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We propose a simple model capable of explaining the physical factors that determine the characteristic 
features of the nuclear magnetic resonance line shape in a solid. The model can be employed to investigate 
the line shape for the case of a rigid lattice as well as for the case of mobile nuclei. The actual calculations 
are made for single-crystal CaF 2' the traditional "trial" crystal in most studies of line shape. The results are 
in good agreement with experimental data. 

PACS numbers: 76.60.-k 

Starting with the classical paper by Bloembergen, 
Purcell, and Pound, [1] the theoretical interpretation 
and the calculation of the nuclear magnetic resonance 
(NMR) line shape has been the subject of dozens of in­
vestigations. It was assumed at first[1-5] that the NMR 
line should have a Lorentzian or Gaussian shape. The 
Lorentz lines should describe spectra in liquids or sol­
ids with strong exchange interaction between the spins, 
i. e., spectra produced in the presence of fast fluctua­
tions of the local magnetic fields produced by the en­
vironment at a certain spin. The broadening of the 
resonance lines in solids can be due to a large number 
of physical factors. Very frequently, however, the 
decisive interaction causing the broadening is the di­
pole-dipole interaction between the magnetic moments 
of the nuclei. In this case the Gaussian lines should 
correspond to a distribution of dipole magnetic fields 
of the static type, which~ as assumed, is realized in 
most solids •. 

Lowe and Norberg have subsequently shown[6] that 
the resonance line shape can be described in equivalent 
fashion with the aid of the Fourier transform of the cor­
relation function of the transverse magnetization, which 
in turn corresponds to the free-precession Signal (FPS) 
produced after a 90 degree radio-frequency pulse is ap­
plied to the spin system. It was shown in the same pa­
per that the line shape in single-crystal CaF 2 is not 
Gaussian~ since the FPS is a damped oscillating func­
tion of the time. This fact~ as well as the recent rapid 
development of pulse methods in solid-state NMR, [7,8] 
in which the FPS curves are extensively used, has 
stimulated a new wave of studies devoted to the line 
shape of NMR[9-i8] etc. Almost all these studies, how­
ever, deal with various methods of mathematically de­
scribing the FPS curve so as to obtain agreement with 
experiment, but hardly touch on the physical essence 
of the processes that shape the NMR line. A critical 
analysis of the theoretical papers[9-i5] can be found 
inU9-21l. 

We note that pulse methods involve direct action on 
the spin-spin interactions in the crystal. Thus, for an 
adequate description of the physical processes that 
shape the resultant FPS line~ it is necessary to be able 
to analyze in detail the behavior of the spin systems at 
times t:S T2~ where T2 is the spin-spin interaction time. 
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We propose here a simple model that makes it possi­
ble to calculate the principal parameters of the FPS 
curve and to explain the physical nature of the processes 
that govern its characteristic features. both for the 
case of a rigid lattice and in the presence of motion of 
the nuclei. Although the actual calculations were per­
formed for Single-crystal CaF 2-the "trial" crystal for 
most work on line shape, the method can be easily extended 
to include other crystals. In the early sixties. Abra­
gam [2] has found empirically that FPS in single-crystal 
CaF2 is well described by the trial function 

() sin(bt) (a't' ) r t ~--bt-exp -2 . (1) 

The quantities a and b were chosen such that the ab­
sorption line had corrected second (M2 ) and fourth (M,) 
moments. Subsequently the experimental investigations 
of the asymptotic behavior of the FPS have shown[22] 
that at times t ~ T2 the Signal takes the form 

r(t) -sin(bt)r"lbt. (2) 

Despite the high reliability of the presented experimen­
tal facts, which have revealed interesting features, 
the problem of determining the physical causes of this 
character of the FPS has not been posed to this day, 
and there is no verification whatever of the empirical 
functions (1) and (2). 

The F19 nuclei are the only nuclei in CaF2 with a non­
zero magnetic moment and form a primitive cubic lat­
tice. In a constant magnetic field Ho directed along the 
z axiS, the crystal magnetic nuclear subsystem is de­
scribed by the Hamiltonian 

H~H,+HdO; (3) 

where 

H'~ l'n' ~ 1-3coS'e'j(~SS_..!..SS) 
d 2 ~ ri/ 2 %1 ZJ 2 t J , 

i.pi 

(4) 

Here H. is the Zeeman Hamiltonian, H~ is the secular 
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part of th~ dipole interaction CZJ, r'J is the distance be­
tween the spins i and j; e Ii is the angle between the di­
rection of the constant magnetic field Ho and the inter­
nuclear vector joining the spins i and j; 'Y is the gyro­
magnetic ratio. In the Hamiltonian H~, in contrast to 
the total Hamiltonian Hd of the dipole-dipole interaction, 
the terms of the type E - S., Sd and F - S., S.J are ne­
glected. The operators E and F mix states with dif­
ferent S.=L,J S.H with a degree of mixing a - H1OC/HO 
- 10-' (H 100 is the local field produced by the neighbors 
at the spin, Hloo -1 Oe, Ho - 10' Oe), and lead conse­
quently to the appearance of weak satellites at fre­
quencies that are multiples of the Larmor frequency WOo 

The emf excited in a coil by the free precession of 
the spin[2] is determined by the x component of the total 
spin of the system (the analysis is carried out in a co­
ordinate system rotating with frequency Wo about the z 
axis of the laboratory frame): 

<8.(t) )=- ;;(:; SP{ exp ( ~ Ha't) 8.exp ( - THaOt) 8.} 

=_ ~"ioo, Sp{8.'} r( ) (6) 
SpIll t , 

<A)=Sp{Ap}, p= (1-~,lioo,8s) iSp{l}; 

P is the density matrix of the system, (31 is the recipro­
cal lattice temperature, 

OO'=1H" 8.= ~8'j, 
i 

For the total spin we thus have 

Taking into account the structural equivalence of the 
spins, we get 

<8.(t) )-Sp{8.(t)S.}-N<8.,(t) )-N Sp {8.,(t)8.}. 

N is the number of spins in the sample. We obtain 

d 00, { (i ,) (i, ) 8 } -<8.0 (t)= ~,--Sp exp -Hd t H"S,oexp --;;-Hd t x' 
dt Sp(1) Ii " 

(8) 

It is seen from the foregoing expressions that the rate 
of change of the x component of the average (summary: 
(Sxij(t» = N-l(S,.(t») spin is determined by the sum of the 
changes of the x components of the spins located at dif­
ferent sites of the crystal lattice, the change of (S"o(t» 
being in fact due to rotation of the individual spins in 
fields directed along the z axiS. The latter is not sur­
prising and is due to the axial symmetry of the Hamil­
tonian (4), owing to which (S.o(t» = const. In spin sys­
tems with spherically symmetrical exchange interac­
tion, e. g., the average spin is in fact stationary: 

(8.,(t) )=const, (8,,(t) )=const, (8,,(t) )=const. 
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In most experiments on magnetic resonance, the ther­
mal energy is large in comparison with the energy of 
the dipole-dipole interaction, so that the nuclear spin 
system is paramagnetic. In this situation, the local 
field H.o(t) acting on the spin can be represented in the 
form of a sum of two statistically independent contri­
butions with principally different characters: H.o(t) 
= H ~)(t) + H ~)(t). The difference between H .o(t) and 
H !~)(t) is connected, from the physical point of view, 
with the concept of the correlation and spin orientations. 
The presence of two fields is due to the presence in the 
crystal of two regions, in one of which the spin orien­
tations and consequently the local fields produced by the 
spins are correlated with the selected orientation, and 
in the other they are not. We emphasize that we are 
dealing exclusively with temporal correlations and that 
a correlation between the field acting on the spin and 
the spin itself means that the change of the orientation 
of the selected spin involves a change of the effective 
field. Such an effect is impossible in the absence of 
correlations. Obviously, the correlation arises in the 
spin system only because (4) contains a scalar term, 
for otherwise when only the zz interaction remains, the 
z component of the local field is preserved, and conse­
quently the motion of the selected spin cannot influence 
the field acting on it in any way. The action of the sca­
lar term contained in (4) is realized in the spin system 
in the form of mutual spin flip flops (henceforth called 
II processes), the probability of which[23.24] 

(9) 

is a rapidly converging function of the distance between 
the flip-flopping spins. Furthermore, the correlation 
of a certain spin with the selected spin becomes weak­
ened as a result of its interaction with its neighbors, 
and this weakening is larger the closer the neighbors. 
To estimate the correlation radius it is thus necessary 
to separate one spin and determine to the probability of 
its II process with participation of each of the neighbors 
in accordance with (9). 

The spins for which the If-process probability is large 
correlate with the selected spin. Their number, how­
ever, cannot be too large, since W-1/r 6 , and conse­
quently order of magnitude of the correlation radius 
does not exceed the lattice constant d. We shall hence­
forth use the term "cell" to deSignate a crystal with 
center at the selected spin and with .radius equal to the 
correlation radius. Since the spins located outside the 
cell are not correlated with the selected spin, their ef-

. fect on the- motion of the selected spin can be described 
on the basis of the Anderson-Weiss statistical the-
ory, [4] and only the influence of a relatively small num­
ber of spins contained in the cell can be investigated in 
greater detail. By using (9) to determine the correla­
tion radius in CaF 2 with the field Ho oriented along the 
three crystallographic directions, we obtain 

[toOl-d, [HOl-l'id, [111j-f3d. 

The subsequent calculations confirm the correctness of 
this estimate. 
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A measure of the correlation of the spins in the cell, 
and consequently a measure of the deviation of the dis­
tribution of the local magnetic fields produced by them 
from a Gaussian distribution, can be the process e 
= M4IM;.2, where M2 and M4 are the second and fourth 
moments of the distribution of the local magnetic fields 
produced by the cell at the selected spin. For a Gauss­
ian function we have e = 3, and for an isolated pair (ful­
ly determined motion) e = 1. 

The values of M2 and M4 were calculated with the aid 
of the Van Vleck formulas. [2] Whereas M;' is the con­
tribution made to the second moment only by the spins 
located inside the cell, for an adequate calculation of 
M4 it does not suffice to take into account the interac­
tion inside the cell only. It is necessary to take into 
account the interaction of each of the spins of the cell 
at least with those neighbors with which the interaction 
is strong enough. Consequently ~ when calculating M4 
we have retained in the lattice sums that enter in the 
corresponding Van Vleck formula the interaction of a 
fixed spin with the cell spins as well as the interaction 
of the latter with the spins of the cell whose centers 
each of them is in turn. The obtained values of e are 
listed in Table I. It is seen that the values of e do not 
differ greatly from the excess of the rectangular func­
tion for which e= 1. 8. We can thus expect the distribu­
tion of the effective local fields produced by the cell to 
be close to equiprobable in the interval [- b ~ b]. Know­
ing the contribution made to the second moment by the 
spins inside the cell, we can now determine b, since 
M;' = b2/3 for a rectangle. The results are listed in the 
table. 

An analysis of an isolated cell was carried out with a 
computer for the [100] orientation; this called for the so­
lution of a seven-spin problem. In the calculations we 
disregarded the interaction of the cell spins with their 
neighbors outside the cell. One can expect, however, the 
neglect of the cell environment at high temperatures not 
to influence too greatly the results of the calculation, 
since on the average the random character of the orien­
tations of the spins in the environment weakens their 
effect on the cell. Calculation of the contribution made 
to the FPS by the isolated cell should lead primarily to 
a weakening of its damping in comparison with the ex­
act calculation. The correctness of this assumption is 
confirmed by our calculation of the excess of the ex­
preSSion (8) for an isolated cell with orientation [100], 
namely E = 1. 6. The obtained value of € is close to the 
excess of a rectangle and reflects an insufficient damp­
ing of the FPS. The results of the rigorous calculation 
of (S.,o(t» are shown in Fig. 1. The insufficient damp­
ing of the curve is due to the fact that the cell is iso­
lated. At the same time, the oscillation frequency is 
close to that observed in experiment. For [110] and 
[111] the cell contains 19 and 21 spins, respectively~ 
and the analysis becomes difficult. 

It remains for us to investigate the contribution made 
to the local field at the selected spin by the spins that 
are not contained in the cell. Since these spins are not 
correlated, their contribution is the sum of a large num­
ber of small independent quantities, and consequently 

1151 SOy. Phys. JETP, Vol. 43, No.6, June 1976 

the distribution function of the local fields from these 
spins is Gaussian. For a complete determination of a 
Gaussian function it suffices to calculate its second mo­
ment. We have calculated the contribution made to the 
second moment relative to the selected spin from the 
spins not contained in the cell. The results for a, 
which are listed in the table~ are in good agreement 
with experiment. 

According to the statistical theory of line shapes, the 
correlation function in a rigid lattice fakes the form[2J 

r(t)= S ei.tP(w)dw, (10) 
w 

where p(w) is the distribution function of the local 
fields. In the case of CaF 2, recognizing that the field 
at the spin is the sum of two statistically independent 
contributions with Gaussian and rectangular distribu­
tions, we obtain 

r(t)=Jd~ Sdwei'·+'''PI(w)P,(~) . . 
I, ~ (1'1') sin bt (a't' ) 

= Se,·t dw S d~e'''exp -- =-exp -- (11) . 2a' bt 2 . 

This expreSSion, however, does not take into account 
the influence of the flip flops of the uncorrelated spins 
on the Gaussian component of the FPS. The local field 
produced by the remote spins at the selected spin is a 
Gaussian random function of the time, since it is a sum 
of a large number of small independent and independent­
ly varying contributions. A Gaussian random process 
is uniquely defined by its correlation function, [2,23J and 
the Gaussian component of the FPS takes the form 

G(t)= exp { _a' j (t-T)k(T)dT}, 

° 

a 2 is the already calculated second moment of the 
Gaussian function, 

(12) 

k(t)= :2sp{exp({H.'t)H,;exp(-~ HdOt) H,o'} , (13) 

H,; = L : bojS,j. 
i-FO 

The prime on H60 denotes that the summation does in-

G{t) 
1.0 

FIG. 1. Free-precession signal component due to the correla­
tions in the spin system: solid curve-sin(bt}/bt; dashed:-re­
suit of the exact quantum-mechanical calculation of (Sxo(t» for 
the cell with the aid of (8). 
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elude the spins contained in the cell. 

It is clear from physical considerations that the cor­
relation time of the local fields is of the order of mag­
nitude of T2 • More accurately, this time can be cal­
culated as 

(14) 

It is thus easy to obtain T: ::::: 3T2• Using expression 
(12), we find that at t< Ti we have 

G(t) =exp( -a't'/2) , (15) 

and at t~ Tt 

G(t) =exp (-a'T,'t) =exp( -et); (16) 

such an asymptotic behavior was observed experimen­
tally in[221 after the appearance of the second zero in 
the FPS. The time T: corresponds to the midpoint of 
the interval between the first and the second zeros. 
The calculated values of c agree well with experiment 
(see the table). 

The NMR line shape of a number of crystals contain­
ing relatively isolated spin groups was investigated 
theoretically and experimentally in the later forties and 
early fifties (see the papers by Pake[261 and by others), 
with the dipole interactions within the group taken into 
account exactly (in some cases, an exact solution of 
three- and four-spin problems is possible). The inter­
action between the groups was taken into account by 
broadening the spectrum components by Gaussian lines. 
This approach gave good agreement with experiment. 
It is easily seen that the calculations performed in[26) 
agree with the scheme described above, inasmuch as 
in this situation the cell is chosen to be an isolated 
group. 

One of the most remarkable features of NMR absorp­
tion lines is their high sensitivity to nuclear motion. 
The motion of the atoms produces a time variation of 
the local fields at the nuclei, and this indeed is the 
cause of the transformation of the line shape. In par­
ticular, in liquids the line becomes narrow and Lorentz­
ian. The influence of the motion on the NMR line 
shape should be taken into account successively on the 
basis of the foregoing. The random-field method has 
been used so far to considera number of problems,. 
such as destruction of the fine structure of spectra con-
Sisting of very narrow lines in high-resolution spec­
troscopy, the destruction of the spectra of crystal hy­
drates, [27) in which NMR lines also have a fine struc-

TABLE I. Parameters of free-precession signal in 
Single-crystal CaF2. 

- Experiment(2,2:l) 

I 
Theory 

a.Ge 
I 

h,De jeo ~sec-' a.Oe I b,De Ie. ~c-· 
I 

[100J 1.11 I "~O I 0.0'; 

I 1.11 \5.80 I 0.005 I 2.0 
[IIOJ O.fl72 3.0 0.041 o.~n 3.5 0.03 2.11 
[lllJ (l.iI3 ~.32 0.031 0.67;) 2.23 0.0246 2.3 
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ture, and the alteration of Gaussian lines by the mo­
tion. [4,5) 

The problem of transformation of spectra in the pres­
ence of motion was conSidered in the most general form 
in[25,28). Within the framework of the concepts de-
scribed above, however, using the random-field theo­
ry, this problem can be solved quite Simply and in a 
phYSically lucid form. With respect to the motion we 
assume that the change of the frequency takes place 
jumpwise and the time of the jump is much shorter than 
the lifetime of the spin at the lattice site. Both as­
sumptions correspond to the case of diffusion. In this 
situation it is natural to expect that the local fields be­
fore and after the jump are not connected in any way, 
and the probability that the spin will land in a definite 
field is determined completely by the distribution of the 
fields in the rigid lattice. The motion of this type is 
well approximated by a Poisson random process. It 
now remains to trace all the possible trajectories of 
spin motion, including 1,2, ••• jumps, recognizing at 
the same time that the local field at the spin is a sum 
of two statistically independent contributions. 

The transverse component, which acquires a spin 
having a frequency w+ a with a time t. is equal to 

S,,(t)- {exp [(iW -+)t]+ S dw, j g,(w,)exp (iOl,t-+-) ~t. 
o 

S S' ( t. ) dt, (t-t. ) } + dt'l. g,(t'l,)exp iJ..t,-~ -T- exp --T- exp[iJ.(t-t)]+ .... 

~ , (17) 

Here gt(w) and g2(a) are the distribution functions of 
the contributions made to the local field in the rigid lat­
tice, while liT is the average frequency of the jumps. 

Introducing Go(t) and r o(t). which are the correlation 
functions in the rigid lattice and are connected[2) by a 
Fourier cosine transformation with gt(w) and g2(W) , and 
summing over all the spins, we obtain 

1 ' 
Sx(t) -f(t)= {G,(t)e-" +-:;- S dt,Gc(t.)G.(t-t,)e-' '-T-... } 

o 

x {f' (t)e- t , + ~ j dt,f, (t,) r)(t-t,)e-' '-+- ... }. 

(18) 

, 

To sum the series we take the Laplace transforms of 
both parts of (18). After obvious intermediate opera­
tions we obtain 

(19) 

where 

F.(,)~ ... '1',(8+211;) , F2(S)=~~. 
l-t-'q;,(,+Z/T) l-t- '1',(8) 

(20) 

Here CP1(S) and CP2(S) are the Laplace transforms of the 
functions Go(t) and ro(t). Taking the inverse transform 
of (19) we get 
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8 -5 q -z a z q 5 8 H,Oc 

FIG. 2. Transformation of the rectangular component of the 
line shape in CaFi as a function of T: 1) l/T=O, 2) 1/T=4X103 
Hz, 3) 1/T=2x10 Hz (for FI9 nuclei, 1 Oe=4x103 Hz). 

2a a D a 2a w 

FIG. 3. Transformation of Gaussian component of the line 
shape in CaF2 as a function of T: 1) 1/ T = 0, 2) l/T = O. 5, af2, 
3) 1/T =af2; a2 is the second moment of the Gaussian function. 

r(t) =G,(t) ft(t). (21) 

G1(t) and r 1(t) are the results of the inverse Laplace 
transformation. Since the numerical methods of find­
ing the originals from the known transforms have been 
well developed, [29] we can use (19) directly for the ac­
tual calculations or, by tracing the deformation of each 
of the contributions separately, obtain the convolution 
of the results. 

We now investigate the behavior of the CaF 2 in the 
case of strong heating. Denoting by gl(W) the deformed 
rectangular distribution and by g2(W) the deformed 
Gaussian distribution, we obtain 

g,(oo)=Re {~ArClg_._b_!_1 
b 100+1 T 

[ l-~Arctg_b_]} 
bT ioo+I!T' 

ilT-oo 
':;=--

l'2a 

2 ioo 

w(;) = -= e-" J eY' dy; 
l'n , 

(22) 

w(z) is the tabulated[SO] error function in the complex 
plane. 

The results of the calculation by formulas (22) are 
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shown in Figs. 2 and 3. It is seen that with increasing 
temperature (with decreasing T) both components, and 
consequently also their convolution, become close to 
Lorentzian. 

Thus, the described approach, from both points of 
view, makes it possible to handle spectra both in a rigid 
lattice and in the presence of motion of the nuclei. 
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