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We use the equations of non-linear electrodynamics to formulate relations that enable us to determine the 
noise level and the intensity of the pumping wave in an inhomogeneous medium under conditions of 
convective parametric instability. Using these relations we study the effect of stimulated Raman scattering 
on the penetration of an electromagnetic wave into a rarefied inhomogeneous plasma. 

PACS numbers: 52.40.Db 

INTRODUCTION 

Parametric instabilities in an inhomogeneous plasma 
can be either drift (convective)U-61 or absolute[7-151 
instabilities. In the first case the departure of growing 
waves from the region where they interact resonantly 
with the pumping wave leads to the establishing of a 
stationary state. We can then determine not only the 
noise amplitude but also the way it varies with the in
tenSity of the pumping wave in an inhomogeneous plas
ma. In the present paper we consider how a decay
type parametric instability which occurs in a rarefied 
plasma-stimulated Raman scattering (SRS)-affects 
the penetration of the pumping wave. 

We use in the first section the phenomenological equa
tions of non-linear electrodynamics to formulate the ini
tial relations for a self-consistent determination for the 
noise level and the intensity of the pumping wave in an 
inhomogeneous medium. We determine in the second 
section, from the solution of the dispersion relation, 
the growth coefficients for SRS in a plasma. We obtain 
in the third section a non-linear differential equation 
to determine the pump wave intensity. We give in the 
fourth section the results of a numerical solution of 
that equation for a linear variation of the plasma den
sity. In the conclusion we discuss the application of 
the results to a laser plasma. 

We show in the paper that SRS has practically no ef
fect on the propagation of the pumping wave when its in
tenSity is small. When the intensity increases this 
effect becomes important. The distance over which 
the pumping wave can travel without practically chang
ing its amplitude is proportional to the wavelength of 
the incident wave and to the plasma temperature, and 
inversely proportional to the intensity. At large dis
tances the intensity of the pumping wave decreases with 
distance according to a hyperbolic law. We show that 
the nature of the wave penetration does not depend on the 
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steepness of the increase in density when the plasma 
density varies according to a power law. 

1. GENERAL RELATIONS 

1. We start our considerations with the equation for 
the electrical field strength E in an arbitrary material 
medium (61 

1 a'D 
rot rot E + 7---;)f = 0, (1. 1) 

where the induction vector D is connected with the field 
E by a non-linear material equation which in the qua
dratic approximation has the form (171 

D,(r,t)~ Sdr'j dt'{e,,(r,t;r',t')E;(r',t'} 

+ S dr" f dt" e",(r, t; r', t'; r", t"}E;(r', t'}E,(r", t") }; (1. 2) 

EfJ and E'JI are, respectively, the linear and quadratic 
permittivity tensors of the medium. 

We assume that the field in the medium is the sum 
of the field of a strong pumping wave Eo and of weaker 
fluctuation fields 5E: 

E(r, t} =E.(r, t} HE(r, t}. (1. 3) 

We substitute Eq. (1. 3) into Eq. (1.2) and average 
over a statistical ensemble. As a result we get for 
the pumping wave the equation 

E 1 a' st , , ( "}E (' ') 1 (J'D, (rotrot .},+--. dt dr £'; r,t;r ,t .; r ,t =-,-;--, ' c' at' __ c ut 

(1. 4) 

where the vector D determines the non-linear effect of 
the fluctuation fields on the pumping wave: 
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, " 
D,(r,t)= S dt'dr' S dtHdrHe",(r,t;r',t';rH,tH)<5Ej(r',t')5E,(rH,tH». 

(1. 5) 

We have dropped in Eq, (1. 4) the terms quadratic in the 
field of the pumping wave which are of no interest for 
the problems considered by us, 

Subtracting Eq, (1. 4) from the equation which arises 
when we substitute Eqs. (1. 2), (1.3) into Eq. (1. 1) we 
get an equation for the fluctuation fields. In the ap
proximation linear in the pumping wave field, it has the 
form 

(rot rot6E)i +~~ S' dt' dr' eij(r, t; r', t')bEj(r', t') 
c' i)t- _00 

1 8' ' " 
=--- Sdt'dr' S dtHdrHe··(r t'r' t"rH tH) 

CZ i) f- _"" _ "" 1)/ " , , 

X [Eoj(r', t')6E,(rH, tH) +6Ej (r', t')EOI(rH, tH)]. (1. 6) 

Equations (1. 4), (1.6) are the basis for studying the 
simultaneous change in the pumping wave and the 
fluctuation fields in the medium. 

2. We consider a medium the properties of which do 
not change with time, while spatially they change only 
along the x-axis (one-dimensional inhomogeneity). The 
permittivity tensors in Eqs. (1. 5), (1. 6) depend then 
on the differences of the arguments and on the variable 
x' . We shall assume that the variation with x' is a slow 
one and we use for the pumping wave and the fluctuation 
fields the geometric optics approximation 

(1.7) 

bEer, t) = 1:. f dOl S dk.l. ( 6E. (00, k.l.' x) exp [ -iwt+ik.l.r.l. +i j dx, kll .• (x,)] . . 
(1.8) 

where ko.L and koll=kn(wo, ko.L' x) are, respectively, the 
transverse and longitudinal (with respect to the x-axis) 
components of the wavevector of the pumping wave, the 
frequency of which is wo; the sum in Eq. (1.8) is over 
all possible modes of excited waves, and we have to 
determine the longitudinal components kll.",(w, k~, x) of 
their wavevectors. 

To do this we substitute expressions (1. 7), (1.8) into 
Eq. (1. 6) and we shall assume that only two fluctuation 
waves with frequencies wand Wo - ware coupled through 
the pumping wave. As a result we get 

M,,(w, k., x) 6E •. ; (00, k.l., x) 

=-'I,S", (00, k.l.' k'lI-kl:.,(w,-w); 00-00" k.l. -k,.l.' -kll~'(w,-w» 

X E,/6E.:, (00,-00, k,.L -k.l.' x)exp [i j dXI(k'lI-kll~,(OO,-oo)-kll .• (w» 1, 
(1. 9) 

where k .. = (ku kn ... (w», MIJ is the Maxwell tensor: 
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(1.10) 

e,j(w, k., x) = S dp J dT e,,(p, T, x)exp[iwT-ik.l.p.L -ikll .• (w)PIIl, , 
(1. 11) 

S,jI(W, k.l.' kll .• (w); 00', k.l." kll.,(w'» 

=e",(oo, k.l.' kll .• (w); 10', k.l." kll.,(w'» 

+e"j(oo, k.l.' kll .• (w); 00-10', k.l.-k.l.', kll .• (w)-k",,(w'», (1.12) 
~ ~ 

e'j' (00, k.l.' kll .• (w); 10', k.l." k ll ., (00')) = S dp J dT S dp' S dc' B",( T. p; T', p') 
o , 

x exp[iwT-ik.p+iw','-ik,p']. (1. 13) 

In deriving Eq. (1. 9) we neglected the x-dependence, 
due to the inhomogeneity of the medium, of the wave 
amplitudes, of the permittivities, and of the longitudinal 
components of the wavevectors. This neglect is justi
fied by the fact that the resonance interaction of a given 
pair of fluctuation waves with the pumping wave pro
ceeds in a range of x values with a width much smaller 
than the characteristic dimension of the inhomogeneity 
of the medium, and the scale along which the pumping 
wave amplitudes changes. [l,Z] We take this interaction 
into account by means of complex longitudinal compo
nents of the wavevectors and assume that the quantity 
liE determines the amplitudes of the fluctuation waves 
until they enter the resonance interaction region. In 
contrast to the work of other authors [1-6] in which the 
interaction of waves with normal (independent of the 
pumping wave) dispersion relations (weak parametric 
coupling) is taken into account through the slow de
pendence of their amplitudes on the coordinates, in our 
approach one can consider waves for which the effect of 
the pumping wave on the dispersion laws is not small 
(strong parametric coupling U8]). 

We perform in Eq. (1. 9) the substitution 

and we take the complex conjugate of the expression 
obtained: 

M,j' (100-00, k,.l. -k.l.' k ll ., (10.-00) )6E,:j(w,-w, kO,L -k.l.' x) 

=-'/,S,;, (100-00. k • .l. -k.l.' kOiI-kll~"(w); -00, -k.l.' -kll:.(w» 

USing Eq. (1.14) to get an expression for liE~ and sub
stitutingit into Eq. (1. 9) and using the definitions 
(1. 12), (1. 13) we get the relation 

n,M,,(w. k.l.' lell.(<o) )nj = - '/,IEo'l'[n.,n, 

X S,;,(-<O, -k.l.' kll,,(W,-<o)-k. lI ; 00.-10. kO,L-k.l.. k'I.'(<Oo-w»] 

X M,:C-l) (w.-w, k,.L -k.l.' k ll ., (00.-10) ) [n.qn,S PO' (10-10" 

k-'. -k • .l.' kll .• (w) -k,"; 00, k.l.. k ll .• (00» ], (1. 15) 

where Ml;l) is the inverse Maxwell tensor; nand 110 
are unit polarization vectors of the fluctuation wave of 
frequency wand of the pumping wave, respectively. 

By taking the logarithmic derivative of Eq. (1. 9)we 
can easily check that apart from small quantities (of 
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the order of the inverse of the dimension of the inho
mogeneity) in the interaction region the condition kOrI 

""kn,G(w)+k:,B(WO-W) is satisfied. Using that relation 
and the symmetry properties of the tensors SU9] 

S".(w, k; w', k')=-S.;;(w', k'; w, k)=-Sj,,(w-w', k-k'; w, k), 

(1.16) 
we can reduce Eq. (1.15) to the form 

(1. 15') 

where 

k=(k_L> k,I.'(w, kJ.' x», Ap=n.,n,Sp,,(w-w., k-k.; Cll, k). 

The dispersion relation (1.15') enables us to determine 
the quantity k., II • 

3. We now consider Eq. (1. 14) for the pumping 
waves. 1) We substitute Eq. (1. 8) into Eq. (1.5) and 
use the notation (1. 12). As a result we get 

D,(r,t)= I:f dw,S dkll.{dW2S dk2J.{ e .. (w,+w2,k,.+k,,; w2,k,,) 
a,T 0 0 

x exp [ -it(W,+W2) +irJ. (ku+k,J.) +i f dx,(kw,.(w,)+kll ,T(W2» ] 

X (6E._,(w" kll.)6E y,,(W2, ku) )+e",(w,-Cll" k,.-k,,·; -W" k 2y ') 

. 
xexp [ -it(w,-w,) +irJ.(k'J.-ku) +is dX,(kll,.(w,)-k;,y(w,»] 

(1. 17) 

Owing to the pumping wave, fluctation waves with dif
ferent frequencies are not independent, but their am
plitudes are interrelated by Eq. (1. 9). Just such 
coupled waves interact with the pumping wave, diminish
ing its energy, and in Eq. (1. 17) the average of the 
product of the amplitudes is given by the expression 

X Eo,' exp [ is dx,(k.lI-k,;,,(Cll.-W)-kil,.(w»] 

X (6E;,(Wo-Cll, koJ. -k.L) 6E;,l (w', k,L'» 

-hi: ,(Wo-w') ) Eo': exp [i f dx, (-k.lI+k",,(wo-w') +k,;,y(w') ] 

(1. 18) 

which is obtained from (1. 9). We have already noted 
that, in the way we have stated the problem, the ampli
tudes in Eq. (1. 18) determine the fluctuation fields un
til they interact with the pumping wave. We shall as
sume them to be stationary and uniform random func
tions and we use the usual averaging procedure: 

We substitute this relation in Eq. (1. 18) and the re
sultant expression in Eq. (1. 17). We then get for the 
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quantity D the same space-time dependence as for the 
pumping wave field in Eq. (1.7). 

We use the usual rules of the geometric-optics ap
proximation[l1] and Eq. (1.7) to transform the left
hand side of Eq. (1.4). Assuming the pumping wave to 
be transverse, we get in zeroth approximation the dis
persion equation 

(1.19) 

where et ... is the real part of the transverse permittivi
ty. Equation (1.19) determines how the longitudinal 
component kOn of the wavevector changes with the x co
ordinate. 

In the first geometric-optics approximation we get an 
equation for the slowly varying amplitude Eg. Taking 
into account in Eq. (1. 17) only terms which describe 
the decay of the pumping wave into two waves we get 

d k E '+k dE.;' w.', "( • d;" 'Y OJ -'"~+'7e' w.,x)Eo; 

+kll .• (Cll); w, k,L, ku.'(w) )M,~-I)(w.-w, k.,L -k,L, kll,.(w.-w) 

X S:p,(w-Cll.,k.l.-kO.l., kn .• (w)-k. lI ; w, k,L,kll .• (w» 

X E • .' (6E,t'lEm) .\, exp [ -2 f dx, 1m kll ,. (w, x,) ], (1.20) 

where E tr" is the imaginary part of the permittivity. 

Multiplying Eq. (1. 20) by Egr and the complex con
jugate equation by E~, and taking the difference of these 
expressions we get an equation for the intensity of the 
pumping wave. When the condition k OrI "" k., G(w) + k:, B(WO 
-w) is satisfied we can use Eqs. (1.16) to write this 
equation in the form 

'W • 
w. Jd J dk 

{}(w,'e')/{}w •• w ,L 

Xexp [ -2 j dx, 1m kll (w, k,L, x,) ] (6E') _,k, 

X Im{A .. (w, k)M,~-1) (w-w.,k-k.)Ap(w, k)}, (1. 21) 

where we have dropped the superscript tr of the trans
verse permittivity and introduced the notation 

1 

If we neglect non-linear absorption processes, the 
tensor (1.12) is imaginary and we can use Eq. (1. 15) 
to transform Eq (1.21) to the form 

(1. 22) 

Determining the quantity k. from Eq. (1.15') and sub
stituting it into Eq. (1. 22) we obtain thus a non-linear 
equation describing the change in the energy of the 
pumping wave which passes through an inhomogeneous 
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medium. 

When y = 0 and in the weak parametric coupling ap
proximation Eq. (1. 22) satisfies the conservation laws 
for energy fluxes and number of quanta. (21) We can 
check this using the relation 

(liE').,kJn,M'j(w, k)l1j]exp [ -2 f dx, 1m k,,(w, x,) ] 

= (liE') •• -o,k .. -kJn/ M,j(Olo-W, ko-k)n;'] 

X exp [ --2 f dx, 1m k" (wo-w, x,) ] 

(n' is the polarization vector of the wave with fre
quency Wo - w) which follows from Eq. (1. 14) and the 
relation 

which is valid under the conditions of weak parametric 
coupling. 

An equation for the pumping wave in a plasma was 
derived in [22,23) just by using the energy flux conserva
tionlaw. 

2. GROWTH COEFFICIENT FOR SRS IN A PLASMA 

1. The tensor (1. 12) has been well studied (19) for a 
rarefied plasma. In the limit when wo> wand the phase 
velocities of the high-frequency waves are large com
pared to the thermal velocities of the particles, it has 
a particularly simple form (24) and the vector A equals 

A=_i_e _, (ku)uoliE,,'(w.k). 
mw n-

(2.1) 

where DE! is the electronic contribution to the longi
tudinal permittivity. (25) 

We shall be interested in the change in the intensity 
of the pumping wave due to its decay into a longitudinal 
Langmuir wave (frequency w) and a transverse wave 
(frequency Wo - w). This process is often called stimu
lated Raman scattering. The longitudinal part of the 
Maxwell tensor on the left-hand side and the transverse 
part of the inverse Maxwell tensor on the right-hand 
side of Eq. (1. 15') correspond to this process. Split
ting off these parts and using Eq. (2. 1) we get from 
Eq. (1.15') for the determination of k,,('.c) 

c'(ko-k)' 
e'(w.k) [E"(wcw,ko-k)- (w,,-w)' ] 

= k'lvel'[(ko-k)Do]'[6e.'(w k)]' 
4w,'(ko-k)' " , 

(2.2) 

where v E = eEg I mwo; € I and € tr are, respectively, the 
longitudinal and transverse permittivities of the plas
ma. (25) In obtaining Eq. (2.2) we neglected the imagi
nary parts of the permittivities. 

The decay interaction of the waves corresponds to the 
solution of Eq. (2.2) using perturbation theory with re
spect to the field of the pumping wave (weak parametric 
coupling of the waves (18).2) In the zeroth approxima
tion, neglecting the pumping wave, we get the dispersion 
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laws for the Langmuir and the scattered transverse 
waves. The first of these, E I (w, k) = 0, for a plasma 
has the form 

(2.3) 

where w~= (47re2N(x)lrn)I/2 is the plasma frequency 
which depends on the coordinate through the electron 
concentration N(x); v Te = (Telm)I/2 is the electron ther
mal velocity which we assume to be constant. Equa
tion (2.3) determines how the longitudinal component 
kl~ll of the Langmuir wave wavevector changes with the 
coordinate. 

For normal incidence of the pumping wave onto the 
plasma (ko~ = 0) the dispersion equation for the scattered 
wave has the form 

(Wo-w)'=wp'(x) 

+c'[kl.'+ (kt' (x) -ko(x) )']. (2.4) 

Using the dispersion law w~= w~+ k~(X)c2 for the pumping 
wave to eliminate a number of terms in Eq. (2.4) we 
get the relation 

kl. '+kll(O). (x) -2ko (x) kiO) (x) + (2wwo-w') I c'=o, (2.5) 

which determines essentially the connection between 
the space and time variation of the high-frequency pres
sure force produced by the pumping and wave and the 
scattered wave. 

The resonance interaction between the three waves 
proceeds in the vicinity of the point Xo where for a given 
frequency wand transverse wavevector component k~ 
the quantities k,:O) and k,:ll, given by Eqs. (2.3) and 
(2.5), are the same. One checks easily that this pOint 
is determined by the relation 

k,' = w'-w/ (xo) _ c' [ w'-:wwo + w'-w«xo)]' 
- 3v,,' 4(w,'-w p'(x,)) c 3vr, 

(2.6) 

In the limit wo> w which is of interest to us it follows 
from Eq. (2.6) that 

(2.7) 

where ko"" wole. 

Knowing the point Xo we easily get the quantity k,~/)(xO) 
from Eq. (2.5): 

(2.8) 

Equation (2.8) determines in wavevector space a sphere 
of radius (k~ - 2 Wo w~ e-2)1/2 and with a center which lies 
on the k" axis in the point k o • The upper part of the 
intersection of this sphere with the central plane is 
shown in Fig. 1. 

We note that Langmuir waves with wavevector end
points which lie on the hemisphere which is furthest 
away from the origin correspond to transverse waves 
which are scattered backward, while Langmuir waves 
with wavevector endpoints which lie on the hemisphere 
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FIG. 1. The upper part of the 
central section of the sphere in 
wavevector space on which the 
decay conditions for Langmuir 
waves are satisfied. 

closest to the origin correspond to waves which are 
scattered forward. 

2. To determine the corrections to the longitudinal 
wavevector component Ak in the vicinity of the point Xo 

we SUbstitute in the left-hand side of Eq. (2.2) kll(x) 
= k~ I) (x 0) + Ak (x - x 0) and in the longitudinal and the trans
verse permittivities we expand the plasma frequency 
in a series. Using Eqs. (2.3) and (2.4) we get as a 
result 

.lx 6kn")v:,w/(x,) 
e'(w,k,x)=- L(x,) - w' .lk, 

e' (ko-k)' 
€',(wo-w,k,-k,x)----., 

(w,-w)-

1 [ilXk m,w '(x) = ____ iI P , -2c'.lk(k,-k <") Te'(.lk), ] 
(w,-w)' k,L(xo) II , 

(2.9) 

(2. 10) 

where Ax=x-xo; the scale length of the inhomogeneity 
of the plasma has the form 

L( ) _ '( ) /dW/(X,) 
Xo -Wp Xo ---. 

dx, 

We substitute Eqs. (2.9), (2.10) into Eq. (2.2), drop 
the superscript of the quantity kl:/), and introduce the 
dimensionless quantities 

X=.lk/k" .lx/L=!l;. 

For the determination of X we get 

(2.11) 

where 9 is the angle between the polarization vector no 
of the pumping wave and the wavevector of the scat
tered wave ko - k. 

3. It is clear from Eq. (1. 22) that amplification of 
the fluctuation waves occurs when 1m kif < 0. We call the 
quantity 1m kll /ko in that case the local growth coeffi
cient and determine it from Eq. (2.11). We consider 
first the case 

(ko-kil)lk,>X, (2. 12) 

which corresponds to the scattering of waves through 
an angle which is not close to 1T/2 (see Fig. 1). In that 
case Eq. (2.11) becomes quadratic and the growth co
efficient which interests us has the form 

ilk 1'3w p lvElsin8(k.L'+k,,')'I. ( (..\6)')';' 
Tm-= Imr.=- 1---

Ie., . CL'r,ko[k,,(ko-k il »)'" C~;,)" (2.13) 

(2.14) 
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It is clear from Eq. (2. 13) that the growth coefficient is 
non-vanishing only when I A~ I < A~o and for ko - kif> 0, 
when we have forward scattering. The nature of the 
instability which leads to backward scattering depends 
on the boundary conditions. [2,14] We shall discuss be
low the problem of how to take that instability into ac
count when it is a convective instability. 

Using Eq. (2. 13) we find the total growth coefficient 
x: 

<1h 

x=- J d(il£) 1m X(ils)k,L 
It (k.L'+k ll') IVBI'L sin' 8 

8[3k ll'vr.'lk,+e'(ko-k ll ) J 
(2.15) 

-"" 

where the quantity k. is given by Eq. (2.8). Having 
available an expression for X we easily find from in
equality (2. 12) the conditions for the validity of Eqs. 
(2.13), (2.15): 

(2.12') 

We now turn to the case when the inequality holds which 
is the opposite of (2.12). Equation (2.11) is cubic and 
when ko = kif it takes the form 

This equation has a solution with a negative imaginary 
part only when - A~' < A~ < 0, where 

(2. 16) 

and the local growth coefficient is equal to 

I /3(WP'(k.L'+k/llt'E I'Sin'O)'" 
. ill X = - I; 6k 'e'v' 

o T, 

x {[ 1 + (1 + (:;:,) }'] 'I. _[ 1-( 1 +( ~:,J),,'] 'I,}. 

Using that expression we find the total growth coeffi
cient 

o 

x=- J d(ils)Imx(ils)k,L 
It (k.L'+k,,') IVEI' Lsin'8 

:('·36/;0L" 
T, 

(2. 17) 

When kll = kL = ko (see Fig. 1) we find from Eq. (2.17) 
an expression which differs by a numerical coefficient 
- 1 from the result obtained in (3) from the solution of the 
set of equations for parametrically coupled waves. 

3. EOUATION FOR THE PUMPING WAVE 

1. We have established in the preceding section that 
a Langmuir wave with a given frequency wand trans
verse wavevector component kL interacts resonantly 
with a pumping wave only in a narrow neighborhood 
(see Eqs. (2.14), (2.16)) of the point Xo determined by 
Eq. (2.6) or (2.7). This means that in each point the 
pumping wave interacts with Langmuir waves from a 
narrow frequency range Aw (for a given kL), the width 
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of which is determined by the size of the interaction 
region. It is therefore convenient to use Eq. (2.7) to 
change in Eq. (1. 22) from an integration over w to an 
integration ove r t:.x = x - x 0: 

ow I dwp(xo) wp(xo) 
dw=- d(Llx) ""--d(Llx)=-2L( )d(LlX). 

Ox ., dx, x, 

Using this relation and also Eq. (2.9) for the longitu
dinal dielectric permittivity we get from (1. 22) 

d w'S S -(vW)+2yW=-- d(Llx) dk.L(1lE') •. k 
dx 2n p , 

dw p 6k"VT: [ •• ] 
X----ImLlk(,h)exp -2Sd(Llx,)ImLlk(Llx.) , (301) 

dx wp 2 

where we have dropped the index of the coordinate Xo 

and where the integration over Il.x is between the 
boundaries of the resonance interaction region. 

We shall assume that when the fluctuation waves 
enter the resonance interaction region they have ther
mal amplitudes. In that case 

(6£') = (IlE'). =_T_~= Twp(x) 
•. k.L awl ak ll (2,,)' ow (2,,) '3kIlV~, 

(3.2) 

We integrate over t:.x in Eq. (3.2) and using Eq. (3.2) 
we get 

d w,T S -(vW)+2yW=---- dk.L(e"-1), 
dx 2(2,,)'L 

(3.3) 

where the quantity )0( for different values of k~ is given 
by Eqs. (2.15), (2.17). We note that although Eq. 
(2. 17) was obtained under the condition ko = kll we shall 
assume that it remains valid also in a narrow range 
with width 

(region I in Fig. 1). 

2. We introduce a polar system of coordinates in 
wavevector space with an angle cp which is reckoned 
from the direction of the vector no. Using Eq. (2.8) 
we then get 

sin' 9=sin' CP+l1' cos' cp, 

where, if we neglect small quantities of order wp/wo, 

(3.4) 

We substitute Eqs. (2.15), (2.17) in Eq. (3.3) and 
use (3.4) to change from integration over k~ to integra
tion over 1/. As a result we get, neglecting the linear 
damping of the pumping wave, 

d moT 2n: 1 

dx(vW) =- 2(2n)'L(x) Sdcp S d'11][exp[2a(sin' CP+'1' cos' cp) ]-1], 
o 0 

(3.5) 
where 
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., ('1la) '-1 
when sm' 'P < 1-1]' ' 

('1la) '-1 
when sin' cp > --'-'--'--

(3.6) 

(3.7) 

We have used the following notation in Eqs. (3.6), 
(3.7): 

(3.8) 

Using Eq. (3.6), (3.7) we can integrate over cp on the 
right-hand side of Eq. (3.5): 

d ]"woko'n 
-(vW) =- ---(1,+/2-1), 
dx 2L(2,,)' 

(3.9) 

where 

- 1 S· [ 2p ,] [2" . , ] J, = - d1] 1]/0 -, (1-1]) (1-11-) exp -. -, (1-11) (h1r) 
n 2-·3 2'·3 , 

.{ [( ('1 /a )'-J )]} X 2,,-4arcsin min, 1-'1' ; J , (3.10) 

[ ( ('1la)'-1 )] 
. X 4 arcsin min 1-11'; 1 , (3.11) 

10 is a modified Bessel function of order zero. 

In a rarefied plasma (wI> < wo) and for a relatively low 
intensity of the pumping wave (IvEI <vTe) the quantity a 
given by Eq. (3. 8) is much less than unity. We shall 
assume that when 

Z = ('1la)3-1 < 1 
1-11' 

we can neglect arc sinz in Eqs. (3.10), (3.11). This 
leads to the result that the integrand (3. 10) is non
vanishing in the interval O<1/<a and the integrand (3.11) 
in the interval a< 1/< 1. 

3. When a< 1 and ~> lone can evaluate the integral 
(3.10) using for the Bessel function the well known 
asymptotic expression which is valid for large values 
of its argument. As a result we have 

(2"'·3),/' . ( 4p ) [ . ( 4~a ) ( 4. a:> )] J,=--_-exp -- J-exp --- 1+-- . 
16]1" If" 2'·3 2:):2 ·3 

(3. 10') 

To estimate the integral (3.11) for ~> 1 we split the 
integration domain into two parts. In the interval ~/ 
(Yo+ M> 1/> a we use the asymptotic expression for the 
Bessel function, while we use a series expansion in 
the interval 1> 1/> ~/(Yo+ ~). The contribution from the 
first interval is well defined and for ~ > 1 + ayo it is equal 
to 

J _ (1+a yo )'./' _ [~]( + (1+ayo) (1+'I,ayo) ] ,- ~p a . 
/2:t Yop!' l+ayo 2;310 

(3.11') 

Using the approximate expressions for the integrals 
(3.10') and (3.11') we write Eq. (3.9) in the form 

dy koro {(2-3)'" ( 4i.y ) 
--=--'--exp -- X 

d'§ 48/.(s) Jbb(/.y)" 2 '-3 
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FIG. 2. Change in the intensity of the incident wave y =1Tvj.1 
12v~. with coordinate ~ =koL. The dashed curve is constructed, 
using the approximate Eqs. (4.5) and (4.7) for Yo = 0.1. 

x [ 1 - exp (_ 4I'AY'/') ( 1 + 4I4AY'" )] 
2'1'·3 2'1'·3 

+. (1+Wyoy'I,)'/. ( 2YA )[ 'I + (1 + Wyoy'I,) (1+'I,l'loy'I,) ]} 
, exp --- I'y' 

l'2n 'Yo (YA)" 1+l'loy'I,. 2YAlo ' 

(3.12) 

where ~ = kox, 

nlvEl' 
y = 12v' ' A=koL(t) 

T. 

00.' (t) ( 1200.' (t) ) 'I. e' 
----':...,..:-.-,I'(s)= --- ,ro =-

doo.'(s) Ids nooo' me' 

(3.13) 

If we specify the manner in which the density changes 
and solve Eq. (3.12), we can determine how the in
tensity of the pumping wave decreases due to stimulated 
Raman scattering when it penetrates into the plasma. 
We emphasize that Eq. (3.12) is applicable only for a 
rarefied plasma (wo>2w~ when 1J.3<3/1T and for a suf
ficiently high intensity of the pumping wave (y;\> 1 
+ IJ.Yoyl/3). 

It was shown in U ,2] that when the instability which 
leads to backward Raman scattering is convective in 
character the growth coefficients are the same as 
the corresponding expressions for forward scattering. 
To take into account backward scattering we must thus 
double the right-hand side of Eq. (3.12). 

4. LINEAR DENSITY PROFILE 

1. We consider a linear increase of the plasma 
density with the coordinate, N= ax, where a is a con
stant coefficient. We get from Eq. (3. 13) 

(4.1) 

We substitute these relations into Eq. (3.12) and write 
it in the form 

(4.2) 

where we have assumed that yp l+toYo(y~)1/3. 

Equation (4.2) was solved with an electronic computer 
for the following plasma parameters: T= 1 keY, vTa 
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= 1. 3x 109 cm/s, 1'0= 200, k o= 6X 104 cm-l (this corre
sponds to the wavelength of a neodymium laser), Wo 

= 1. ax 1015 s-t, ro = 2. ax 10-13 cm. The solution is valid 
for IJ.< lor 

(4.3) 

which follows from the condition that the plasma density 
be small compared to one-fourth the critical density. 
For the employed parameters, the quantity y and the 
radiation energy flux q (in W/cm 2) are connected by the 
relation q = 1. 7X 1016 y. 

We give in Fig. 2 the behavior of y(~) obtained for dif
ferent intensities of the incident wave (y(O) = 0.3; O. 1; 
0.01; or q(O) = 5x 1015, 1. 7x 1015, 1. 7x 1014 W/cm2) and 
for different steepnesses of the increase in density 
(to = 0.2, O. 1, 0.05). It is clear from the curves that 
the intensity of the pumping wave remains practically 
unchanged up to a well defined value ~ = ~l' where the 
quantity ~1 is smaller the larger the intensity of the 
incident wave. When ~> ~1 there occurs a comparatively 
fast decrease in the intensity . Moreover, it follows 
from Fig. 2 that the penetration of the wave is inde
pendent of the steepness with which the plasma density 
increases. For a smoother increase the fall in the in
tenSity occurs at lower densities. 

2. The parameters for which Eq. (4.2) was solved 
are typical of many experiments with laser plasmas. (27) 

In that case one can use an approximate analytical solu
tion of Eq. (4.2). 

When toyo> 1 the first term in the braces on the right
hand side of Eq. (4.2) is the main one. In the range of 
values (y~)4/3> 1/to this term can be Simplified and the 
equation takes the form 

dy = 

ds 
(4.4) 

The parameter to does not occur in Eq. (4.4) and its 
solution is therefore independent of the steepness of the 
density increase. 

The right-hand side of Eq. (4.4) contains the small 
factor koro. The derivative dy/d~ is thus small and 
the function y equals its boundary value Yo until the 
other factors occurring on the right-hand side become 
sufficiently large. For fixed Yo and increaSing ~ the 
exponent is the fastest growing factor and it cancels 
the small factor when 

1 1 
s,,,,-ln-k-· Yo oro 

(4.5) 

Hence, using Eq. (3.13) to reintroduce dimensions we 
have 

12v:. ( me' ) x,"'--""::":""-ln - . 
kon IVE' (0) I koe' 

(4.6) 

When P ~1 the function y decreases. The increase in 
the argument is then cancelled by the decrease in y so 
that the index of the exponential on the right-hand side 
of Eq. (4.4) remains almost constant (y~ = const). 
Hence we get, using Eq. (4.5), 
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(4.7) 

In Fig. 2 we have indicated by dashes the curve con
structured using the approximate Eqs. (4.5) and (4.7) 
for Yo = o. 1. It is clear that it agrees rather well with 
with the results of the exact solution of Eq. (4.2). 3) 
Comparing Eqs. (4.5) and (4.3) we easily find the value 
Yo for which the pumping wave reaches a quarter of the 
critical density without change in intensity: 

(4.8) 

3. We have made a number of assumptions that can 
be spelled out more concretely and can be verified 
for a linear density profile. 

A. The width of the resonance interaction region 
was assumed to be small compared to the characteris
tic scale length of the plasma inhomogeneity. For the 
parameters considered the change in the intensity of 
the pumping wave is determined by scattering at an 
angle close to 1T/2 and the width of the interaction region 
is given by Eq. (2.16). The assumption made by us 
then reduces to the inequality 

6;" 12y'to -'. (4.9) 

B. When deriving Eq. (1. 15') we neglected small 
terms of order (ko L)"l. The correction to the longi
tudinal component of the wavevector Il.k/ko must thus 
be larger than these dropped terms. Using the ap
propriate solution of Eq. (2.11) we get the inequality 

(4.10) 

C. We used the assumption that the amplitude of the 
pumping wave was constant over the length of the inter
action region. Requiring that the width determined by 
Eq. (2.16) be small compared to the distance over which 
the intensity of the pumping wave decreases by a factor 
two, we get by means of Eq. (4.7) 

(4.11) 

D. When evaluating the integrals (3.10) and (3.11) we 
assumed that a< 1. For a linear law for the change in 
density this inequality can be changed to the form 

(4.12) 

Using for the function y(~) the approximate expression 
obtained above, one can check that for the values of the 
parameters to and Yo considered by us inequalities (4.9) 
to -(4. 12) are satisfied. 

4. We elucidate the physical reason for the fact that 
the decrease in the wave intensity due to the stimulated 
Raman scattering is independent of the steepness of the 
increase of the plasma density. The growth coefficient 
for the Langmuir and the scattered transverse waves 
characterizes the energy lost per unit length by the 
pumping wave. This coefficient is larger the larger 
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the distance over which the waves interact, i. e., the 
less the plasma density changes per unit length. How
ever, the same change in density is less important 
when it comes to disturbing the resonant interaction in 
a dense plasma and more important in a rarefied 
plasma. The growth coefficient and hence also the 
damping of the pumping wave is thus determined not by 
the absolute but by the relative change in the plasma 
density per unit length. For a linear change of density, 
as well as for any power law, this relative change is 
constant. The decrease in the intensity of the pumping 
wave proceeds thus according to the same law regard
less of the steepness of the increase in the density. 

CONCLUSION 

From the considerations given here it follows that: 

1. The intensity of the pumping wave in a rarefied 
inhomogeneous plasma (wo> 2wp) starts to decrease due 
to stimulated Raman scattering at a well defined depth 
(Eq. (4.6» which is inversely proportional to the in
tensity of the incident wave. Moreover, at distances 
of the same order of magnitude, the intensity of the 
pumping wave decreases inversely proportional to the 
coordinate. 4) 

2. A quarter of the critical density, where parametric 
absorption processes are possible, [10. l1,l2,23J is reached 
by a wave with an intensity less than the value given by 
Eq. (4.8). For parameters which are characteristic 
for many experiments with a laser plasma (T= 1 keY, 
ko = 6 X 104 cm-1) this intensity is approximately equal to 
3x 1014 W/cm 2. 

3, The law for the fall in the intensity of the pumping 
wave when the spatial change in the plasma density is 
slow is the same as for a faster change in the density. 
Therefore, the steeper the fall in the plasma density, 
the less important is SRS. And, on the other hand, 
Raman scattering must manifest itself particularly 
strongly in a rarefied plasma. It is possible that the 
results oft27J are connected with this; in that paper a 
stronger scattering of the second laser pulse was ob
served when compared to the scattering of the first 
one. 

The model considered by us contains a number of 
assumptions. One of them is that the plasma is un
bounded in directions at right angles to the propagation 
of the pumping wave. Allowance for the fact that the 
plasma is bounded leads, apparently, to a diminution 
of the effect of SRS on the propagation of the pumping 
wave. 

We express our gratitude to L. M. Anosova for per
forming the numerical calculations and to V. P. SHin 
for a number of hints. 

I)A similar derivation for a homogeneous bounded plasma can 
be found in [201. 

2) Andreev[261 has studied SRS in a uniform plasma in the strong 
wave coupling approximation. 

3)For any power-law change in the density Ncx~n the nature of 
the penetration of the pumping wave into the plasma remains 
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the same as for a linear layer. We must in that case in 
Eqs. (4.5), (4.7) replace ~ by Un. 

(lThe expressions obtained by us for the dimensions that 
characterize the change in the intensity of the pumping wave 
differ from the estimates in131. 
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Theory of nonuniform magnetic states in ferromagnets in 
the vicinity of second-order phase transitions 
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(Submitted June 24, 1975; resubmitted January 26, 1976) 
Zh. Eksp. Teor. Fiz. 70, 2178-2188 (June 1976) 

A perturbation theory is constructed in a small parameter determined by the degree of closeness to a 
second-order phase-transition point. This makes it possible to take the demagnetizing field into account and 
to find all the quantities characterizing the magnetic-moment distribution, with any prescribed degree of 
accuracy in powers of the small parameter. It is shown that strong correlation effects lead to a nonuniform 
distribution of the magnetization over the thickness of a ferromagnetic plate. The character of the phase 
transition to the nonuniform state in finite samples in the vicinity of second-order phase transitions (i.e., 
near the Curie temperature and the phase-transition point with respect to the magnetic field) is investigated 
in detail. It is proved that, in ferromagnets of arbitrary shape, the energy of the demagnetizing field does 
not change the character of the phase transition. 

PACS numbers: 7S.30.Jy 

INTRODUCTION uniformly magnetized phase domainS, separated by nar
row intermediate layers inside which the magnetization 
vector rotates through 1800 .[1] In this case the energy 
of an intermediate layer can be regarded as the surface 
energy, and the equilibrium configuration determined 
from the minimum of the energy of the intermediate 
layers and the magnetic dipole energy. The magnetiza-

It is well known that, in samples of finite size, a non
uniform distribution of the magnetization arises simUl
taneously with the appearance of the spontaneous mag
netic moment. Far from the transition point the mag
netic-moment distribution consists of an alternation of 
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