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FIG. 3. Change of the ratio of the thermal-conductivity coef­
ficient of aluminum films to the bulk value as a function of 
the normalized thickness. 

thickness (the quartz-vibrator method, the calorimetric 
method) and the geometric thickness (multiple-wave in­
terferometry) offer evidence that the film denSity at 
the investigated thicknesses, within a measurement ac­
curacy 3-5%, coincides with the density of the bulk 
metal. [18-20) In this case the specific heat of the films 
does not depend on the thickness and coinCides, within 
the - 10% accuracy limit of the measurement procedure, 
with the data for the bulk metal. It follows also that 
the thermal conductivity is the main cause of the change 
in the diffusivity of thin films. 

Thus, the experimental data on the thermal conduc­
tivity and diffusivity of thin films of aluminum, with 
structure close to equilibrium, is well described by 
the classical theory of the size effect. A deviation of 
the specific heat of the films from the value for the bulk 
metal can be expected only at low temperatures, where 
the size factor can greatly influence the value of c. [2) 

The authors thank L. P. Mezhov-Deglin for a dis­
cussion of the results. 
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The temperature and concentration dependences of the specific heat and magnetization for a disordered 
Heisenberg ferromagnet in which the concentration x of magnetic atoms is close to the percolation 
threshold x, are calculated with the aid of a scaling hypothesis formulated earlier for the percolation 
problem. The dependence of the Curie temperature on x - x, is also obtained. 

PACS numbers: 75.1O.Gj. 75.30.Jy 

In solid solutions of magnetic and nonmagnetic ma­
terials, in the framework of a model in which nearest 
magnetic neighbors interact, macroscopic magnetic or­
der arises only if the concentration x of magnetic atoms 
exceeds the threshold value Xc determined by percola­
tion theory. For x<xc the probability of existence of an 
infinite connected cluster of magnetic atoms is equal to 
zero, while for x> Xc this probability is nonzero and so 
macroscopic magnetic order appears at sufficiently low 
temperatures. The thermodynamics of such systems, 
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both with Ising and with Heisenberg interactions of the 
localized spins, has been investigated repeatedly with 
the aid of high-temperature and concentration expan­
sions. (1) However, near the percolation threshold, for 
I x - Xc I / Xc « 1, because of the poor convergence of the 
corresponding series, these methods have been found 
ineffective: it has not been possible to obtain by means 
of them the temperature and concentration dependences 
of the thermodynamic quantities. 

In the present paper the thermodynamics of disor-
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dered Heisenberg ferromagnets near the percolation 
threshold is investigated with the aid of a scaling hy­
pothesis formulated for the percolation problem. C2-41 
The point is that the appearance of an infinite cluster as 
x is raised above the threshold value Xc occurs in a way 
that is analogous in many respects to a second-order 
phase transition with respect to the temperature. The 
analog of the order parameter is the concentration of 
magnetic atoms in an infinite cluster, which varies from 
zero for x ~ Xc to unity for x = 1. Correlation functions, 
a correlation length and the analog of the thermodynamic 
potential are also introduced for the percolation prob­
lem. The dependences of the characteristic quantities 
on x - Xc are assumed to be power dependences; rela­
tions between the critical indices are established. 

The numerous computer calculations that have by now 
been carried out have confirmed the validity of the scal­
ing theory for the percolation problem. Using the scal­
ing theory we have obtained the energy dependence of 
the density of states of the magnetic excitations, and 
this has made it possible to determine the dependence of 
the Curie temperature Tc on x - Xc and also the tempera­
ture and concentration dependences of the magnetiza­
tion and specific heat. It is interesting that the tem­
perature dependences are described by the Bloch law, 
not right up to a temperature of the order of Tc , as in 
ordered ferromagnets, but in a much narrower tem­
perature interval, Outside this interval these depen­
dences are found to be power laws, but the powers are 
equal to 1 and 0.73, respectively, and not %. 

1. THE DENSITY OF STATES 

We shall consider first a solid solution with a con­
centration of magnetic atoms greater than xc. At zero 
temperature the spins of the atoms in each cluster have 
parallel orientations. The density of states of the mag­
netic excitations in an infinite cluster, Pinf(w), can, at 
zero temperature, be introduced in the following way: 

- 1 d'k 
P'nl(W)=-8 JlmG+-(k,w)-(o )" 

:t _.1 

G+ -(k, w) =-i J eik'-'"' (T8,+(t)8 0 - (O)p,p) d'rdt, 
S±=Sx±iS". 

(1) 

Here S is the spin operator and the quantity Pr is equal 
to unity if a magnetic atom belonging to an infinite clus­
ter is found at the site r, and equal to zero otherwise. 
A superior bar denotes averaging over the configuration 
of impurities and the z axis is parallel to the magnetiza­
tion. The density of states in finite clusters can be in­
troduced in an analogous way. 

A characteristic feature of the Heisenberg Hamilto­
nian is the existence of the conservation law for the 
total spin. A consequence of this conservation law is 
the existence, in disordered Heisenberg ferromagnets, 
of weakly damped long-wavelength spin waves with a 
quadratic dispersion law[51 

w=Dk'. (2) 

In this respect there is an analogy between the magnetic 
and elastic properties of disordered systems: it is well 
known that the invariance of the equations of atomic dy-
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namics with respect to a uniform translation ensures 
the existence of weakly damped acoustic phonons. [61 

According to Kirkpatrick, [71 

D-a/P, (3) 

where P is the ratio of the 'number of sites in an infinite 
cluster to the number of sites in the crystal, (J is the 
conductivity of the lattice (in which all the links between 
nearest magnetic neighbors possess a conductance equal 
to unity and the other links do not conduct current). We 
note that the relation (3) was obtained without any model 
assumptions about the topology of the infinite cluster. 

The denSity of states in the spin-wave region is 

S d'k 1 w'/· 
pfn'(W)= {)(w-Dk')--=--. 

(2n)' 4n'D'" 
(4) 

According to the scaling hypothesis, [2-41 P and (J have 
power-law dependences on x -xc: 

Numerous computer calculations confirm the existence 
of such dependences and lead to the following values of 
the indices: {3= 0.33, [71 t = 1. 72. [81 Thus, in the spin­
wave region, Plnf(w)-w1/2(x-xc)"2.1. 

The dispersion law (2) is valid so long as the wave­
length of the magnons is greater than the characteristic 
length determining the topology of the infinite cluster, 
since only in this case does the wave "average" tile spa­
tial fluctuations existing in the structure of the infinite 
cluster, so that the damping of the wave is small. Ac­
cording to the scaling hypothesis, [3,41 near the percola­
tion threshold the system is characterized by one pa­
rameter with the dimensions of length (L - (x - xct"), 
which, by analogy with second-order phase transitions, 
is called the correlation length. As follows from the 
definition of the correlation length, [3,4] it has a simple 
meaning: the quantity L is of the order of the mean 
size of the finite clusters, and also, therefore, of the 
order of the characteristic size of the infinite cluster 
which "flows around" the finite clusters. Thus, the 
relations (2) and (4) are true only for w« wo=DL -2. The 
critical index II is equal to O. 8-0. 9. [41 

In order to determine Plnf(w) for W> wo, we use the 
method, well-known from the theory of phase transi­
tions, of matching the long-wavelength hydrodynamic 
mode with the so-called critical mode, for which the 
wavelength is less than the correlation length, [9] Here, 
the most important thing for us will be the fact that, 
since the characteristic length for the critical excita­
tions is less than L, their energy and density of states 
per magnetic atom, PlIIf(W), should depend only on the 
geometrical properties of the infinite cluster over dis­
tances less than L. But the geometrical characteristics 
of the system at such distances do not depend on x - xc; 
the parameter x - Xc determines only the topology of the 
system over distances greater than L . 

Thus, we have arrived at the conclusion that Plnf(W) 
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for W» Wo does not depend on x - xc, i. e., Pln,(w) 
-f(w/Vo) (Vo is the exchange integral between nearest 
magnetic neighbors). Consequently, 

pint (Cll) -PI ( Cll/V,). 

Matching the expressions for Plnf(w) determined by 
formulas (4) and (5) at 

we obtain 

Since 

it follows from (6)thatf(y)=y-Z, wherez=(t-v)/(t 
+ 2v - f3). Therefore, the density of states for w» Wo 
is equal to 

Here no is the volume of the unit cell and 'Y is an un­
known numerical coefficient. From the values given 
above for the indices it follows that z = O. 27. 

(5) 

(6) 

(7) 

Thus, the density of states has a maximum at ener­
gies of the order of Wo and falls off rather slowly with 
increasing energy for w» woo The main contribution 
to the normalization integral is given by energies of the 
order of Vo; the number of states in the spin-wave re­
gion is proportional toL -s-(x-xcr2.6, i.e., is ex­
tremely small compared with the total number of states. 

For Ix-x cl/xc«l most of the magnetic atoms are 
connected in finite clusters, the mean size of which is 
of the order of L. [S,4] Since the geometrical properties 
of finite clusters over distances smaller than L are the 
same as those of an infinite cluster, the density of 
states Pfln(w) in finite clusters for w »wo differs from 
PiDf(W) only by a normalization factor: 

"'( (V,)' Plin(Cll)= T; 0 - . 
"'0 __ 0 (t) 

(8) 

Naturally, formula (8) is valid both above and below the 
percolation threshold. 

2. THERMODYNAMIC FUNCTIONS 

All the results obtained for the density of states are 
valid not only at zero temperature T = 0 but also at 
temperatures much lower than the Curie temperature 
T c, when the deviation of the magnetization from satu­
ration is small. Assuming this condition to be fulfilled, 
we can, in the usual way, express the deviation t::.M of 
the magnetization from saturation and the specific heat 
C in terms of the density of states introduced in (1): 

1176 

S·Pint(Cll) 
~3f=J!.- <M'> =Il e'W-l dCll, 

o 
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S• (~Cll)'e~W 
c= (p,", (w) +Pfin (w» (e'W_1),dul. (9) 

Here p. is the effective magnetic moment of the atom, 
f3= T-l, and the saturation magnetization Mo= p.pno• 

In the spin-wave region T « Wo the magnetization and 
specific heat obey the Bloch law 

~('/')(T)'" tiM=,,-- -
.. 8:rt'" D ' 

c= 15 ~('/,) (!.-) 'f. 

;32 ;'t'!' D ' 
(10) 

where t(x) is the Riemann zeta-function. It can be seen 
from the formulas (10) that t::.M and C are proportional 
to (x- x cr2• 1• 

The formulas (10) also give a correct estimate of the 
corresponding quantities for T - woo It is easy to con­
vince oneself that 

!:J.MI 1 - ---«1 
.i.l!o T=lIlo PL~j . 

(11) 

It follows from (11) that the Curie temperature is much 
larger (in the parameter (x - xcrl) than the energy Wo at 
which the spin-wave part of the spectrum terminates. 
This difference from the properties of an ordered ferro­
magnet, for which these two characteristic quantities 
coincide, is connected with the aforementioned paucity 
of states in the spin-wave region. 

We now calculate t::.M and C for T» woo The integral 
for t::.M is determined in this case by energies w- wo, 
and therefore 

(12) 

Since t::.M /M 0 - 1 at temperatures of the order of T c, it 
follows from this that Tc-Ppj!,(wo), and by means of 
(4) or (6) we find 

(13) 

Here a is an unknown numerical coefficient. The power 
in (13) t- vzO. 9. 

As can be seen from (13), T c falls off to zero as 
x- xc' This falloff is not connected with the decrease 
in the energy of interaction of the spins with their sur­
roundings, since, irrespective of the value of x -xc, 
this energy is not less than Vo. As can be seen from 
(12), the magnetic order is destroyed by thermodynamic 
fluctuations with energy of the order of Wo and charac­
teristic length L. As x - Xc decreases the density of 
states of these excitations grows, and this leads to de­
crease of T c. The destabilizing role of the excitations 
with w - Wo is possibly connected with the one-dimen­
sional character of the structure of an infinite cluster 
over distances shorter than the correlation length. [10] 

We note that qualitative arguments about the existence 
of the relation (13) were put forward by Shklovskir and 
the author[ll]; however, previously[ll] we succeeded 
only in obtaining the inequality 

E. F. Shender 1176 



Inasmuch as 

there is, even for not too small values of x - xc, a 
broad region of temperatures in which aM - T. The 
Bloch law is fulfilled at much lower temperatures T 
«wo'" Vo(x - x c)3.2, and, as can be seen from (11), even 
at T - Wo the deviation of the magnetization from satura­
tion is extremely small: 

The long-range magnetic order disappears at the 
Curie point, but it is easy to see that, so long as T 
«Vo, there is short-range magnetic order over dis­
tances shorter than L but much longer than the lattice 
constant. The magnetization in a region of size r can 
be calculated by replacing the lower limit of the inte­
gration in (9) by w(r), where w(r) is the minimum en­
ergy of excitations in a ferromagnetic region of size r. 
Short- range magnetic order over a distance r obtains 
if 

~!lf(r) T ( j"o )' 
--=- -- «1. 

.11, 1"0 (iJ (r) 
(14) 

In particular, substituting w(r)-T into (14), we can 
convince ourselves that in regions whose size is of the 
order of the characteristic length of the thermal excita­
tions, short-range magnetic order always occurs. 

Since it is precisely the thermal excitations that de­
termine the specific heat, this means that the specific 
heat can be calculated with the aid of formulas (7)-(9) 
not only for T« Tc but also in the entire temperature 
interval wo« T« Vo. We obtain 

(15) 

where r(x) is the gamma-function and 1 - z =0.73. The 
principal contribution to the specific heat (15) is given 
by excitations in finite clusters, the density of states of 
which is greater by a factor of p-l than in an infinite 
cluster 0 Therefore, (15), like (8), is valid both above 
and below the percolation threshold. 

For T« Wo the temperature dependence of the spe-
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cific heat is substantially different above and below the 
threshold. Below the threshold (x < xc) the low-tempera­
ture specific heat is determined by clusters of size 
greater than L, since it is precisely in these that ex­
citations with energy less than Wo are possible. Since 
the mean number of such clusters is exponentially 
small, the specific heat evidently also depends on T by 
an exponential law. Above the percolation threshold 
the specific heat for T - 0 obeys the Bloch law. How­
ever, because the magnon specific hea~ at T = Wo is a 
factor of P smaller than the specific heat (15) of the 
finite clusters, at T = T 1 « Wo the Bloch law already 
ceases to be valid for C. In the range of temperatures 
between Tl and Wo the specific heat is determined by the 
finite clusters of size greater than L. At not too small 
values of x -xc this region of temperatures is fairly 
narrow because of the small value of the index (3. 

Note added in proof: In formulas (8) and (15) for 
Pu.(w) and C it is necessary to replace z by z' =z - {3/ 
(t + 21J - (3). The value of z' can be found from the match­
ing condition for the function Pu.(w) - (vo/w)-': PfI.(WO) 

- PI.t(WO). The form of this condition is determined by 
the fact that the concentration of the magnetic atoms in 
finite clusters of size L is of the order of P. The author 
thanks B. I. Shklovskil for calling his attention to the 
error in the text of the article. 
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