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Quasilinear relaxation of a beam of fast ions in the 
tokamak 
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Quasilinear relaxation of a beam of fast ions produced in a tokamak upon injection of a beam of fast 
neutral atoms is investigated theoretically. Relaxation of this type is assumed to be due to interaction 
between the ions and Alfven waves. A beam moving along the magnetic field is considered. The shear of 
the magnetic force lines is neglected. It is shown that under these assumptions the quasilinear relaxation is 
much more rapid than the Coulomb relaxation due to pair collisions. It is concluded that the concept of a 
"two-component tokamak," which is based on the assumption of Coulomb relaxation of the fast ions, calls 
in general for revision. 

PACS numbers: 52.40.Mj, 52.55.Gb 

1. INTRODUCTION 

According to pre~ent-day concepts, one of the main 
methods of obtaining a plasma with thermonuclear pa
rameters in a tokamak is to inject a beam of fast neu
tral atoms (see, e. g., the reviews of Artsimovich[lJ 
and Furth[2J). It is therefore important to study the dy
namics of fast ions produced by ionizing these atoms, 
and in particular to study the relaxation oOheir thermo
dynamic non-equilibrium (non-Maxwellian) velocity dis
tribution. 

The velOCity relaxation of fast ions in a tokamak has 
been the subject of many theoretical papers (reference 
to which can be found in[l,2J). Common to most hitherto 
performed theoretical investigations of the velocity re
laxation of fast ions in a tokamak is the assumption that 
the only cause of this relaxation are the Coulomb col
lisions. One of the essential consequences of these in
vestigations is the concept of the possibility of produc
ing a so-called "two-component" thermonuclear tokamak 
reactor, i. e., a tokamak reactor whose plasma con
tains ions of two groups, "slow" (i. e., ions of the fun
damental plasma component, obtained for example by 
Joule heating) and fast (injected) ions. The basis for 
this concept is the fact that the time of the Coulomb re
laxation of the fast ions turns out to be just as long as 

1123 SOy. Phys. JETP, Vol. 43, No.6, June 1976 

the characteristic operating time of the two-component 
tokamak reactor. 

It is clear from this that the concept of the two-com
ponent tokamak reactor may turn out to be untenable if 
it turns out that the distribution function of the injected 
ions is unstable and that the velocity relaxation of the 
ions, due to the reaction of the growing nOise, turns out 
to be faster than the Coulomb relaxation. It is there
fore important to carry out a thorough analysis of the 
instability of the ion beams and the associated pro
cesses of non-Coulomb relaxation. The latter call for 
further development of turbulence theory, particularly 
the quasi-linear theory. 

Until recently, the linear approximation of plasma
oscillation theory has revealed no instabilities present
ing any danger whatever to the problem of the two-com
ponent tokamak reaction (see, e. g., the article of 
Cordey and Houghton[SJ and the references cited there
in). The problem of the instability of ion beams in a 
tokamak was considered recently more fully, with al
lowance for the toroidal character of the magnetic field 
and the nonpotential character of the perturbations. [.J 
It was shown there that fast ions injected in a tokamak 
can lead to a buildup Alfven waves. The purpose of the 
present paper is to investigate the quasi-linear relaxa-
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tion of fast ions interacting with the Alfven waves ex
cited by them. It will be shown below that the quasi
linear relaxation due to the Alfven instability is much 
faster than the Coulomb relaxation. At the character
istic parameters of tokamak reactors, the ratio of the 
relaxation times may amount to three orders of mag
nitude. The possible consequences of the observed 
anomalously fast relaxation of the ion beam for the 
problem of the two-component tokamak are discussed 
in the conclUSion of the paper. 

2. QUASI-LINEAR APPROXIMATION EQUATIONS 

We represent the fast-ion velocity distribution func
tion F(v) in the form of two parts, averaged over the 
oscillations, F, and perturbed, i, F=F+i. We as
sume that the beam-particle velocity averaged over the 
oscillations is directed along the equilibrium magnetic 
field Bo, vo=vneo, where eo=Bo/Bo (this corresponds to 
the case of longitudinal injection). Under this assump
tion, F is a function of two variables: the time f and the 
longitudinal velocity Vn, F=F(vn, f). 

In accordance with the general concepts of quasi
linear theory, [61 the function F should satisfy the one
dimensional equation 

(1) 

where S is a certain source and D = D(v,,, t) is the dif
fusion coefficient, which is a certain functional of the 
oscillation energy W(k, wk ) (k is the wave vector of the 
oscillations and w. is their frequency) so that D(v,,, t) 
=D[W]. 

The oscillation energy depends on the amplitude E of 
the perturbed electric field and on the dielectric tensor 
faa of the plasma and is determined by the relation 

(2) 

where the zero superscript denotes the Hermitian part. 
The time dependence of the oscillation energy is deter
mined in the quasi-linear approximation by the equation 

8W.18t=2y.W., . (3) 

where 'Yk is the growth rate of the oscillations and is a 
certain functional of F, 'Yk = 'Yk[ff]. 

The concrete forms of D and 'Yk depend on the type of 
the excited oscillations and on the character of the reso
nant interaction of the particles with the oscillations. 
The oscillation type of interest to us constitutes Alfven 
waves with a dispersion law 

(4) 

where e A is the Alfven velocity (c ~ = B ~/ 41TMno, no is 
the plasma denSity and M is the ion mass), k" is the 
wave-vector component along the magnetic field, and 
kn =kBo/Bo. In the case of the tokamak (see, e.g., [81) 
we have 
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k,,=(m-nq)lqR, (5) 

where R is the radius of the curvature of the magnetic 
axis of the torus, q = aB sf RBB is the so-called margin 
coefficient of the tokamak, Bs and BB are the toroidal 
and poloidal magnetic fields, [91 a is the distance from 
the magnetic axis (the minor running radius of the 
torus), and m and n are integers characterizing the de
pendence of the perturbations on the cyclic coordinates 
8 (the minor azimuth of the torus) and cp (the major 
azimuth of the torus), so that E - exp[i(m8 -ncp)]. It is 
assumed that the wave vector k is almost perpendicular 
to the equilibrium magnetic field Bo, i. e., kn« ku 
where k!=[k!+(m/a)2]1/2, ka is the radial component 
of the wave vector (the radial dependence of the per
turbations is assumed in the form exp(ikaa». 

It is known,[71 that the electric field of Alfven waves 
is oriented transversely to the equilibrium magnetic 
field En = E . Bo/ Bo = 0 (the approximation of infinitely 
large longitudinal conductivity) and coincides in direc
tion with the transverse component of the wave vector 
(neglect of the Hall effect), sothatE=k(k· E)/k 2 • We 
assume that k.L II Va, i. e., that the wave vector is al
most radial, ka» m/a. (Perturbations with ka» m/a 
are less sensitive to the shear of the magnetic-field 
force lines, [41 which we neglect.) Under these assump
tions there remain in the right-hand part of (2) only the 
terms with (Q!~ (3) = 1 (the direction 1 is assumed to co
incide with the direction of the minor radius). Recog
nizing also that at frequencies w that are small in com
parison with the ion cyclotron frequency WBi = ej Bo/Me, 
where ej is the ion charge (the low-frequency oscilla
tions include also the Alfven waves), and I:' W = e 2/ e~, [7J 

we reduce (2) to the form 

c' IE,I' 
W. =z.---g;-. 

The general expression for the growth rate of the 
Alfven waves ism 

(6) 

(7) 

This result is obtained by using the dispersion equation 
for the Alfven waves[71 

£1I- c'k/lw'=O, (8) 

in which we substitute 

An expreSSion for 1m!:' 11 can be obtained if one knows 
the conduction tensor component <711' henceforth desig
nated <7n>, by using the relation 

(9) 

By definition we have 

(10) 

where it is the radial component of the electric field. 
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To find 0"11 it is therefore necessary to calculate the 
current jl. Since O"~p corresponds to interaction with 
oscillations of the resonant particles, it is required to 
calculate the part of the current connected only with 
these particles. In accordance with the results Of[4,5). 
this part of the current is determined by the relation 

(11) 

where Vl is the radial projection of the particle drift 
velocity v. The drift velocity V is due to the curvature 
of the magnetic-field force lines and in the case of a 
longitudinal beam it is given by 

v=vlI'[eoX(e, V)eo]/ooB!' (12) 

To calculate the perturbed distribution function F we 
use, as in[4,5), the drift kinetic equation. According to 
Rudakov and Sagdeev[lO) the drift kinetic equation for 
the function/(e, JJ., t) (e = v 2 /2) is the energy of the par
ticle of unit mass and JJ. = v~ /2B is the suitably nor
malized magnetic moment of the particle) is written in 
the form 

(13) 

where B =Bo+ B' is the total magnetic field (B' is the 
perturbation), and V E = cE x eo/ B is the electric drift 
velocity. For the longitudinal beam of interest to us, 
the linearized part of this equation reduces to 

(14) 

We have neglected here the coordinate dependence of 
the function F, V F = o. 

For the case of tokamak with round cross section, 
when[9) 

B,=B.[1+(a/R)cos 8], 

we obtain from (14), by the method of integrating along 
the trajectories, [4) 

(15) 

We have neglected in (15) terms of smallness VII/CA' 

(Account is taken of the fact that in the presently con
sidered variants of fast-ion injection into a tokamak the 
velocity of these ions.is assumed to be small in com
parison with the Alfven velocity, albeit higher than the 
thermal velocity VTI of the ions of the principal plasma 
component, i. e., VTI < VII < CA). In addition, just as 
in[4J, we assume I kill «l/qR. 

Using the relations given above, we obtain in analogy 
with[4) 

It S • of ( Vu ) Yo=--,- VII -6 000-- dv •. 
8R n, a VII qR (16) 

By the same token we have determined in explicit form 
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the functional dependence of the growth rate of the os
cillation energy on the average distribution function F, 
see Eq. (3). 

Thus, to obtain a closed system of quasi-linear equa
tions it remains only to find the expression for the dif
fusion coefficient D, which enters in Eq. (1). To this 
end we average the drift kinetic equation (13) over the 
perturbations and reduce it to the form 

aF a -.-+-.-< (vE \' InB,)F)=O, 
at avu 

(17) 

where the angle brackets represent averaging. Substi
tuting here F from (15) we arrive at Eq. (1), in which 

(18) 

Equations (1), (3), (16), and (18) comprise the system 
of the sought quasi-linear-approximation equation de
scribing the interaction of the longitudinal ion beam with 
the Alfven waves in the tokamak. This system of quasi
linear equations has no analog in the case of a plasma 
situated in a homogeneous magnetic field, i. e., in a 
fieldwithR=oo, so Eqs. (16) and (18) withR=oo lead to 
"y = 0 and D = o. 

3. ANALYSIS OF QUASI-LINEAR EQUATIONS 

We use the quasi-linear equations obtained above for 
a numerical analysis of the dynamics of the fast ions 
produced when a beam of neutral atoms injected into a 
tokamak becomes ionized. Assume that at t~ 0 there 
are no fast ions, so that F (VII' t) = 0 if t ~ O. Let a sta
tionary fast-ion source S(vlI) with a velocity distribution 
that has a maximum at VII = V ~ be turned on at the instant 
t=O. 

Assuming V ~ to be the unit of the velocity scale and 
TO= 27JRoq>-/v~ the unit of the time scale (>- is a certain 
dimensionless constant introduced to facilitate the cal
culations), and the plasma density no to be the unit of 
the denSity scale, and changing over to dimensionless 
variables in the system of equations (1), (3), (18), and 
(16), we obtain 

(19) 

Here .r=(VI/V~)2 is the dimensionless energy of the 
ions, F(.r) = coF(vlI)/vlino is a dimensionless distribution 
function, f 0 = V?,2 /2, T = t/ TO, r = 2;'TO is the growth rate 
of the noise energy in units of TO, w= W/Wo is the di
mensionless denSity of the oscillation energy, Wo is a 
certain initial level of the oscillation energy density, 
and J (.r) = f 0 STO/ vllno is a function characterizing the 
source. The constants A and B in (19) stand for 

(20) 

We note also that, when working with the function 
W(3'), we have, in fact, in mind a function of the wave 
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FIG. 1. A time variation of 
the fast-particle distribution 
function. 

number kit, which is connected with f% by the resonance 
condition wt = kllc A = vIII qR, so that the argument f% in w 
actually stands for 

~ = (qRCA) 'k ll '/2£o. (21) 

The system (19) was solved numerically Wlder the as
sumption that the energy distribution of the injected 
particles is of the form 

l(~) =a exp[ - (~-1)'/b']. (22) 

The values of the constants were assumed to be a = 10-3, 

b = 0.1, A = 10"', B = 50. The choice of these values is 
explained by the following considerations. The con
stant a, which characterizes the source power, should 
be such that the fast-ion density remain less than the 
plasma density during the entire quasi-linear relaxa
tion process investigated by us. (This corresponds to 
the situation in real experiments. Furthermore, in the 
opposite case the assumption that the contribution of the 
fast ions to the dielectric constant is small would not 
hold.) The constant b, which characterizes the energy 
spread of the source, should be small, in agreement 
with the relatively small spread of real injectors. On 
the other hand, in the case of a very small energy 
spread of the fast ions~ the system of quasi-linear equa
tions presented above cannot be used, since according 
to a paper by one of us, (4] a strong instability of hy
drodynamic type is possible in this case. The very 
small value of the constant A is due to the fact that this 
constant characterizes the ratio of the initial noise en
ergy level to the energy that the fast particles would 
have if their density were of the order of the plasma 
density (accurate to V~/CA)' As to the constant B, it 
follows from its definition that it is Wliquely connected 
with the margin coefficient q. Since the constant B con
tains also the parameter A introduced above, our cal
culations, which pertain to a fixed B, can be used for 
arbitrary q if the parameter A is suitably chosen. 
(This indeed constitutes the meaning of the introduced 
A.) 

w(~) 
1U 
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FIG. 2. Time evolution of 
the oscillation spectrum. 
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FIG. 3. Time dependence of the maximum value of the spec
tral density of the oscillation energy. a) Initial stage of the 
process (semi-logarithmic scale, b) overall picture of the pro
cess (linear scale). 

The result of the numerical calculation is shown in 
Figs. 1-3, in which T= 100 T. 

The initial state corresponding to the instant of time 
t= 0 is characterized by a zero value of the fWlction 
F(f%) in Fig. 1 and by a Wlity value of the function W(f%) 
in Fig. 2. At T= 1, the system already contains a cer
tain number of fast particles (see Fig. 1), which inter
act resonantly with the oscillations that lead to the 
growth of the oscillation energy in the region E< 1, 
where 'OFI'OE >0, and to its decrease at It> 1, corre
sponding to 'OFI'Of5<o (Fig. 2). The time interval T< 1, 
however, does not exceed the reciprocal growth rate 
characteristic of this time interval, so that w(~, T= 1) 
differs little from w(E, T = O)-see Fig. 2. 

At T= 10, the denSity of the continuously injected fast 
ions turns out to be larger by one order oi magnitude 
than at T= 1-see Fig. 1. (The fast-ion density at any 
particular instant of time is characterized by the area 
Wlder the corresponding curve of Fig. 1. The area Wl
der the dashed curve in Fig. 1 corresponds to the den
sity of the cold plasma.) By that instant of time, ow
ing to the large duration of the process of the particle 
interaction with the oscillations, and owing to the in
crease of the growth rate of the oscillations (due to the 
increase of the particle denSity), the oscillation energy 
denSity turns out to be greatly increased (see Figs. 2 
and 3). The reaction of the oscillations on the dynamics 
of the injected particles leads to an appreciable distor
tion of their energy spectrum (Fig. 1). The most im
portant circumstance connected with this distortion is 
the slowing down of the fast ions. The same effect is 
typical also of the usual quasi-linear relaxation-in the 
absence of a source. 

The curves of Fig. 1, which correspond to T = 20 and 
28, also point to a tendency to formation of a plateau on 
the distribution fWlction, 'OF 1'O~ _ O. (6] The formation 
of the plateau, however, is made difficult because par
ticles with f5 ~ 1 are continuously injected and produce 
a flux of particles over the spectrum 15 "'" 1. 

One more important circumstance typical of the one
dimensional quasi-linear relaxation process is the ever 
increasing slope of the front of the distribution function 
in the low-velocity region; (6] owing to the smallness of 
the diffusion coefficient at small ~ (i. e., in the region 
of f% where the number of resonant particles is small 
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and the oscillation level is low). As seen from Fig. 1, 
this tendency is observed also in the continuous-injec
tion case investigated by us. 

Attention is also called in Fig. 1 to the narrow maxi
mum, due to the earlier stage of the relaxation pro
cess, which appears on the distribution function. This 
maximum is formed in the region 8> 1, shifts gradual
ly to the right, becomes narrower, and finally disap
pears. This phenomenon can be understood by com
paring Figs. 1 and 2. According to Fig. 2, during the 
initial stage of the process there is a certain decrease 
of the oscillation energy with 8 > 1. This is due to the 
fact that the derivative aF /a8 is negative at 8> 1, see 
Fig. 1, Owing to the low noise level at @ > 1 the noise
induced diffusion of particles with 8> 1 is also very 
small, whereas in this region, just as in the region [5 

< 1, the particles are continuously injected. As a re
sult, particles are accumulated at /!l > 1, and this ex
plains the appearance of the peak on the F{$) curves of 
Fig. 1 at 8> 1. The peak produced in this manner has 
a positive derivative aF/a8 in a certain interval of 8 
> 1 and is therefore unstable. As a result of the de
velopment of the instability and of the reaction of the 
growing noise with 8> 1, the peak begins to "become 
stationary" on the side of the positive derivative aF / 
a$ , advancing as it were the oscillation spectrum into 
the region $> 1, after which the peak decreases to the 
level typical of the region 8 < 1 and therefore plays no 
role in the succeeding stages of the relaxation process. 

Since the number of fast ions is constant, as a result 
of their continuous injection, we are faced with the 
problem of determining the characteristic value of the 
growth rate of the oscillations. In this connection, Fig. 
3 shows the time dependence of the maximum value of 
the spectral denSity of the oscillation energy. Figure 
3a illustrates more graphically the initial stage~ while 
Fig. 3b shows the general picture of the oscillation 
growth. It is seen from Fig. 3a that at T ~ 5 the growth 
of the oscillation amplitudes is almost exponential with 
a rate approximately equal to (2.6 7')-1 (in the appropri
ate units). This result can be interpreted as a sort of 
mutual compensation of the increase of the growth rate, 
due to the continuous increase of the number of injected 
particles, and the quast-linear decrease of the growth 
rate due to the reaction of the oscillations on the dis
tribution function of these particles. With time, how
ever, as the oscillation level increases~ the quasi
linear effect becomes predominant, so that the growth 
rate of the noise slows down. According to Fig. 3b, 
at T> 12 the oscillation energy density increases only 
linearly, and not exponentially as at T .$ 5. 

4. DISCUSSION OF RESULTS 

From the analysis in Sec. 3 it follows that during the 
course of the quasi-linear relaxation the front of the 
distribution function, shifting to the left over Fig. 1, 
reaches a value 8=i after a time 

t'I.""'4·10'Rlv,,'. (23) 

This characteristic quasi-linear-relaxation time under 

1127 Sov. Phy~. JETP, Vol. 43, No.6, June 1976 

the typical thermonuclear conditions v ~ = 5 X 108 cm/ sec 
and R ~ 5 x 10 2 cm amounts to 

(24) 

In the absence of instability, the fast-ion relaxation, 
as is well known, is determined by the Coulomb colli
sions with the particles of the prinCipal "cold" compo
nent of the plasma. At a plasma denSity n ~ 5 x 1013 ~ 
the characteristic Coulomb relaxation time of an ion 
with velocity vO = 5 X 108 cm/sec is of the order of [11] 

(25) 

It follows therefore from our calculations that the 
quasi-linear relaxation is fast by three orders of mag
nitude that the Coulomb relaxation: 

(26) 

This means that the concept of the "two-component 
tokamak, " [2] which is based on the notion that the fast
on relaxation is of the Coulomb type, must in general 
be reviewed. A more definite judgement of the consis
tency of this concept calls for a more complex investi
gation of the instabilities of the ion beams injected into 
the tokamak, and of the possibilities of suppressing 
these instabilities. 

The foregoing results and their conclUSions, how
ever, must not weaken the interest in the very problem 
of injection of fast particles, since the energy of the 
injected particles, which goes over in the course of the 
relaxation into the energy of Alfven oscillations, can 
then be absorbed by the particles of the principal com
ponent of the plasma. 1) 
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Stimulated Raman scattering and the penetration of an 
electromagnetic wave into an inhomogeneous plasma 
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We use the equations of non-linear electrodynamics to formulate relations that enable us to determine the 
noise level and the intensity of the pumping wave in an inhomogeneous medium under conditions of 
convective parametric instability. Using these relations we study the effect of stimulated Raman scattering 
on the penetration of an electromagnetic wave into a rarefied inhomogeneous plasma. 

PACS numbers: 52.40.Db 

INTRODUCTION 

Parametric instabilities in an inhomogeneous plasma 
can be either drift (convective)U-61 or absolute[7-151 
instabilities. In the first case the departure of growing 
waves from the region where they interact resonantly 
with the pumping wave leads to the establishing of a 
stationary state. We can then determine not only the 
noise amplitude but also the way it varies with the in
tenSity of the pumping wave in an inhomogeneous plas
ma. In the present paper we consider how a decay
type parametric instability which occurs in a rarefied 
plasma-stimulated Raman scattering (SRS)-affects 
the penetration of the pumping wave. 

We use in the first section the phenomenological equa
tions of non-linear electrodynamics to formulate the ini
tial relations for a self-consistent determination for the 
noise level and the intensity of the pumping wave in an 
inhomogeneous medium. We determine in the second 
section, from the solution of the dispersion relation, 
the growth coefficients for SRS in a plasma. We obtain 
in the third section a non-linear differential equation 
to determine the pump wave intensity. We give in the 
fourth section the results of a numerical solution of 
that equation for a linear variation of the plasma den
sity. In the conclusion we discuss the application of 
the results to a laser plasma. 

We show in the paper that SRS has practically no ef
fect on the propagation of the pumping wave when its in
tenSity is small. When the intensity increases this 
effect becomes important. The distance over which 
the pumping wave can travel without practically chang
ing its amplitude is proportional to the wavelength of 
the incident wave and to the plasma temperature, and 
inversely proportional to the intensity. At large dis
tances the intensity of the pumping wave decreases with 
distance according to a hyperbolic law. We show that 
the nature of the wave penetration does not depend on the 
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steepness of the increase in density when the plasma 
density varies according to a power law. 

1. GENERAL RELATIONS 

1. We start our considerations with the equation for 
the electrical field strength E in an arbitrary material 
medium (61 

1 a'D 
rot rot E + 7---;)f = 0, (1. 1) 

where the induction vector D is connected with the field 
E by a non-linear material equation which in the qua
dratic approximation has the form (171 

D,(r,t)~ Sdr'j dt'{e,,(r,t;r',t')E;(r',t'} 

+ S dr" f dt" e",(r, t; r', t'; r", t"}E;(r', t'}E,(r", t") }; (1. 2) 

EfJ and E'JI are, respectively, the linear and quadratic 
permittivity tensors of the medium. 

We assume that the field in the medium is the sum 
of the field of a strong pumping wave Eo and of weaker 
fluctuation fields 5E: 

E(r, t} =E.(r, t} HE(r, t}. (1. 3) 

We substitute Eq. (1. 3) into Eq. (1.2) and average 
over a statistical ensemble. As a result we get for 
the pumping wave the equation 

E 1 a' st , , ( "}E (' ') 1 (J'D, (rotrot .},+--. dt dr £'; r,t;r ,t .; r ,t =-,-;--, ' c' at' __ c ut 

(1. 4) 

where the vector D determines the non-linear effect of 
the fluctuation fields on the pumping wave: 
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