
the same as for a linear layer. We must in that case in 
Eqs. (4.5), (4.7) replace ~ by Un. 

(lThe expressions obtained by us for the dimensions that 
characterize the change in the intensity of the pumping wave 
differ from the estimates in131. 
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Theory of nonuniform magnetic states in ferromagnets in 
the vicinity of second-order phase transitions 
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A perturbation theory is constructed in a small parameter determined by the degree of closeness to a 
second-order phase-transition point. This makes it possible to take the demagnetizing field into account and 
to find all the quantities characterizing the magnetic-moment distribution, with any prescribed degree of 
accuracy in powers of the small parameter. It is shown that strong correlation effects lead to a nonuniform 
distribution of the magnetization over the thickness of a ferromagnetic plate. The character of the phase 
transition to the nonuniform state in finite samples in the vicinity of second-order phase transitions (i.e., 
near the Curie temperature and the phase-transition point with respect to the magnetic field) is investigated 
in detail. It is proved that, in ferromagnets of arbitrary shape, the energy of the demagnetizing field does 
not change the character of the phase transition. 

PACS numbers: 7S.30.Jy 

INTRODUCTION uniformly magnetized phase domainS, separated by nar­
row intermediate layers inside which the magnetization 
vector rotates through 1800 .[1] In this case the energy 
of an intermediate layer can be regarded as the surface 
energy, and the equilibrium configuration determined 
from the minimum of the energy of the intermediate 
layers and the magnetic dipole energy. The magnetiza-

It is well known that, in samples of finite size, a non­
uniform distribution of the magnetization arises simUl­
taneously with the appearance of the spontaneous mag­
netic moment. Far from the transition point the mag­
netic-moment distribution consists of an alternation of 
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FIG. 1. 

tion at the center of a domain is equal to the spontaneous 
magnetization for an infinite sample. 

Shirobokov(2] obtained the periodic distribution of the 
magnetic moment without allowance for the demagnetiz­
ing field inside the sample. In the framework of this 
model the demagnetizing field and the period of the do­
main structure can be determined from the jump in the 
magnetization at the surface of the sample. [3-5] Such a 
treatment is valid when the static susceptibility X of the 
ferromagnet is small (x «1). In this case the back in­
fluence of the demagnetizing field on the magnitude of 
the magnetic moment can be neglected. 

Near phase-transition points the susceptibility of a 
ferromagnet grows, with the result that the demag­
netizing field has a substantial influence on the distribu­
tion of magnetization over the entire thickness of the 
plate. The length characterizing the nonuniformity of 
the magnetization across the plate becomes of the order 
of its thickness. In this case, allowance for the non­
uniformity, over both the length and the thickness of the 
plate, is of fundamental importance for the determina­
tion of the type of phase transition and also the depen­
dence on the temperature and magnetic field of the prin­
cipal quantities characterizing the nonuniform state. 
In the viCinity of the Curie temperature such a nonuni­
form magnetic state was observed by Drabkin and co­
workers in experiments on the scattering of polarized 
neutrons in nickel. [6) 

The domain structure in ferroelectric crystals has 
been treated most systematically in[7] by one of the 
authors, in which the electric-field energy was calcu­
latedwithallowance for the nonuniform distribution of 
polarization over the thickness of the plate, the shift in 
the Curie point was determined, and it was shown that 
the domain structure arises on account of the instability 
of static fluctuations with period corresponding to the 
width of a domain. 

In the present paper we construct a rigorous quantita­
tive theory of the nonuniform magnetic state in a fer­
romagnetic plate in the vicinity of second-order phase 
transitions. We consider a phase transition in a fer­
romagnet with anisotropy of the easy-axis type in a mag­
netic field H perpendicular to the anisotropy axis and 
parallel to the surface of the plate, far from the Curie 
point (T« Te). In an infinite crystal with such geometry 
a phase transition with respect to the magnetic field oc­
curs. At the phase-transition point He the magnetic 
moment lies along the field, and He is equal to the anisot· 
ropy field HA • In addition, the phase transition with 
respect to the temperature in the absence of an external 
magnetic field is considered. It is shown that, in a 
sample of arbitrary shape, allowance for the dipole en-
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ergy does not alter the character of the phase transition 
but only leads to a shift of the transition point and to the 
appearance of nonuniform magnetic ordering below the 
transition point. The magnitudes of the spontaneous 
magnetization and of the period of the nonuniformity in 
the ferromagnetic plate are obtained as functions of 
the degree of closeness to the transition point. 

The discontinuities of the specific heat at the Currie 
point Te and of the susceptibility at the phase-transition 
point He with respect to the magnetic field are deter­
mined. It is shown that they do not depend on the thick­
ness of the plate and are smaller than in the infinite 
crystal by a factor of t. As the temperature (magnetic 
field) is lowered, the specific heat (susceptibility) of the 
ferromagnet increases. The rate of increase is pro­
portional to the thickness L of the plate. This leads to 
the result that the total discontinuity in the specific heat 
(susceptibility) for L - 00 is equal to the discontinuity in 
the infinite crystal. 

The spin-wave spectrum in a ferromagnetic plate in 
the vicinity of the phase transition in the magnetIc field 
at He is considered. It is shown that the system be­
comes unstable with respect to a uniform distribution 
of magnetization as the transition point is approached 
from the side of fields H> He. The domain-structure 
periods obtained from the dynamic and static calcula­
tions coincide. 

1. NONUNIFORM MAGNETIC STATE IN A 
UNIAXIAL FERROMAGNET IN A TRANSVERSE 
MAGNETIC FI ELD 

We shall consider a uniaxial ferromagnetic crystal in 
the form of a plane-parallel plate of thickness L. Let 
the anisotropy axis be directed perpendicular to the sur­
face of the plate, along the z axis, and the external 
magnetic field H lie in the plane of the plate, along the 
y axis (Fig. 1). Then the Hamiltonian of the ferromag­
net has the following form 

1 1 H 2 

;)'6= Sdv [-a(VM)'--~M;-MyH+_D ]. 
2 2 8n 

(1.1) 

where M is the density of the magnetic moment, a is the 
nonuniform-exchange constant, (:3 > 0 is the anisotropy 
constant, and HD is the demagnetizing field. 

The equilibrium state of the ferromagnet is deter­
mined by the equations 

[M. X ;)'6eff 1 =0, 

rot HD=O, div (H D +4nM), ,0 

and the boundary conditions 

DM I -,- =0, 
dz l=±L!2 

(1.2) 

(1.3) 

(1.4) 

where ;)'6eff = aV2M + Mee z + Hey +HD is the effective mag­
netic field and H~e) is the demagnetizing field in the vac­
uum. We do not consider the possibility of the existence 
of surface anisotropy, which can lead to nonuniform dis­
tributions of the magnetization[B.9] and to a change of the 
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boundary condition 

aM I - =0. 
8:; z=±L/2 

We shall confine ourselves to considering a strip-like 
domain structure. Since the distribution of magnetiza­
tion along the Y axis should be uniform, it follows from 
Eq. (1. 2) that 

mx (H ) hx=-a.V'm.,+- -+a.V'm, , 
my Mo 

h,=O, 

m, (H ) h,=-a.\,2m,-~m,+_ -+a.V'my , 
my l~fo 

(1.5) 

where 'h = HD/Mo, m = M/Mo and Mo = I MI. 

It is well known that, in an infinite crystal in a field 
perpendicular to the crystallographic axis and equal in 
magnitude to the anisotropy field (H = HA == (3Mo), the mag­
netization vector lies in the direction of the magnetic 
field and a second-order phase transition occurs in the 
ferromagnet. In this section we shall investigate the 
character of the phase transition in samples of finite 
size, and the magnetization distribution in fields less 
than the field at the phase transition. 

In the vicinity of the phase-transition point (~= (3 
- H/Mo« 47T, (3), the demagnetizing field (1. 5) can be 
represented in the form 

(1.6) 

We note that, as can be seen from (1.1), in an aniso­
tropic ferromagnet the strongest instability arises with 
respect to the appearance of m... Therefore, in the ex­
pressions (1. 6) for the demagnetizing fields, we have 
taken into account nonlinear terms in me only, and have 
confined ourselves to the linear approximation in m x' 

It follows from (1. 3)-(1. 5) that, for equilibrium dis­
tributions of the magnetic moment, the energy (1.1) of 
the ferromagnet has the following form: 

(1.7) 

The dipole magnetic energy, including the energy of the 
magnetic field in the vacuum, is completely taken into 
account in the expression (1. 7). Since the energy of the 
ferromagnet is a continuous function of m .. , it follows 
from (1. 7) that the transition to a state with m .. '* 0 oc­
curs without a jump in the magnetization m", L e., such 
a transition is a second-order phase transition. We 
note that the form of the expression (1. 7) does not de­
pend on the shape and dimensions of the sample. There­
fore, we can conclude that the phase transition is of the 
same type for any geometry of the sample. 

We proceed to elucidate the character of the mag­
netization distribution in a ferromagnetic plate. From 
(1. 3) and (1.6) we obtain an equation for the quantity m .. : 

(1.8) 
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where Jl~=i7T/{3. It is easy to show that, when the in­
equality ~«47T, {3, which corresponds to sufficiently 
thick plates, is fulfilled, the nonuniformity of the mag­
netization in the volume of the ferromagnet is consider­
ably less along the z axis than along the x axis, and 
h .. «47Tmll • In this case the contribution of solutions of 
the surface type can be neglected, since the character­
istic penetration depth of the surface solutions is pro­
portional to a 1/ 2 and is considerably less than the thick­
ness L of the plate. Therefore, Eq. (1. 8) can be ~ 

brought to the following form: 

(J' ((i'm ~) (i'm 
[1.L- a.-.-z+~m2---mL3 -4Jl--~ =0. 

ax' ax' 2 az' 
(1.9) 

Here the boundary conditions have the form 

(1.10) 

Since, as was shown above, a second-order phase 
transition occurs in the ferromagnet, when the phase­
transition point is approached from the side of the phase 
with me '* 0 the magnetic-moment distribution tends to 
the form which is obtained from Eq. (1. 9) without the 
cubic nonlinear term: 

m,-A cos qz cos kx. (1.11) 

It is clear that, for a small departure from He, the spa­
tial distribution of the magnetization should not differ 
significantly from the distribution (1.11). Therefore, 
we shall seek the solution of Eq. (1. 9) in the form 

00 

m,= ~).'''+'A,,,+, (z) cos (2n+ 1) kx, (1.12) 
11=0 

where A is a formal small parameter characterizing the 
degre.e of closeness to the transition point, and A2n+1(Z) 
is a function of z. 

Confining ourselves to the approximation with terms 
up to and including A3, we obtain the following system 
of equations for the quantities Aj(z): 

411A,"(z) +1!,Lk' (~-a.k')A, (z) -3/sl!.Lk'~i.2A,3 (z) =0. 

411A," (z) -9j.l.Lk' (9a.k'-;)A, (z) -'/sJ.l.Lk'~A ,'(z) =0. 
(1.13) 

The system of equations (1.13) admits two classes of 
solutions: symmetric and antisymmetric with respect to 
the center of the plate. It can be shown (and this follows 
from physical considerations) that a symmetric distri­
bution is the more favorable, Le., A(z)=A(-z). The 
solution of the first equation of the system (1.13) is an 
elliptic sine with a maximum at z = 0: 

A,(z)=A,(O) sn [K(ko)+kz).A,(O) (31!.L~/4nko')"', ko], 

( 3~ )~ 
ko=AA, (0) 16 (s-a.k') -3jWA,' (0) . 

(1.14) 

where K(k o) is a complete elliptic integral and ko is the 
modulus of the elliptic function. 

Since Eqs. (1.13) are apprOXimate, to the chosen de­
gree of accuracy (1.14) can be written in the form 
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3 WA,,(O») 3 ~'.'A,'(O) 1 
A, (z) = A, (0) [( 1 + .)-u·. k' cos q,z- .)-" • I' cos 3q,z , 

_.Ju s-ct. .- .::.,.Jv £-Ct..' 

(1. 15) 

where 

q,'= l'.Lk' [;-rxk'-~il)"A,2(0)]. 
4;( 32 

(1.16) 

Substituting (1. 15) into the second equation of the sys­
tem (1. 13), we obtain the solution for A 3(z): 

[3A,'(O) 

2.j6CLk' 

(1. 17) 

Knowing the distribution mz(x, z), we can determine 
m,,(x, z) and h,,(x, z) from the Maxwell equations and Eqs. 
(1. 6): 

(1. 18) 

For a given magnetization distribution the magnetic 
field in the vacuum for z ;. L /2 has the form 

h:"= Ce-" cos kx-tDe-'" cos 3kx. 

Substituting the expressions (1. 15)-(1.19) into the 
. boundary conditions (1.10), we obtain 

q, [ . g,L 9 ~i.'A,'(OI . 3g,L] 
- Slll--- SlU-
~l-,-k :!236 £-CLk' 2 

(1. 19) 

g,L 3 pA'A,'(O) 3g,L 
=C05-2-- 2.56 s-ak' C05----z-, (1. 20) 

B= pA,'(O) [1+~th~]-' s-ak' C05~. 
128rxk' ch (g,Ll2) :~I'-,-k 2 1OCLk'-; 2 

It can be seen from (1.16) that ql «k. Then from 
(1. 20) we obtain 

(1. 21) 

i. e., the magnetization m .. near the surface of the plate 
is considerably smaller than the magnetization at the 
center of a domain: 

m, (z=!:..) ",,_n_m,(z=O). 
2 l'.LkL 

We note that the decrease of m .. as the surface of the 
plate is approached leads to a substantial decrease of 
the magnetic field in the vacuum and, correspondingly, 
the dipole energy. 

. Equations (1. 16) and (1. 21) make it possible to de-
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termine the dependence of the magnetization at the do­
main center on the period of the nonuniformity: 

32 ( 4n' ) A'A,'(O)""- t-rxk'---913" l'-,-k'L' . 
(1. 22) 

To specify the distribution of magnetization in the fer­
romagnet there now remains a single arbitrary param­
eter-the inverse period k of the nonuniformity, which 
can be found from the minimum of the energy of the 
crystal: 

0, 
a'<16(k, ;) > O. 

ak' 
(1. 23) 

By means of (1. 15)-(1.17) and (1. 22), we can repre­
sent the energy (1. 7) of the ferromagnet as a function 
of k in the form 

<16=- 3'pM,'V [A'A,.(O) (1 +_2_) 
2' l'-,-kL 

_ 5j3A'A~'(0) (_1_+_3_+ 27 )]. 
3·2 3ak' ;-rxk' 10ak'-; 

(1.24) 

We note that to obtain the expression (1. 24) it is neces­
sary to calculate the magnetization to order A5. In view 
of their unwieldiness, we have not given the - A5 correc­
tions to the magnetization. 

At the phase-transition point H =He (~= ~e), 

a<16(k,s) I = 0, 
ak H-H, 

a'<16(k, ;) I = 0 
8kZ H_Hc • 

(1. 25) 

From the system (1. 25) we find the field He at the phase 
transition and the period De of the nonuniformity: 

He=HA - 4nM, (~)'" =H .. - 2nM, Dc' 
L 1'-,- 1'-,- L" 

(1. 26) 

2n , 4n'I'a'!' 
Dc "" -ke = (411 u-,-aL') I., • -2rxk ' -

t" I>e- e - I'-,-'''L .. (1. 27) 

As can be seen from (1. 26), after the phase transi­
tion, He is displaced toward lower fields with decrease 
of the thickness of the plate, and the period of the non­
uniformity has the well known dependence D- Ll/Z. We 
note that (1. 26) coincides with the formula for He ob­
tained in the paper[10l of Goldstein and Muller, in which 
the boundaries of stability of the uniform phase in sam­
ples of finite size were determined. 

It follows from the requirement ~«4w, f3 that our 
treatment is valid for samples with thickness L» (wa/ 
J1. ~)11 z. 

Using the expressions (1. 22)-(1. 24) it is easy to ob­
tain the field dependences of the magnetization m .. , the 
period D, and the energy of the ferromagnet in the vicin­
ity of the phase-transition field He: 

4 (2a~) 'I, ( 7' 1'1£) m,(x=O; ;=0)=- - 1---
3 P 2'3' ~c ' 

. L 
D=Dc + 16n' 1'15, 

:J€ 2.110 V ( 161 1'15) c=---,,-(u£)' 1 +-6' -.- , 
v 5e 
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(1. 29) 

(1. 30) 
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m' z 

FlG. 2. Dependence of the magnetization of the ferromagent 
on the magnetic field: 1) m;(H) is the square of the magnetiza­
tion in the uniform case; 2) m;<X =0; z =0) is the square of the 
magnetization at the domain cen1er; 3) m;<X =0; z =L/2) is the 
square of the magnetization at the surface of the plate. 

where A~ = ~ - ~e = (He - H)/Mo• It can be seen from 
formulas (1.28)-(1. 30) that the small expansion param­
eter X2 is AV~e, i. e., the results obtained are valid in 
the region of magnetic fields in which A~« ~e. 

We note that the quantity m! has a linear dependence 
on the magnetic field near the transition point, but the 
magnitude of am!(z = o)/aH at H = He is greater than in 
the uniform case by a factor of .If. With increase of 
A~ (decrease of the magnetic field) the magnetization 
becomes linear in the thickness of the sample, and the 
rate of increase of the magnetization decreases at the 
center of the domain and increases at the edges of the 
plate (see Fig. 2). The period of the nonuniformity 
grows with decrease of the magnetic field. 

The susceptibility X of the system is defined by the 
equation Xlk = - a2~ /aHjaHk , from which, with the aid 
of (1. 30), we can obtain the discontinuities and field 
dependence of the longitudinal susceptibility: 

( 161 d;) 4 
Xyy=1x" 1+-;;:--33 -'-' dX"=-g,' 1.31) 

-;'c t'" 

From this it can be seen that the jump in the suscep­
tibility at the transition point does not depend on the 
thickness of the plate and is smaller by a factor of ! 
than in the phase transition in the infinite crystal. 

The susceptibility Xyy grows with decrease of the mag­
netic field, the rate of growth being - L. In the limit 
L - 00 the quantity SXy/aH - 00, which is equivalent in 
practice to the usual jump in the susceptibility. The 
dependence Xyy(H) is shown schematically in Fig. 3. 

2. SPIN·WAVE SPECTRUM IN A FERROMAGNETIC 
PLATE IN A TRANSVERSE MAGNETIC FIELD 

To determine the spin-wave spectrum in a ferromag­
netic plate in an external magnetic field perpendicular 
to the anisotropy axis, we shall use the Maxwell equa­
tions (1.3) and the equations of motion of the magnetic 
moment 

(2.1) 

together with the boundary conditions (1. 4). Here g is 
. the gyromagnetic ratio. 

In the vicinity of the phase transition (I ~ I «47r, /3) on 
the side of high magnetic fields (H>HC>, we write Eq. 
(2.1) in the form 
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w,h.=iwm .• -wo (a V'm, +~m,). (2.2) 

where wo=gMo and w is the spin-wave frequency. 

Substituting (2.2) into the Maxwell equations, we ob­
tain 

iPm a' (a') o'm 
w' --' + fl.L~wo' - a -_ - + 6 m,-4n~wo' --' = o. 

ax' ax' ax' az' 
(2.3) 

The solution of Eqs. (2.3) and (1.3) with the boundary 
conditions (1.10) will be sought in the form 

m,=(a cos qz+b sin qz)eu",. 

ie'" [ q ] m .• = --, w (a cos qz+b sin qz) + 4nwo -( -a sin qz+b cos qz) . 
fl.L~Wo k 

(2.4) 

Substituting the solution (2.4) into Eq. (2.3), we find 
the spectrum of the spin waves in the ferromagnet: 

(2.5) 

From the boundary conditions (1.10) there follows a 
second equation relating the spin-wave frequency to the 
wave vectors k and q: 

w'+fl.L~'Wo'(tg '/,qL-ctg '/,qL) -/l.L'~'wo'k/q=O. (2.6) 

Since q« k, we represent Eq. (2.6) in the form 

tg '/,qL=/l.Lk/q. tg '/,qL=-q//l.Lk. (2.7) 

whence it follows that 

nn ( 2) 
q=T 1- /l.L kL ' (2.8) 

where n= 1, 2, ... 

Equations (2.5) and (2.8) determine the dispersion 
equation of the spin waves in a ferromagnetic plate: 

wn'=pOlo'[4n'n'lk'L'+f,_(ak'-s)]. - (2.9) 

whence it can be seen that the functions wn(k) have a 
minimum at k = kn '" kern (Fig. 4). The values of wn at 
the minimum are equal to 

(2.10) 

where A~ = (H - He )/Mo. For the branch n = 1 the fre­
quency w - 0 as A ~ - 0, corresponding to instability of 

/jXggf----------T---'H 

HCJ HC2 Hcr HA H 

FIG. 3. Dependence of the susceptibility of the ferromagnet 
on the magnetic field: 1) susceptibility of a uniform ferromag­
net; 2, 3, 4) susceptibility of a ferromagnet with a nonuniform 
distribution of the magnetic moment; He =Hel(Ll); Ll >L2 > L 3; 
He(L _00) =HA-
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FIG. 4. Spin-wave spectrum in a 
ferromagnetic plate in a transverse 
magnetic field (H=He). 

the ferromagnet with respect to the appearance of a 
nonuniform state. 

Thus, the values obtained from the solution of the dy­
namical problem for the period of the critical mode and 
for the field at which the instability of the uniform state 
appears coincide exactly with the values found in the 
preceding section for, respectively, the period of the 
nonuniformity and the critical field at which the second­
order phase transition occurs. 

3. NONUNIFORM MAGNETIC STATE IN A 
FERROMAGNET NEAR THE CURIE POINT 

We shall consider a uniaxial ferromagnetic crystal 
in the form of a plane-parallel plate, with the crystallo­
graphic axis directed perpendicular to the surface of 
the plate. We write the free energy of the ferromagnet 
in the form 

F= S du {~a(nI)2+~?(Mx'+M.') 
~ 2 

61\1' HD' } 
+--[M'-2.1]'(Tl]+-8- , 

4.1102 :t 
(3. 1) 

where M( T) is the equilibrium value of the magnetiza­
tion at temperature T in the uniform case in the absence 
of a field, Mo = M( T= 0), 5 - Tel jJ.Mo is the exchange con­
stant and jJ. is the Bohr magneton. The other symbols 
correspond to those introduced earlier. The expression 
(3.1) is the expansion of the free energy of the ferro­
magnet in the order parameter M. [Ul 

We obtain the equilibrium distribution of the mag­
netization in the ferromagnet from the equation of state 

6F16)1=0 (3.2) 

and the Maxwell equations (1.3). It follows from Eq. 
(3.2) that 

HD=-aV'l\I+~ (l\I-M,p,) +6MMo-2(:\I'-.11'). (3.3) 

When (3.3) and (1.3) are taken into account, the ex­
pression (3. 1) takes the form 

(3.4) 

The free energy is a continuous function of the tem­
perature, and, therefore, it follows from (3.4) that the 
transition from the paramagnetic phase (M = 0) to the 
ferromagnetic phase occurs without a jump in the mag­
netization, i. e., such a transition is a second-order 
phase transition. 1) This can also be seen from the fact 
that the gradient energy and demagnetization energy are 
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proportional to the square of the magnetization (H D - M; 
cf. (1. 3)). Consequently, these terms can alter the co­
efficients of M2 (but not of M4) in the expansion of the 
free energy. Such a renormalization of the coefficients 
can lead only to a shift in the transition point, but can­
not alter the character of the transition. 

We shall confine ourselves to considering a strip do­
main structure near the Curie point. In the approxima­
tion ~«41T, (3, Eqs. (3.3) can be brought to the form 

(3.5) 
h,=-a V'm,-1m,+6m,', 

where 

m=:\lIl1fo, h=HDIMo, f=6ifI'(T)/Mo', 

and for a strip domain structure hy = my = O. Int12] it was 
shown that for 'f < f3 the magnetic moment changes in 
magnitude but not in direction, and therefore my = O. 

From (1. 3) and (3.5) we obtain an equation for m., 
determining the distribution of the magnetization in the 
sample: 

i)' ( a'm, _ ) a'm, 
f.lL- a--+sm,-6m,' -4n-a , =0. 

a~ a~ z 
(3.6) 

As can easily be seen, this equation coincides with Eq. 
(1. 9) for the distribution of m. near the phase-transi­
tion point with respect to the magnetic field, and, there­
fore, all the results can be obtained from the formulas 
of the first section by the replacement ~ -~, f3 - 25. In 
particular, the dependence of the Curie temperature Te 
on the sample thickness L has the following form: 

(3.7) 

where ~' = - aVaT at T= Te , and To is the Curie point 
in the infinite crystal. The period of the nonuniform 
state is determined by formula (1. 29), and the tempera­
ture dependence of the specific heat and the specific­
heat discontinuity at the Curie point are respectively 
equal to 

( 161 M) 
C=f'1C 1+-:::;-- , 

2'3' ;c 
2s"Mo'V 

!1C = Te. 
96 

(3.8) 

The specific heat of the ferromagnet behaves analogous­
ly to the longitudinal susceptibility Xyy near the phase 
transition in a transverse magnetic field. 

In conclusion we shall make certain remarks con­
cerning the applicability of the theory of phase transi­
tions in a ferromagnet of finite dimensions, developed 
above. The perturbation theory constructed is valid for 

(3.9) 

On the other hand, the whole treatment was based on the 
Landau theory of phase transitions, which is applicable 
for sufficiently large ~~ (~~» ~~f)' when the fluctua­
tions of the order parameter can be neglected. [13] . For 
a ferromagnet in a transverse magnetic field for T« Te , 
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estimates of the fluctuation2) give 

~ (T 2 d~~=- -) 
11'6 Tc 

For example, for the garnet Y2.6Gdo.3Pbo.1Fe3.SGaO.1012 
the parameters p- 35, 0- 3X 104, a -1. 5X 10-10 cm2. [5] 
Then 11~,-10-5 (TITe)2 and ~e -1O-4IL[cm] (1. 27). In 
this case, with the aid of (3.9) we can find the range of 
thicknesses L (10-5cm «L« (Te /T)2) for which our analy­
sis can be used. 

Because of the presence of fluctuations, the results 
obtained for the phase transition near the Curie point . 
are valid only for ferromagnets with long-range inter­
action. 

The authors are grateful to V. G. Bar'yakhtar and 
M. I. Kaganov for their interest in the work and valuable 
comments, and also to B. A. Ivanov and V. F. Klepikov 
for useful discussions. 

llInI3J it was concluded that a first-order phase transition that 
is almost second-order occurs in finite samples. This is 
connected with the fact that the nonuniformity of the magneti­
zation over the thickness of the plate was not taken into 
account in that paper. 

2)The zero-point oscillations give a negligibly small contribu­
tion ::..;,. 
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Directed collisions between indicator ions containing short­
lived nuclei and neighboring atoms in single crystals 

M. A. Krivoglaz and V. B. Fiks 

Metal-Physics Institute, Ukrainian Academy of Sciences 
(Submitted August 8, 1975) 
Zh. Eksp. Teor. Fiz. 70, 2189-2200 (June 1976) 

We consider the spectral distribution of 'Y quanta (or particles) emitted by short-lived excited (or 
compound) nuclei that move in a crystal and are produced in nuclear reactions induced by parallel beams 
of monoenergetic particles. By orienting the single crystal with respect to the beam it is possible to 
produce, with high probability, directed collisions between ions containing short-lived nuclei and 
neighboring atoms of the crystal. It is found that the velocity change due to scattering can alter the 
spectrum significantly if the lifetime T of the nuclei is comparable with the time of flight to the neighboring 
atoms. Directed collisions permit therefore observation of short-lived compound or 'Y-excited nuclei with 
T_1O- 16_1O- 14 sec and measurement of their lifetime. Possible applications of the directed-collision 
technique to the investigation of the local structure of crystals and of vibration dynamics are discussed. 

PACS numbers: 61.80.Ki, 23.20.-g 

A method based on controlled atomic collisions in 
single crystals has been proposed[l, 21to measure the 
lifetimes of ultra-short-lived nuclei and to analyze the 
structure of the crystal lattice. It is well known that the 
crystal lattice exerts an appreciable influence on the 
motion of fast charged particles, ions, and atoms, as 
well as on the character of many atomic and nuclear 

processes that occur in the lattice. [3] The ordered ar­
rangement of the atomic nuclei and of the electrons pro­
duces a large anisotropy of the electronic and nuclear 
stopping losses, producing relatively free "Channels" 
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in certain directions of the crystal, and practically 
blocking the motion in other directions. These orienta­
tional singularities of the particle motion manifest them-
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