
The summation is carried out over all the two-dimen
sional reciprocal-lattice vectors G= (Gx , Gy ), while EG 
are arbitrary coefficients. We introduce an arbitrary 
periodic function 

(A.4) 

Taking into account the notation of (A.4), we can re
write (A.3) in more compact form[121: 

'l'vac(X,E, r)= exp {z [2;. (V.-E + :;'.) ]""} eiXPv(p). (A. 5) 

Substituting (A. 5) in the matching equation (A. 2) and 
eliminating v(p) from them, we obtain the boundary con
dition in the form (7), where in the given particular case 

- { [ 2m. ( p,' )] 'f, a} f(±)=6(z-z.) ± - V.-E+-'- --. 
fi' 2m. az 

(A.6) 

It is necessary to take the plus sign in (A. 6) if the crys
tal occupies in accordance with (A.l) the right-hand 
half of the space. The opposite case corresponds to the 
choice of the minus sign in (A.6). 
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Possible types of magnetic ordering in dodecahedral sites of the garnet are analyzed within the framework 
of the generalized molecular field theory. The real magnetic structure of the garnet Mn3AI2Ge3012' whose 
antiferromagnetic ordering at T.v = 6.65 ±0.05'K is due to exchange interaction between the MnH 

dodecahedral ions, is considered by taking into account the features of the exchange bonds. The magnetic 
properties (1.6-80'K) and heat capacity (2-20'K) of polycrystalline Mn3Al2Ge3012 are measured. The 
exchange field is determined, HE;(3'K) = 210 kOe, as well as the exchange interaction integrals 
J I = -0.57'K, J2 ' = -O.12'K. It is shown that the experimental data can be satisfactorily described by 
the molecular field theory. 

PACS numbers: 75.50.Ee, 75.30.Et, 75.1O.0g 

1. INTRODUCTION 

The properties of cubic antiferromagnetic garnets in 
which the dodecahedral sites (c) are occupied by rare
earth ions have by now been investigated quite in detail. 
Most of these compounds-gallates (R3G~012) and 
aluminates (R3Als012)-become antiferromagnetically 
ordered at TN < 1 0 K. The singularities of the magnetic 
properties of rare-earth gallates and aluminates are 
due to the competition between the exchange, anisot
ropy, dipole, and hyperfine interactions, which are 
comparable in size. Capel[1J has demonstrated, using 
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the molecular-field method with allowance for the di
pole forces and the anisotropic exchange, that three 
types of magnetic order of rare-earth ions are pos
sible, two antiferromagnetic and one ferrimagnetic. 
The realized type of order is determined mainly by the 
character of the one-ion anisotropy. 

It is of interest to study the magnetic ordering of the 
S ions in the dodecahedral sublattice of the garnet, since 
we can expect here a great diversity of magnetic struc
tures, owing to the isotropic exchange. This calcula
tion, in the molecular-field approximation with allow-
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ance for an exchange of the Heisenberg type was car-
. d t [2] , rle ou by Bertaut. He considered, however, near-

est-neighbor approximations, so that the resultant anti
ferromagnetic configurations of the spins turned out to 
be energywise unfavored, and only ferromagnetic or
dering turned out to be possible. The compound 
MIlsA~Ge3012 (MnAlG) is in essence the only antiferro
magnetic garnet in which only c-sites are occupied by 
magnetic S ions (Mn2+) (the garnet Gd3Gas012 remains 
paramagnetic down to 0.35 °K[3]). The antiferromag
netism of MnAlG was simultaneously established by 
Prandl[4] and Plumier[5] from experiments on neutron 
diffraction at 4.2 OK. To describe the magnetic order 
in MnAIG, they have proposed[4,5] three magnetic struc
tures, of which only one agrees with those predicted by 
Capel. [1] 

In this paper we use the Bertaut method to analyze the 
possible spin configurations of magnetic c-ions with al
lowance for the interaction of the atoms belonging to 
different Bravais lattices. To study the singularities 
of the antiferromagnetic ordering of Mn2+ in the c-sites 
of the garnet and to obtain quantitative estimates of the 
exchange interactions for the chosen magnetic struc
ture, we measured the heat capacity (2-20 OK) and the 
magnetic properties (1. 6-80 OK) of poly crystalline 
MnAIG. 

2. SPIN CONFIGURATIONS AND EXCHANGE BONDS 
OF MAGNETIC c·ions 

To determine the spin configurations that are allowed 
by the symmetry of the crystal, we use the Bertaut 
method, which consists of finding the eigenvectors 

T,;(k) = L,s;/,) exp[2ltikR,(.)], ", j=1, 2, ... , n, 
i(\") 

of the interaction matrix €(k), the elements of which are 
the Fourier transforms of the exchange integrals 

-;"" (k) = L, 1,(.", exp[2"ik(R.(.)-R,,)], ", /l=1, 2, ... ,n. 
i(I") 

Here S i_ is the spin of the i -th atom in the II-th 
Bravais lattice for the spin configuration j, Rl(_) is the 
radius vector from the origin of the unit cell to this 
atom; Ji(_)/J. is the exchange integral between the i-th 
lattice and an arbitrarily chosen atom in the J.L-th lattice 
with radius vector R/J.; k is propagation vector (it is 
determined experimentally from the law governing the 
extinction of the magnetic reflections); the summation 
is over all the atoms belonging to one and the same 
Bravais lattice; n is the number of Bravais lattices in 
the .crystal. 

The eigenvectors T ~(k) are the columns of a unitary 
matrix T(k), which diagonalizes €(k) via the transfor
mation 

where ~ is a diagonal matrix. The spin modes ~ J rela
tive to the number of the Bravais lattices are obtained 
with the aid of the inverse Fourier transformation 
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s,!= L,T,!(k)exp(-2ltikR.) . 
k 

To obtain the matrix €,,(O), we confine ourselves to 
the case k = 0 (i. e., the magnetic cell coincides with the 
crystallographic cell), and number the dodecahedral 
atoms making up the 12 Bravais lattices, in the follow
ing sequence: 

1) 1/2 'I, 'Is; 2) II, 'I, 1/2; 3) 'I, '/2 II,; 

4) 0 'I, 'I,; 5) 'I, 'I, 0; 6) 'I, 0 'I.; 

7) 0 1/. 'I,; 8) 'I, 'I, 0; 9) 'I, 0 'I,; 

to) 112 II. '/,; 11) II, 'I. 1/2; 12) 'I, 1/2 'I,. 

Each three atoms whose coordinates are written down 
in the same line are transformed into one another by a 
threefold axis. The matrix €c(O) should contain in the 
general case 12 different elements, but allowance for 
the point symmetry of the c-sites (D2 ) makes it possible 
to decrease the number of independent parameters. 

It is easy to show that out of the 11 Bravais lattices 
with which lattice 1 interacts, the lattices 2,3, 8, 9(~12 
= ~13 = ~18 = ~19 = ~1) and 5,6, 11, 12(~2) will be equivalent. 
Putting ~1-10= ~3'. ~1.4.=Jh.J17 = ~5' ~11 =~, we can ex
press the matrix €,,(O) in the form 

(
a 1 1) 

t, = 61 1a 1 . 
.1 1 a 

(
y t 1) e. = ~, 1 Y 1 , 
1 1 Y 

cx=£,/s h ~=s.;;" ,,(=;,1£10 6=£.1; •. 

The matrix €,,(O) commutes with the matrix in which 
account is taken of interactions of only the nearest neigh
bors, and is therefore diagonalized with the aid of the 
same unitary matrix 1'c(O). According to Bertaut[2] we 
have 

[
u 

~ t U 
T.(O) = yI2 u 

fJ 

[
1 1 1 ] 

rJ = 1 r r' • (1) 
1 r' r 

r = exp(27Ti/3) and r* = exp(- 27Ti/3). Since k =0, it fol
lows that S~(O) =T~(O) and the possible spin configura
tions are given by the columns of the matrix (1). 

The modes ~1I ~4' ~7' :ElO are collinear. The re
maining modes are triangular configurations, the dif
ferences between ~2 and :E3, ~5 and ~6' ~8 and ~9' ~11 
and ~l2 are only in direction of rotation and therefore 
flOt in energy. 

In contrast to octahedral and tetrahedral garnet sites, 
in which the magnetic atoms are bound by exchange 
chains consisting at least of two oxygen atoms, the 
nearest neighbors in dodecahedral positions are cou
pled by an indirect exchange interaction with participa
tion of one intermediate oxygen atom. The bonds with 
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TABLE I. Radii of the coordination spheres 
(R), numbers of the Bravais lattices (N) with 
which the atom from lattice 1 interacts, and 
the number of the neighboring atoms z. 

I R (in frae- I 
Number of tions of the 

IS 1 Exchange 
sphere lattice param- parameter J 

eter) , 

1 0.306 2.3.8,9 IX4 I, 
2 0.468 5,6.11,12 2X4 I, 
3 0.500 10 2 J, 
4 0.559 4 4 I. 

7 4 I, 
0.586 2.3,8,9 IX4 J{ 

the second, third, fourth, and fifth coordination spheres 
are effected by chains consisting of at least two oxygen 
atoms. In these bonds, however, it is practically im
possible to separate the oxygen atoms, which participate 
in the exchange interaction to a greater degree than 
others. Moreover, it is difficult even to distinguish 
bonds of the types Me-O-O-Me from Me-O-Md-O-Me 
(Me is a magnetic cation in the c-position, and Md is a 
nonmagnetic cation in the d-position). Owing to the high 
coordination of the oxygen polyhedron (Z = 8), several 
approximately equivalent bonds of different type are 
formed immediately between the magnetic atoms, and 
this leads to a certain averaging of the exchange param
eters J. In this connection, and also taking the radii of 
the coordination spheres into account (see Table I), we 
shall assume that Jz =J3 =Jz, J 4 =J5 =J{ =J3• The inter
actions of the magnetic atoms located at a distance 
R ? O. 685ao (sixth coordination sphere) will be neglected. 

The eigenvalues A] of the matrix ~e(O) for the spin 
configuration ~ J constitute the exchange energy ex
pressed in terms of the exchange parameters. In our 
case ~1 =J1 +JL 

and the parameters are given by 

1.,=4/,+ 101,+ J21,. t". ,=-21,-21,+61" 

1..=i." ,=-21" 1.7=4/,+2J,-2/" 
i.8 • ,=-21,+21,-21" 1.10=1.11. ,,=21,-81,. (2) 

3. HEAT CAPACITY AND MAGNETIC PROPERTIES 
OF MnAIG 

The single-phase (by x-ray structure) sample of 
MnAlG (ao = 11. 897 A) was prepared by a ceramic tech
nology with double annealing in air at t = 1170 0 C. The 
heat capaCity and the magnetic properties were mea
sured with the previously described installations. (6, 7] 

Figure 1a shows the experimental temperature depen
dence of the heat capacity of MnAIG in the interval 
2-20 OK. The A anomaly observed at T N =6.65±0.05 OK 
corresponds to antiferromagnetic ordering of the Mnz+. 
In the investigated temperature region, the heat capacity 
of MnAIG is defined by 

C = Clat + Cmag + Cnuc • 

USing the hyperfine interaction constants of Mnz+ in 
the garnet matrix, (8] we calculated Cnuc , which amounts 
to - O. 3% of the total heat capacity at T = 2 ° K. There-
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FIG. l. Temperature dependence of the heat capacity of MnAlG 
(Fig. a): o-experimental points, dashed-lattice heat 
capacity; b-temperature dependence of the entropy. 

fore the nuclear contribution to the heat capacity of 
MnAlG was disregarded by us. The value of Clat was 
determined under the assumption that at T» TN we have 

C=aT-'+bT', (3) 

where the first term is the magnetic part of the heat 
capacity and the second is the lattice part. 

Relation (3) is satisfied within the limits of experi
mental accuracy (- 3%) for MnAIG in the interval 13-
20 OK. From the dependence of CTz on T 5 we deter
mine the coeffiCients a =60±2 °Kz and b =(3. 5±0.25) 
• 10-5 °K-3 • The lattice contribution to the specifiC heat 
yields a Debye temperature aD =416 ± 12 OK. The lat
tice specific heat of MnAIG is shown by the dashed line 
in Fig. 1. 

Using the customary relation for the magnetic entropy 

\S = SOO C mag dT 
- T' 

o 

we determine the value of AS. In the investigated tem
perature region 2-20 OK, the contribution to the total 
change of the entropy is 90% (Fig. Ib). At T > 20 OK, 
the change of the heat capacity was calculated from the 
relation Cmag =a/Tz• Extrapolation to the temperature 
range 0-2 OK was carried out assuming validity of the 
Cmag ex: T3 law which follows for the heat capacity of 
antiferromagnets at T« TN from spin-wave theory. 
The so-obtained change of the magnetic entropy, AS 
= 1. 80R (per Mnz+ ion, R is the gas constant), is in good 
agreement with the theoretical value In(2S + 1) = 1. 79R 
for S =%. 

Figure 2 shows the temperature dependence of the 

x-~! M"a-~ cgs emu/mole "["v 
2~ 

20 0 20 '10 50 80 
r,K 

FIG. 2. Temperature de
pendence of the reciprocal 
molar susceptibility of 
MnA1G; the insert shows 
the magnetization of MnAlG 
at 3 OK in pulsed magnetic 
fields. 
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reciprocal molar susceptibility of MnAIG. Above TN' 
the susceptibility xiJ obeys the Curie-Weiss law with 
constants ep = - 28 ± 1 oK and CM = 13 ± cgs emu/mole. 
The last quantity gives Jleff = 5.89 JlB, in good agreement 
with Jl=g(S(S+1)]1/2=5.92JlB for S=t andg~2. Below 
TN' the susceptibility is independent of the temperature. 

The obtained values of TN and ep make it possible to 
determine the exchange field HE that destroys the anti
ferromagnetic order in MnAIG. It is easy to show that 
in the molecular-field approximation we have 

(4) 

(5) 

where M s (0)=3NgJlBS=8.37· 104 cgs emu/mole, and 
B5/2 is a Brillouin function. Using the experimental 
values of TN and eM we obtain HE (3 ° K) = 207 kOe from 
(4) and (5). Measurement of the magnetization of MnAIG 
in pulsed magnetic fields at 3 oK (Fig. 2, insert) yields 
for the collapse field a value 210 kOe. Thus, the mag
netic properties of MnAIG are well accounted for by the 
molecular-field theory. 

4. MAGNETIC STRUCTURE OF MnAIG; EXCHANGE· 
INTERACTION INTEGRALS 

It follows from neutron-diffraction data[4,51 for MnAIG 
that k = 0 and consequently the magnetic ordering of this 
garnet is described by one of the modes represented by 
the columns of the matrix Tc(O), or by a linear com
bination of these modes. Plumier has proposed two 
models of the magnetic structure of MnAIG, correspond
ing to the modes 1:4 and 1:5,6. [51 The Prandl model is 
described by a linear combination of 1: 7 and 1:8,9. [41 We 
propose that the value of the R-factor, is equal to 0.14, 
0.52, and 0.07, respectively for these three models 
favors the choice of the last model. 

In the Prandl model the admixture of 1:7 barely ex
ceeds the standard experimental error. It is therefore 
desirable to assume that the magnetic structure of 
MnAIG is described by the mode 1:8,9. In this case the 
magnetic moments of all the atoms lie in the (111) plane 
and are directed parallel or antiparallel to one of the 
three crystallographic axes: [2U], [121], [H2]. 

The eigenvalue Ar of an actually existing mode should 
be maximal, i. e., the exchange-interaction parameters 
in expressions (2) should correspond to 

1.,>Aj 

(we note that this condition is not satisfied for 1:4 and 
1:5,6 under the fully realistic assumption J4 =J5). 

(6) 

Combining the minimum-energy condition (6) for the 
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mode 1:8,9 with the molecular-field relations 

"1=38/2S(S+ 1) , (7) 
1. 8 .=3T,,/2S(S+1), (8) 

we obtain for the exchange-interaction parameter of 
MnAIG 

0.51<-1,<0.64 K, 0.09<-1,<0.14 K, 0.07<-1,<0.15 K. (9) 

As expected, J2 and J 3, which characterize exchange 
interactions with participation of not less than two in
termediate links, turn out to be close in magnitude. It 
is interesting that these interactions are only several 
times weaker than the indirect exchange interaction via 
one oxygen ion. The relatively small value of J 1 can be 
attributed apparently to the Mn-O-Mn angle, the value 
of which, 101. 3 0, is not favorable for exchange. [41 

Putting in accordance with (9) J2 =~ =J~, we have de
termined J 1 and J~ for MnAIG from relations (7) and (8): 
J 1 = - 0.57 OK, J~ = - 0.12 OK. Using the obtained J 1 and 
J~, we can estimate the contributions of the exchange in
teractions to the heat capacity above TN. From the high
temperature expansion[91 we have 

Cexch = 2S' (S+1)' (. J ,+" 'J ") 
~ 3T,"1 1 -, , • 

where z~ =22. From this we obtain for MnAIG the value 
CT2/R = 80 °K2. This is 25% higher than the coefficient 
a in (2). Taking into account the accuracy with which 
the lattice contribution is determined at T» TN' as well 
as the averaging used in the determination of the ex
change parameters, this agreement can be regarded as 
satisfactory. 

In conclusion, the authors take the opportunity to 
thank K. Po Belov for interest in the work, B. V. Mill' 
for preparing the sample, and Yu. F. Popov for the 
measurements in the pulsed magnetic fields. 
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