broad line in the energy spectrum of scattered neutrons. In 
a quantizing magnetic field the broad line splits into a number of narrow lines. Scattering lines 
corresponding to quantum spin waves are located between scattering lines due to Stoner excitations. The 
conditions are found under which the scattering cross section by quantum waves is comparable to the 
scattering cross section by quasic1assical spin waves and is of the order of I barn for ferromagnetic metals. 

PACS numbers: 7S.2S.+z, 7S.30.Fv 

1. The quantization of the energy levels of the elec­
trons of a metal in a magnetic field, which manifests 
itself in the discrete values on the Fermi surface, of the 
electron velocities along the direction of the magnetic 
field, imposes definite hindrances on the collisionless 
damping of the waves. The observation of this effect 
under various conditions has been the subject of a large 
number of investigations. Gurevich, Skobov, and 
Firsov[ll have founded the theory of giant quantum os­
cillations of wave absorption, in which the hindrance on 
the Landau damping, due to the Cerenkov effect on elec­
trons, manifests itself. Giant oscillations of helicon 
absorption was first considered by Skobov and Kaner. [2] 

The corresponding effect for bound mag non-helicon 
waves was discussed by Glick and Callen. [3] 

On the other hand, besides the effect of giant absorp­
tion oscillations, it has been theoretically predicted 
that quantum waves can occur in the regions where the 
collisionless absorption is forbidden. In an electron 
gas, such waves were considered independently in a 
number of papers. [4-8] It was subsequently shown[9] 
that allowance for the interelectron interaction leads to 
the possibility of predicting new types of quantum waves, 
including quantum spin waves (QSW). Finally, it was 
indicated in[10] that a new type of quantum spin waves 
can exist in ferromagnetic metals. 

We must dwell briefly on the difference between the 
quantum effect considered in[10] and the effects due to 
the coupling of spin waves with electromagnetic waves 
and investigated in[S,11l. Giant oscillations of magnon 
absorption[S,11l are determined by the hindrance rules 
for single-particle excitations without spin flips. The 
role of such excitations, however, is exceedingly small 
under the conditions of weak coupling between the elec­
tromagnetic and spin waves. To the contrary, the pure 
ferromagnetic quantum effects discussed inClO ] give rise 
to quantum spin waves and to really giant quantum os­
cillations of magnon absorption, due to the strong inter­
action of the magnons with the Stoner excitations, i. e. , 
with single-particle excitations with spin flip. As a 
result of these quantum effects, it turns out[10] that a 
number of transparency regions or windows appear in 
the ordinary (quasiclassical) region of the Stoner exci-
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tations, and in these regions the existence of such 
single-particle excitations is forbidden. 

When speaking of the experimental possibilities of 
the discussed effects, we note that experiment has re­
vealed giant helicon-absorption quantum oscillations 
long ago by Libchaber and Grimes. [12] To the contrary, 
quantum waves have not yet been observed. The main 
reason is that in the usually observed integral charac­
teristics of metals, e. g., in the surface impedance, it 
is difficult to separate the contribution of the quantum 
waves. 

On the other hand there exists a number of experi­
mental methods that make it possible to determine di­
rectly the excitation spectrum of a solid. [lS,14] One 
such method, which made it possible recently to in­
vestigate in detail the properties of classical spin waves 
in ferromagnets-magnons, is inelastic scattering of 
slow neutrons. [15-18] One can hope the investigation of 
inelastic scattering of neutrons to be useful also in the 
study of quantum spin waves in metals. 

The present paper is devoted to a theoretical analysis 
of inelastic scattering of slow neutrons by magnetic ex­
citations in normal and ferromagnetic metals. Prin­
cipal attention will be paid below to revealing the ef­
fects of orbital quantization of electrons in the scatter­
ing spectrum of neutrons. Such effects manifest them­
selves most clearly under conditions when magnetic 
excitations propagate along the direction of the magnetic 
field. This is precisely why the theory developed below 
is devoted to inelastic scattering of neutrons, when the 
vector of the variation of the momentum in the case of 
scattering is parallel to the magnetic field. 

20 The differential cross section for inelastic scat­
tering of neutrons by magnetic excitations is determined 
by the imaginary part of the magnetic susceptibility 
X±(w, k)[15]: 

d'a (1"0)' p' 
-o,--~h(!J),k)=-,--. ~(Nw+1)Imb:+(!J),k)+X-(!J),k)l. 
d.. de /_. 'f:! W P 

(2.1) 
Here Y= -1. 913 is the neutron gyro magnetic ratio; ro 
and J.l are the classical radius and the magnetic mo-
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ment of the electron. Nw =[e~w/T _1]-1; p, Ep and p', cp• 

are the momentum and energy before and after the scat­
tering; nw = fp - Ep'; nk =p - p' is assumed to be parallel 
to the magnetization. 

The magnetic susceptibility in the case when the 
Fermi-liquid interaction is described by a single con­
stant ~ characterizing the spin part of the interaction 
takes in the presence of a constant external magnetic 
field the form[9) 

S (w k)=~ ~Sdp. n,[en+(p'Flik)]-n,[en-(p)] 
±, !2:r/iI'c ~ ±/iW+En+ (p'Fllk)-E,,-(p) ±ilir' (2.3) 

where nF(E) is the Fermi distribution function; c~(p) 
= En(p) - utroo/2 are the energy levels of the electrons 
(holes) in the magnetic field, n, p, and u are the quan­
tum numbers of the Landau representation, no is the 
frequency of the spin splitting of the energy levels, and 
T is the quasiparticle momentum relaxation time. In 
normal metals, the frequency no is determined by the 
magnetic field(19 ) B: 

where BO=l/ill(EF); V(cF) is the electron state density on 
the Fermi surface. In ferromagnets, no is due entirely 
to the exchange interaction of the quasiparticles. [20,21) 

Introducing the real and imaginary parts of the quan­
tity 

we obtain for the scattering cross section 

h(w, k)=h+(w, k)+h-(w, k), 

h±(w k)=- (Tr,)'L (N +1) s±" (2 4) 
, 4n p • [(1jJ-4nJ.L')S±·-1]'+(IjlS±")' • 

We are interested in the case of low temperatures, 
T < tro, where n is the cyclotron frequency. In this sit­
uation we can confine ourselves to scattering processes 
with production of magnetic excitations. 

The electron fluid of metals contains magnetic exci­
tations of two types. First are the single-particle ex­
citations with spin flips. By analogy with ferromag­
netic metals, we shall call these stoner excitations also 
in the case of normal metals. In the region of the 
Stoner excitations, the imaginary part of the magnetic 
susceptibility is due mainly to the poles of the integrand 
in formula (2.3) for the quantity S±(w, k); these poles 
occur at frequencies nw = E~(P) - E~(P - nk). In addition 
to the single-particle excitations, in both ferromag­
netic and normal metals there exist collective magnetic 
excitations-spin waves. The dispersion curves of the 
spin waves, the spectrum of which is determined by the 
poles of the magnetic susceptibility (2.2), lie on the 
(w, k) plane outside the region of the Stoner excitations. 
The imaginary part of the quantity S±(w, k) is due to the 
finite relaxation time T. When the dispersion curves 
fall in the region of the Stoner excitations, the spin 
waves are strongly damped because of the decay into 
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Stoner excitations (Landau damping). 

In the quasiclassical case, when the distance between 
Landau levels is much less than their width due to the 
momentum relaxation time T, the quantization of the or­
bital motion is inessential. The spin-wave spectrum 
contains in this case a quasiclassical branch, the dis­
persion curve of which terminates on the quasiclassical 
boundary of the region of the Stoner excitations. [19,22) 

In the quantum case there appear in the quasiclassical 
region of the Stoner excitations a large number of re­
gions called transparency windows, in which the imag­
inary part of S±(w, k) vanishes in the approximation 7-1 
=0. Besides the classical spin wave, it now becomes 
possible for new collective excitations to propagate, 
namely quantum waves whose dispersion curves lie in 
the transparency windows. 

The presence of collective and single-particle excita­
tions in the electron liquid leads to the presence of 
scattering lines of various types in the spectrum of the 
scattered neutrons. Besides the lines due to scattering 
by spin waves, there appear also lines due to scattering 
by the Stoner excitations. The scattering cross section 
(2.4) has a maximum at values of wand k satisfying the 
condition 

(2.5) 

Outside the region of the Stoner excitations, this equa­
tion determines the spin-wave spectrum. [9) The width 
of the maximum of the scattering cross section is de­
termined in this case by the small quantity 7-1. Equa­
tion (2.5) has solutions also in the region of the Stoner 
excitations. The poles of the magnetic susceptibility 
(2.2) have in this case a large imaginary part and do 
not correspond to any definite collective mode, but the 
fluctuations of the spin density near such solutions are 
large, and it is this which leads to an increase of the 
scattering cross section. 

The different nature of the spiI\ splitting of the energy 
levels in normal and ferromagnetic metals leads to a 
substantial difference of both their spin-wave spectra 
and their Stoner-excitation spectra. Accordingly, the 
cases of normal and ferromagnetic metal will be con­
sidered separately. With an aim at revealing the main 
regularities of neutron scattering by quantum spin 
waves, we shall assume the quasiparticle dispersion to 
be isotropic and quadratic. 

3. Being interested in neutron scattering in a normal 
electron fluid, we consider first the case when the quan­
tization of the energy levels of the electrons in a mag­
netic field can be neglected. The summation over n in 
(2.3) can then be replaced by integration and we obtain 
for the real part of S±(w, k) 

(3.1 ) 

The region of the Stoner excitations is determined by 
the inequalities 

(3.2) 

Inside this region, the imaginary part of S±(w, k) is 
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S/' (<ii, k) =-v (eF) r!<il/2kvF. (3.3) 

The cross section for scattering by Stoner excitations 
is described by formulas (2.4), (3.1), and (3.3). The 
Fermi-liquid interaction manifests itself in the form of 
the line of the scattering by the Stoner excitations, 
which has a maximum at energies 1lws(k) determined by 
Eq. (2.5). The magnitude of this maximum depends di­
rectly on the Fermi-liquid interaction, and its value at 
Ij!» 41fJ1.2 is 

(3.4) 

where vF is the Fermi velocity of the electrons. 

Outside the region of the Stoner excitations, Eq. (2.5) 
describes the well known spectrum of the quasiclassical 
spin waves. C19] In particular, in the long-wave case the 
spectrum of these waves is given by 

[ k'V,'] 
<iI,,(k)=Qo(l+Bo) 1+ 3BoQo' • (3.5) 

Here 

(3.6) 

and for the cross section for scattering with excitation 
of these spin waves we obtain 

(3.7) 

Thus, at a given scattering vector 1lk, the energy 
spectrum of the scattered neutrons consists in the 
quasiclassical case of a broad line of scattering by 
Stoner excitations and a narrow line of scattering with 
excitation of quasiclassical spin waves" In the limit of 
small scattering vectors the distance between these 
lines is of the order of 1l[no - ws(k =0)]. For realistic 
values[19] of Bo in attainable fields (B _105 G) this quan­
tity is of the order of 10-4 _10-3 eV. The total cross sec­
tion for scattering by quasiclassical spin waves is in 
this case of the order of 10-4 b. 

Under the conditions of a quantizing magnetic field, 
relations (3.1) and (3.3), which determine the cross 
section for the scattering by Stoner excitations, should 
be replaced by the following: 

&~ 
S±'(<iI, k)=--v(eF)' 

2kvF 

N' I ±<iI-Qo+h"(n) -crhk'/2m I 
. "" cr In -.;-;----;__:_:_=__ ~~ ±<iI-Qo-kF'(n)-crhk'l2m' 

a n=O 

(3.8) 

Q Nfl Av"(R) fik'l. 
S/'{<iI,k)= +_r!_V(BF) "" cr S dxB (±<iI-Qo-_cr_- x ) . 

2kvF ~~ 2m 
a n_O 

-ht:"(n) 

(3.9) 

Here N° is the number of Landau levels occupied by the 
quasiparticles with spin (J and vO(n) is the maximum 
longitudinal velocity of the particles at the level with 
energy E~(p). As follows from (3.9), S:'(w, k) vanishes 
now not only outside the quasiclassical region of the 
Stoner excitations (3.2), but also in the transparency 
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windows. Relations (3.8) and (3.9) show that even in 
the absence of a Fermi-liquid interaction the line 
shapes for scattering by Stoner excitations are changed 
on account of the Landau quantization. A quasiclassical 
line with width on the order of 21lkvF breaks up into a 
number of narrow lines, the distance between which is 
of the order of 21lk I v+(n) - v-(n) I. The Fermi-liquid in­
teraction leads to an additional change in the line shape 
for scattering by Stoner excitations. In particular, in 
each narrow line there appears a maxilllum of the scat­
tering cross section at wand k determined by Eq. (2.5), 
and the magnitude of the maximum depends on the 
Fermi-liquid interaction. 1) 

Outside the quasiclassical region of the Stoner exci­
tations, the neutron scattering cross section is deter­
mined by the quasiclassical spin waves (see (3.7». A 
new effect is produced by the presence of the transpar­
ency windOWS, in which quantum spin waves exist. 

In the long-wave limit, the QSW spectrum takes the 
form wbsw = no + clk, where the phase velocities are 
given by 

"In I c,+v+ (n) c,-v- (n) I = o. 
~ c,-v+(n) c.+v-(n) 

The cross section for scattering with excitation of 
such waves is (7-1 =0) 

h (Fo)' p' v(eF) hk'r: VF . 
Qsw(<iI,k)""----(N.+1)--.--- -B(<iI-W-.. ) 

4n p Bo' m ,c, -vsw (3.10) 

In the region of not too small values of k and for 
quantum waves of low velocity (ci «v F) this quantity 
turns out to be comparable with the cross section for 
scattering by quasiclassical spin waves. The distance 
between the line for the scattering by the QSW and the 
nearest Stoner-scattering line is 1lk I v+(n) - CI I. For 
quantum waves of low velocity, this quantity can reach 
values _10-4 eV. 

The presence in the scattered-neutron spectrum of 
lines of scattering by quantum spin waves is determined 
by the region of the existence of the quantum waves, 
which depends on the ratio of the energy of the spin 
splitting of the energy levels fino and the energy of the 
cyclotron quantum fin. [9] Thus, at no < n, transparency 
windows exist on the (wk) plane up to k =0. The lines 
of scattering by the Stoner excitations will be separated 
from each other in this case and in the limit of small 
momentum transfers. Between these lines, peaks of 
scattering by quantum spin waves should be observed. 
In the opposite case no> n the transparency windows 
appear only at finite values of k, and in the limit of 
small changes of the momentum the spectrum of the 
scattered neutrons is determined by the Stoner excita­
tions and by the quasiclassical spin waves. The narrow 
quantum lines of scattering by Stoner excitations will 
overlap; the line shape will have a complicated form 
determined, on the one hand, by the Landau quantiza­
tion and on the other hand by the Fermi-liquid interac­
tion of the quasiparticles. In going to larger momen­
tum transfers, transparency windows appear, the lines 
of scattering by the Stoner excitations are then sepa-
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rated and sharp maxima due to scattering by QSW ap­
pear between them. 

4. An essential difference between the electron liquid 
of a ferromagnet and the liquid of a normal metal is the 
presence of an exchange frequency 00, which depends 
relatively little on the magnetic field. ClO] The value of 
00 amounts in typical ferromagnets (iron, cobalt, nickel) 
to approximately 1 eV (see, e. g., [2ll) and greatly ex­
ceeds the cyclotron frequency in attainable magnetic 
fields. We are interested in low-frequency excitations 
w;S 0, and distinguish in this case between the quasi­
classical and quantum cases. Bearing in mind that the 
quasiclassical collective excitations in ferromagnets 
are the subject of a large number of both theoretical 
and experimental studies, we present here only some 
results that seem new to us and pertain to the vicinity 
of the quasiclassical of the limit of Stoner excitations. 
Principal attention will be paid below to effects of a 
quantizing magnetic field. Since these effects manifest 
themselves most strongly under weak ferromagnetism 
conditions noo < 2 (OF' which is apparently observed in 
iron, [2ll it is natural to consider precisely this case. 
We first report the results of an analysis of neutron 
scattering in the quasiclassical limit, when the orbital 
quantization can be neglected. 

In the region of the Stoner excitations 

we have for the real part of S.(w, k) 

w.(k)=Fw I k+ko I ---'-'--In --
2kvF k-k,' 

(4.1) 

where wM(k) is the quasiclassical magnon frequency, ao] 
va is the velocity of particles with spin (J on the Fermi 
surface, and ko corresponds to the intersection of the 
boundaries of the region (4.1) and the straight line W =0. 
The imaginary part of S~'(w, k) is given in this case 
by (3.3). 

It follows from (2.4), (3.3), and (4.2) that the cross 
section for the scattering of neutrons by Stoner excita­
tions has a maximum if W = wM(k) (cf. [22]). The width of 
this maximum increases with increasing momentum 
transfer nk (see Fig. 1). 

Outside the region of the Stoner eXCitations, the real 
part of S.(w, k) is given as before by (4.2), while the 
imaginary part takes the form 

S "( i ,;-' I k+ko I 
.. w,k)=±~ 2kvF In k-ko . (4.3) 

Using formulas (2.4), (4.2), and (4.3) we obtain for the 
scattering cross section in this case 

where OM = 811 JJ.M/n, and M is the magnetization per unit 
volume. Formula (4.4) describes neutron scattering by 
quasiclassical magnons and has a sharp maximum at 
the frequency wM(k). 

Under conditions when the effects of the orbital quan-
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h 

FIG. 1. Dependence of the differential neutron scattering 
cross section on the energy transfer in the case when the 
change hk of the neutron momentum by scattering is equal to 
nk (I )(0) '" m [v'(O) - v-(O)] and the quasiclassical dispersion 
curve of the magnons falls in the transparency windows. The 
broad lines correspond to scattering by stoner excitations, 
and the narrow lines correspond to QSW. For comparison, 
the figure shows the cross section for scattering by Stoner ex­
citations in the quasiclassical case (dashed curve). 

tization become significant, transparency windOWS, in 
which the imaginary part of S~' given by (3.9) vanishes, 
appear in the quasiclassical region of the Stoner excita­
tions (4.1). On the (wk) plane, the transparency win­
dows are determined by the conditions 

± [Qo-kv-(n=F1) -lik'/2m] <w<± [Qo-kv+ (n) +lik'/2m] 

(n=O, 1, ... , N-). (4.5) 

The regions (4. 5) begin on the axis w = 0, where they 
are bounded by the pOints k(l) (n) =m[v+(n) - v-(n)], and 
terminate at w =0 at the points 

k+('l (n) =m[v+ (n) -v- (n-i)] and k':" (n) =m[v+ (n-1) -v+ (n) ] 

respectively for S~' . 

In the transparency windOWS, the dispersion equation 
of the spin waves (2. 5) has solutions corresponding to 
the quantum spin waves. The spectrum of the QSW in 
ferromagnets turns out to be different for waves of dif­
ferent polarization. It was shown earlier[10J that the 
character of the spectrum of left-polarized QSW is de­
termined by the possibility of the magnon quasiclassical 
dispersion curve falling in the transparency window. 
Namely, if the magnon dispersion curve crosses the 
transparency windOWS, then magnon-absorption giant 
quantum oscillations occur, similar to those predicted 
for ultrasound. [ll Far from the limits of the transpar­
ency window, the frequency of left-polarized quantum 
waves wQSW is close to wM(k). As the limits of the win­
dow are approached, the QSW dispersion curve turns 
out to be quite close to the corresponding limiting curve. 
To the contrary, if the quasi-classical curve does not 
fall in the transparency windOWS, then the QSW disper­
sion curve lies near the right-hand boundary of the 
windows. 

Since there are no right-polarized quasiclassical spin 
waves in ferro magnets, the dispersion curve of right­
polarized QSW, as follows from (2.5) and (3.8), is al­
ways adjacent to the left boundary of the transparency 
windows: 
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wQsw=w(n)-Cul. w(n)=-S)'--c!"'+(n)-flk'/2m, (4.6) 

Ilk ["-k'\'(I1)][k~" (we-l)-k] 
(~u) = ---

m k'~(n+l)-k"'(n+l) 

x[ v+(n) ]'exp{-2kVF[(IJ:_4rQ.l2)S_'(wCn),k)-iJ}, 
v-en) BoQ 

where S~ is given by Eq. (4.2). 

The contribution of the quantum waves whose frequen­
cies are close to the quasiclassical magnon frequency 
W M(k) to the neutron scattering cross section is de­
scribed by formula (4.4) under the condition 

(4.7) 

which coincides with the condition for the existence of 
QSW with frequency wM(k). The separation of the con­
tribution made to the scattering cross section by QSW 
whose frequencies differ from the corresponding limit­
ing frequencies determined by (4.5) by a small amount 
Ilw is subject to the more stringent conditions 

liulT~ 1. (4.8) 

For the cross section for scattering by such quantum 
waves we have 

We note that the scattering lines (4.9) can in principle 
be resolved in windows with small n«N- in magnetic 
fields as low as B-I04 _105 G, where nllw amounts to 
10-4 _10-5 eV. 

Let us discuss finally the scattering of neutrons by 
Stoner excitations under conditions when quantization 
manifests itseU. From (2.4), (3.8), and (3.9) it fol­
lows that quantization of the orbital motion of the elec­
trons, just as in the case of normal metals, leads to 
the appearance of a fine structure of the spectrum of 
the neutrons scattered by stoner excitations in a ferro­
magnet. The broad quasiclassical scattering line de­
scribed by Eqs. (2.4), (3.3), and (4.2) splits into a 
number of narrow lines located in the region and aris­
ing when the change in the neutron momentum nk due to 
scattering exceeds the minimum possible value of the 
wave number in the transparency windows. This con­
dition takes the form k>k!2)(0) and k>k(1)(O) for /t'(w,k). 

At the boundaries of the transparency windows (4.5), 
in the approximation r-1 =0, we have IS~(w, k)1 =00; the 
cross section for scattering by Stoner excitations 
vanishes in this case. The maximum of the scattering 
cross section in each line is determined by Eqs. (2.5) 
and (3.8). Just as in the transparency windows, in the 
region of the stoner excitations these equations have, 
besides the quasiclassical solution w = w y(k), also quan­
tum solutions adjacent to those window boundaries near 
which the QSW dispersion curves are located. The fre­
quency of the quantum solution differs from the boundary 
frequency (see (4.5» by the same amount Ilw as the cor­
responding frequency of the quantum wave. The width 
of the maximum of the cross section then turns out to 
be of the order of Ilw. The condition for observing this 
maximum is analogous to the condition (4.8) for the ex­
istence of QSW whose dispersion curves are adjacent to 
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the boundaries of the transparency windows. Far from 
these boundaries, the neutron scattering cross section 
is determined by formulas (2.4), (3.9), and (4.2). The 
width of the lines for scattering by Stoner excitations is 
of the order of k[v+(n -1) - v+(n)], which amounts to 
- mOol € F in lines with n« N - and turns out to be ap­
proximately equal to 0 if n - N -. The distance between 
the scattering lines is of the same order. The number 
of narrow lines for scattering by Stoner excitations 
changes from a value - fFlnOo at k =OOIVF to a value on 
the order of unity if k"" (mo/fFi/2mVFln. 

The lines of scattering by magnetic excitations with 
different polarizations may overlap. However, if the 
conditions (4.7) and (4.8) are satisfied, it becomes 
possible to separate the contribution made to the scat­
tering cross section by the quantum waves. Indeed, in 
sufficiently strong fields and pure samples (B;:: 104 G, 
r-1O-9 _10-1o sec) the ratio of the differential cross sec­
tion for the scattering of neutrons (4.4) by QSW with 
frequency W"" w M(k) to the cross section for scattering 
by Stoner excitations is of the order of Or» 1. For 
QSW whose dispersion curves are adjacent to the bound­
aries of the transparency windows, this ratio amounts 
to Ilwr» 1 (see (4.9». 

The most favorable conditions for the observation of 
QSW occur in transparency windows near the quasiclas­
sical dispersion curve. An estimate of the total cross 
section (pure atom) for neutron scattering by a QSW of 
frequency W"" wM(k) yields, say for iront21,231 (liUo"" 2 eV, 
41TM""2x104 G) a value on the order of 1 b. The figure 
shows schematically the dependence of the neutron 
cross section on the value of w. 

1) A similar situation will be considered in detail later on for 
ferromagnetic metals. 
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Investigation of the zero-gap state induced by a magnetic 
field in bismuth-antimony alloys 

N. B. Brandt, S. M. Chudinov, and V. G. Karavaev 

Moscow State University 
(Submitted December 31, 1975) 
Zh. Eksp. Teor. Fiz. 70, 2296-2317 (June 1976) 

The character of the band motion induced by a magnetic field H is investigated in Bi1_.Sb. alloys in 
which the spectrum structure has been changed from a direct to inverted one by a hydrostatic pressure p. 
The measurements are carried out for alloys with a broad range of concentrations 6.6 ~ x ~ 13 at. %; in 
fields H up to 65 kOe and at p up to 15 kbar. It is found that the transition to the zero-gap state induced 
by the magnetic field occurs only in the inverted region of the alloy spectrum for P> Pi. The surface of the 
zero-gap state in the physical parameter space (composition-pressure-magnetic field) is plotted for 
Bi1_.Sb. alloys. By extrapolation it is found that the surface is bounded by parameter values such that x S 40 
at. %, pS 35 kbar, and HS 1500 kOe. The directions and velocities of the mutual motion of the Land T 
bands for the direct and inverted alloy spectra are determined. It is found that transition to the zero-gap 
state induced by a magnetic field results in the isotropization of the transverse relaxation time of the L 
carriers. 

PACS numbers: 71.30.Kt 

INTRODUCTION 

A study of a new state of matter, intermediate be­
tween that of a metal and an insulator, named the zero­
gap (gapless) state (ZGS), has attracted much interest 
in recent years. A characteristic feature of the ZGS is 
the absence of a direct gap eK in the energy spectrum. 
This gives rise to a number of unusual properties that 
cause the matter in the ZGS to differ qualitatively from 
a metal or an insulator. 

The ZGS is the result of high symmetry of the crystal 
lattice. This situation is realized in gray tin (a-Sn) and 
also in HgTe, HgSe, HgS, Cd3As2 , and some other com­
pounds, which have been named natural zero-gap semi­
conductors. A theory of the ZGS, with a detailed analy­
sis of the crystal symmetry at which this state can 
arise, was developed by Abrikosov and Beneslavskil.. [1) 

In addition to the natural zero-gap semiconductors, a 
rather large class of substances is known in which 
vanishing of the direct gap EK and the transition to the 
ZGS take place as a result of changes in different physi­
cal parameters such as the alloy composition, tempera­
ture, pressure, and magnetic field. [2] It is particularly 
interesting to investigate this case inasmuch as by 
gradually varying the external action it is possible to 
observe in succession the restructuring of the energy 
spectrum of the initial matter as it goes over into the 
ZGS. At the present time, continuous transitions into 
the ZGS, induced by external action, have been frequent-
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ly observed and investigated in solid-solution systems 
such as Cd)Igl_xTe, CdxHgl_~e, Pb1_"Sn"Te, Pbl_"Sn~e, 
Bi1_"Sb" etc. Transitions of these alloys in ZGS as a 
result of the changes in the composition or pressure 
have revealed an abrupt decrease in the effective 
masses and an increase in the carrier mobilities, [3,4) 

as well as anomalies connected with impurity states. [5) 

Among the transitions to the ZGS induced by changes 
of various external parameters, the least investigated 
at present are transitions due to the action of a strong 
magnetic field. These transitions have definite fea­
tures that distinguish them qualitatively from the tran­
sitions to the ZGS caused by changes of other physical 
parameters. The point is that in a strong magnetic 
field the electron system in the initial material becomes 
quasi-one-dirnensional and polarized. The end points 
of the conduction band and of the valence band are de­
termined in this case by the Landau levels correspond­
ing to the quantum numbers n = 0 (the levels 0- and 0+). 
The electrons and holes at these levels have oppositely 
directed spins. 

The carriers retain with three degrees of freedom 
and remain unpolarized following other types of action 
on the energy spectrum of the material (for example, 
changes in the alloy composition or hydrostatic com­
pression). Therefore the transitions to the ZGS under 
the influence of a magnetic field can be regarded as a 
different class that calls for a special theoretical and 
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