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The development of tearing instability in plasma containing a neutral diffusive layer and a magnetic field 
with a small but finite component perpendicular to the sheet is discussed. The effect of this component on 
electron orbits in the neighborhood of the neutral sheet is to stabilize the electron tearing mode even for 
very small amplitudes of the normal field. The development of the ion tearing mode of given wavelength is 
found to be possible only in the "gap" corresponding to a certain restricted range of values of the normal 
magnetic-field component for which its effect on ion orbits in the neutral sheet can still be neglected whilst 
the stabilizing contribution of magnetized electrons to the plasma permittivity is already small. It is shown 
that gaps of this kind can appear only when the current in the sheet is large enough. When the value of 
the normal magnetic-field component lies below the instability region, the plasma states are metastable with 
respect to the excitation of the ion tearing mode. 

PACS numbers: 52.35.En, 52.20.Dq 

lNTRODUCTION 

Processes of reconnection and annihilation of a mag­
netic field play a key role in a broad range of physical 
phenomena, for example, in solar flares, [1,21 recon­
nection processes in the earth's magnetosphere, (31 
processes in neutral and current-carrying sheets of 
laboratory plasma, (41 and instabilities of thermonuclear 
plasmas in tokamaks (tearing instability(Sl)o Recon­
nection processes in the tail of the magnetosphere are 
of particular interest at present because the extensive 
experimental studies of plasma phenomena in the mag­
netosphere, which have been carried out with the aid 
of satellites, enable us to look forward to an acceptable 
theory that would be of general interest in physics. 

The description of spontaneous reconnection pro­
cesses in terms of the simplest one-dimensional neu­
tral-sheet model, first put forward by Coppi, Laval, 
and Pellat, (61 encounters serious difficulties because 
the tearing instability mode, (6,71 which is characteris­
tic for such configurations, can be stabilized for very 
small perturbation amplitudes, (8-101 and a global re­
arrangement of the neutral-sheet configuration during 
the instability development will not occur 0 

Moreover, experimental data show that the topology 
of the magnetic field in the region of field inversion 
cannot usually be described within the framework of 
the simple one-dimensional modeL In particular, the 
rearrangement of the magnetic-field configuration and 
the formation of the neutral line in the tail of the earth's 
magnetosphere occur in those regions where a finite 
magnetic field component, perpendicular to the neutral 
sheet, was present prior to this. Cll-14 1 This rearrange­
ment occurs spontaneously in a very short time, and is 
probably connected with the development of the tearing 
instability. Studies of the stability of a neutral sheet 
in the presence of a finite magnetic-field component 
perpendicular to the sheet are therefore essential. 1) 

Cases for which the normal component to the sheet 
changes sign, or when it is constant or quasiconstant 
along the sheet, are best considered separately because 
the dynamics of particles in the neighborhood of neutral 
lines has a number of distinctive features. This last 
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(and simplest) case is discussed in the present paper. 

Preliminary analysis(lS1 has shown that the most im­
portant effect here is the perturbation of particle tra­
jecteries in a narrow region near the neutral sheet by 
the normal component En of the magnetic field which, 
firstly, violates the conditions for the development of 
instability associated with the resonance interaction of 
these particles2) with oscillations and, secondly, be­
cause of the capture of the particles by the normal field 
into Larmor orbits, there is a greater stabilizing con­
tribution to the real part of the permittivity (but this 
contribution may decrease with increasing En). It turns 
out that the electron instability mode is stabilized for 
small values of En whilst the development of the ion in­
stability of given wavelength is possible only in a cer­
tain "gap, " i. e., a finite interval of values of En in 
which the motion of the ions is still only slightly per­
turbed, whereas the stabilizing effect of the electrons 
is already small. The existence of such "gaps" is pos­
sible only for a sufficiently thin sheet (sheet with a suf­
ficiently large current). 

Plasma states lying under the set of gaps correspond­
ing to wavelengths that can be excited in a given con­
figuration are metastable with respect to the develop­
ment of the ion tearing instability (a small increase in 
the normal component resulting in a finite perturbation 
takes the plasma into the unstable region). The ion in­
stability mode is more rapid by a factor of (M/m)1/4 as 
compared with the electron modeo Its development (if 
the gap exists) should therefore lead to a rapid spon­
taneous rearrangement of the magnetic-field topology 
in the region of the neutral sheet, which may have a 
radical effect on the dynamics of the plasma configura­
tion. The role of the ion tearing instability as a mech­
anism of spontaneous reconnection during the transi­
tion to the explosive phase of a magnetic substorm is 
discussed briefly in the Conclusions o 

1. CASE OF EQUILIBRIUM STATE AND BASIC 
EQUATIONS FOR PERTURBATIONS 

The simplest two-dimensional model of a magnetic 
field near a neutral sheet is the homogeneous current 
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sheet model (with the current flowing along the y axis) 
and a constant magnetic-field component at right-an­
gles to the sheet. In particular, it was shown pre­
viously in[16. 17] that this model could be used to achieve 
a correct description of certain phenomena in the 
earth's magnetosphere: 

B=B,(x)e,+Bne., (1) 

where ex and e .. are unit vectors along the axes x and z. 

However, attempts to obtain a rigorous description 
of the equilibrium state of even this ~imple two~dimen­
sional plasma configuration encounter considerable 
mathematical difficulties in the solution of the self­
consistent set of stationary equations for the field and 
particle. [18-22J 

When the stability problem is tackled by the varia­
tional method, [23J it is possible to obtain the necessary 
and sufficient conditions for equilibrium that are very 
general but, at the same time, applicable to the case of 
arbitrary two-dimensional equilibrium. These condi­
tions involve the equilibrium scalar and vector poten­
tials and the distribution function corresponding to the 
particular equilibrium state in the form of a function of 
the constants of motion: 

(2) 

where the energy integral HOi and the conserved compo­
nent of the generalized momentum PYi are given by 

The situation is substantially simplified if we are in­
terested not in the two-dimensional equilibrium itself 
but in the influence of the normal component of the mag­
netic field on the stability of the sheet. We shall show 
that this influence is largely due to the change in the 
character of the particle trajectory trapped near the 
neutral sheet and providing the main contribution to the 
interaction between the plasma particles and perturba­
tions. The precise form of the distribution of these 
particles is found to be unimportant for the interaction, 
so that it can be assumed to have the Maxwellian shape, 
and distortion due to the presence of a weak current can 
be neglected in the same way as it is in the well-known 
problem of drift instability of particles trapped in a 
magnetic field with weak magnetic mirrors. [24J Thus, 
when the normal component of the magnetic field is 
small both inside and outside the neutral sheet, we can 
assume in the analysis of stability that the particle dis­
tribution and the profile of the magnetic-field component 
parallel to the sheet take the form obtained by Harris[18J 
for one-dimensional equilibrium: 

B=B, th (xIL)e,+B.e., 
'I, 

F = __ n_, _(.5:!...) exp{-a,(v.'+(v.-u,)'+v.')}, 
ch'(xIL) n 

where 

1114 

d 
uj=cT,-ln n(x)le,B,(x), 

dx 
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(3) 

T.+T. 
t'J'=--r;-. 

The dimensionless parameter 

b=BnIB,<1, 

which characterizes the magnetiC-field component per­
pendicular to the sheet is one of the small parameters 
of the problem. Another small parameter is the ratio 
of the Larmor radius of the particles to the character­
istic thickness of the neutral sheet: 

When the finite size of the parameter b is taken into 
account (the problem is only slightly two-dimensional), 
the characteristic size of the sheet inhomogeneity 

L,=18Inn(z, %)/8zl-' 

i.s, at worst, not greater than Lb-1, which, for small 
11, enables us to seek the perturbations of the vector 
and scalar potentials in the quasiclassical form in Z3): 

A .. =A, (x) } ( J' ) 
<p,=<p,(x) exp -iwt+i k(z')dz' . (4) 

The condition for the validity of (4) is 

and this provides an upper bound for the wavelength of 
the developing perturbations 

m=kL:?-b. (5) 

When b "* const, or the plasma parameters vary along 
the sheet, the inequality given by (5) is replaced by the 
more stringent inequality 

m>m'=2"LIL;, (6) 

where L: is the corresponding characteristic inhomo­
g;eneity size. 

We shall now linearize the Vlasov equations for the 
perturbations of the scalar and vector potentials A1 (x ,z) 
and flJ1 (x, z), subject to the following assumptions: a) 
the phase velocities of the perturbations are small in 
comparison with the velocity of light, i. e., I w/kc I «1; 
b) the characteristic instability-development time is 
small in comparison with the characteristic time of the 
particle motion, i. e., I W/kVT I «1; and c) the wave­
length of the perturbations under consideration is much 
greater than the Debye wavelength. This enables us to 
neglect the displacement currents, the components Alx 
and Aly of the vector potential, [23J and the perturbations 
of the space charge (so that the quasineutrality condi­
tion can be employed), respectively. 

The correction to the distribution function in the lin­
ear approximation is 
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where 

F ,_ aF;(H,;; p.;) 
l>j - 8P"i ' 

aF;(H,;; p,J 
aHQj 

(7) 

Integration with respect to the time T = t' - t in the last 
term in (7) is carried out along the unperturbed par­
ticle trajectory, which is calculated with allowance for 
the influence of the normal magnetic-field component 
upon it. 

Using the quasineutrality equation, which relates the 
perturbations of the scalar and vector potentials, we 
obtain the following equation for the y component of the 
perturbation of the vector potential, Ai =Aly, which has 
the form of the SchrBdinger equation: 

d" 
L~, -(k2+VO(x)+v«x,w,k» ]A1(x)=O, (8) 

The coefficients in this equation are determined by 
the following equations in which Ej(T) = exp{- iWT 
~ik[z'(T)-Z]}, q=41Te~/c2, V<=V<+liV<: 

V,(x)=-q ~ S F,,/v,d'c', (9a) 

o 
v<= E V;<=-q E S Fm'v,d'v[ -iw S V,(T)Ekr)dT], (9b) 

I J _C>O 

oV<=-q 0; S F,,/v, d'v [ -iw _f ej(T)dT]) 

x( E S Fu,'d'v [-iW f L',( T) e;(T)dT ])( E S Fu,' d'l' [ 1+iw f e,(T)dT ]) -I 
J -"" 1 

(9c) 

The expression for the perturbed current jly obtained 
with the aid of (7) can be written in the form given by 
(8) only under an important simplifying assumption, 
L e., the local approximation in x, which involves the 
substitutionA1[x'(T)]-A1(x) in (7). This approximation 
is possible because the characteristic size lx of the 
projection of the particle orbit onto the x axis is small 
in comparison with the characteristic size Lx - L of the 
inhomogeneity at right-angles to the neutral sheeL The 
quantity lx-Ix' -xl max amounts to EjL in the external 
region, and E~/2 L or bL (see below) in the internal re­
gion near the plane of the neutral sheet, respectively. 

The energy eigenvalue in (8) is E=_k2 , and the po­
tential energy takes the form of a shallow potential 
well Vo(x) with a narrow hump V< at the center (in the 
neighborhood of the neutral sheet). As already noted, 
the shape of this well is not essentially modified when 
a small (b« 1) vertical magnetic field is superimposed, 
and can be determined with the aid of the simple dis­
tribution given by (3). Under these conditions, F~j 
= - F/T j' F~j = ujF/T j' and we have 

Vo(x) =-2L-2 ch-2 (xIL), (10) 

The potential well defined by (10) is referred to as the 
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Teller potential. 

It follows from the results reported in our previous 
paperno] that perturbations with ky *- 0 correspond to a 
still shallower potential well 

Vo(x) =-2L-' ch-' (xIL) cos' 0', 19f)'=k/k,; 

. and it is readily shown that the form of the potential 
hump V< remains unaltered. When 8' *- 0, the localized 
perturbation is more readily squeezed .out of the poten­
tial well by the hump, and the instability is reduced 
more rapidly than in the case ky =0. As noted above, 
we can therefore confine our attention to the analysis of 
the most unstable perturbations with ky =0. 

The potential V< consists of two terms: V< = v< 
+ oV<. In a previous paper, [15] we took into account 
only the first of these two terms, which arose when per­
turbations of the scalar CPl were neglected. The correc­
tion oV< is connected with the inclusion of CPh and leads 
to a small change in some of the numerical coeffi­
cients. 4) 

All the expressions containing the index < are con­
nected with integrals over the trajectory. It was shown 
earlier[7,lO,25] that particles magnetized by the main 
field outside the narrow neighborhood of the neutral 
sheet usually provide a negligible contribution to the 
potential V<. The same conclusion may be extended to 
other expressions of the same structure in oV<. The 
detailed shape of the potential barrier V«x) is de­
scribed by a function that is nonzero only in the rela­
tively narrow neighborhood of the neutral sheet. The 
height and width of the potential barrier depend on the 
magnetiC-field component at right-angles to the sheet 
because the particle trajectories along which the inte­
gration in (8) is carried out are very sensitive to this 
component. The parameters of the barrier V< can be 
found for different limiting cases. 

2. POTENTIAL BARRIER PARAMETERS 

A. Plane one-dimensional neutral sheet 

In the absence of the normal magnetic-field compo­
nent (b =0), we can neglect the effect of the main mag­
netic field BoAx) on the motion of the particles[S,7] when 
we evaluate the integrals in the expressions for V< in 
the narrow neighborhood of the neutral layer. This is 
valid for particles of type j in a sheet of size I x I < d j 

= E~/2 L because the magnetic field is then always small 
enough to ensure that the Larmor radius of the par­
ticles either exceeds or is comparable with the width of 
the sheet. It can be shown that, with the exception of a 
small group of particles with velocities practically par­
allel to the y axiS, all the particles are captured in the 
sheet and execute rapid oscillations (with characteris­
tic frequency n Bj - vTjdjl) between almost impermeable 
magnetic walls at x = ± d j. The motion of the particles 
along the y axis, averaged over these oscillations, is 
found to be weakly perturbed by these fast motions 
along the x axis for I x I < d i' and can therefore be looked 
upon as free motion taking place in the absence of the 
main field Boz(x). [25] 
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The main contribution to the integrals in (9b) and (9c) 
is provided by the semiresidues in the velocity integrals 
describing the interaction of the perturbations with 
freely moving resonance particles: 

(11) 

The correction 05V< is totally unimportant in this 
case, and the height of the potential barrier V< = ~ J V ~ 
is determined by the resonance absorption of the energy 
of the oscillations by plasma particles from the region 
Ixl <dJ• Since the tearing mode which we are consider­
ing here is, in fact, a negative-energy mode, [10] Lan­
dau damping resulting from this resonance interaction 
between tearing perturbations and electrons or ions 
leads to the growth of these perturbations (electron or 
ion instability branch). 

B. Suppression of resonance interaction due to 
Larmor rotation in a vertical field 

The magnetiC-field component perpendicular to the 
sheet (we shall refer to it as the vertical component 
since the sheet itself is located horizontally) disturbs 
the resonance interaction between the particles and the 
perturbation if the particle executes one or more revo­
lutions in the vertical magnetic field during the pertur­
bation growth time: 

(12) 

where T j = 11m Wj 1-1 is the reciprocal of the instability 
growth rate and OJ = e jBn/m jC is the cyclotron frequency 
of particles of type j in the vertical magnetic field 
Bn =bBo• 

Hence, it follows that the electron instability branch 
with growth rate 1m w. - kVTeE;/2 is stabilized by a very 
weak vertical field b - €~/2. [8] The effect of the vertical 
magnetic field on the tearing instability mode is not, 
however, confined to the removal of the Landau reso­
nance. It is shown in[15] that particles captured into 
cyclotron orbits in the vertical field provide a major 
contribution to the potential energy. 

When 0 Bj > 0 j (or b < Ey2), the Larmor rotation of the 
particles in their cyclotron orbits in the field Bn can be 
regarded as slow in comparison with the frequency of 
oscillations between the magnetic walls and, precisely 
as in the preceding section, the motion of the particles 
can be averaged over these fast oscillations. The av­
erage trajectories over which the integrals in (9) are 
evaluated can then be taken to be the slow cyclotron 
motions of the particles over the Larmor orbits in the 
vertical field. [15] 

In this approximation, the expressions given by (9) 
for a plasma with distribution function given by (3) can 
be evaluated as follows: 

(13a) 

2 00 +<» 2. 

6V<= (L ~:; 4a/ S v.c'exp(-a;v.c') L ",_:Q; /n,/:,jdV.c) 
o n=_"" 
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(13b) 

where In,J =In(kvJ./Oj) is the Bessel function of order n 
and J~,J = aJn,j(q)/aq is the derivative of the Bessel func­
tion with respect to its argument. The particle distri­
bution function in (13) is taken to be Maxwellian because 
corrections due to the slight anisotropy in F j (and, as 
before, the corrections to F j due to the fact that b * 0) 
are unimportant when the integrals in (13) are evaluated. 

In the limit of a weak vertical field, when condition 
(12) is still not satisfied, summation of the contribu­
tions due to all the harmonics [neglecting the effects of 
the vertical field on particle orbits in (13)] leads to (11). 
In the opposite case, L e., when (12) is satisfied, the 
particles are already captured by the vertical field into 
Larmor orbits, and the main contribution to the inte­
grals is provided by the terms with n =0 

V < "'p;' d 
; =2 7 dl.; (I.; exp(--I.;)I,(I.;» , (14a) 

/W<= [L "";' (2aJ.I)"·~(exp(-I.I)Io(J.;) ]', 
j c dl.; 

X[L "';:' 2aj(1-exp(-I.;)Io(I.;» r, (14b) 
; 

where >."} =tk2~, Pj =VTjOjl is the radius of the Larmor 
rotation in the normal field, and In is a modified Bessel 
function of order n. We recall that the formulas given 
by (14) are valid only for Ixl <dj • 

According to (13), the potential V< is continuously 
transformed as the vertical field increases from the 
resonance expression given by (11) to the actual poten­
tial (14) (corresponding to a high potential barrier), and 
does not vanish. 

The expressions in (14) can be written in a simple 
form if we use the asymptotic representation of In for 
Aj > 1, and an expansion into a series for Aj < 1. De­
pending on b, the potential V< has a double hump shape 
with maxima at Ae -1 and Ai -1, respectively. Inclusion 
of the corrections 05V< is found to be important only for 
the descending part of the electron hump of the potential 
with A. < 1. Using (14), we can readily obtain the ex­
pressions for the total height V< of the potential barrier: 

(15) 

for the descending part of the electron and ion humps, 
respectively. In this expression, Xj = Tlj and the nu­
merical coefficient xe = (1 + 1Je)/2 arises when the cor­
rections oV< are included. On the descending parts of 
the potential humps 

(16) 

Since henceforth we shall be largely concerned with 
states on the boundary of stability with W =0, we can 
omit the terms corresponding to the ion semiresidues 
in the expressions (15) and (16) for electrons (j =e). 
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C. Magnetized neutral sheet 

The approximation in which the magnetic field be­
tween the impermeable walls bounding the neutral sheet 
can be neglected, and only its vertical component taken 
into account, is violated when the Larmor radius in the 
vertical field becomes less than the size of the layer 
(and the Larmor frequency is correspondingly greater 
than the frequency of the oscillations between the mag­
netic fields), i. e. , 

(17) 

The inequality given by (17) is equivalent to b > ey2, 
A veraging over the fast oscillations across the plane of 
the neutral sheet in the form in which we have used it 
above is then no longer valid. On the other hand, the 
plasma can then be regarded as magnetized throughout 
(magnetized neutral sheet), and we can use the drift 
trajectories of the particles when we calculate the ef­
fective potential V<, The particle-trajectory param­
eters in the field near the neutral sheet have been cal­
culated by TverskoiC16 ] for this model. In particular, 
the first and second adiabatic invariants are given by: 

"." pL "." 0 ( B.,,-B ) '" 
1,= Jpds=--JdBB" -- , 

B·B B' B'-B' 
" u n .\[ E" n 

where p is the total momentum and B M is the modulus 
of the magnetic field at the point of reflection of the par­
ticle from the magnetic mirror. 

To evaluate the integrals with respect to time in the 
expressions given by (9), we shall average over the 
fast (in comparison with the instability development 
time) motions, i. e., over the cyclotron rotation of the 
particles and their oscillations between the magnetic 
mirrors. For simplicity, we shall neglect the correc­
tions oV< in this section. 

Although the drift velocity t'D> of the particles in the 
neighborhood of the neutral sheet may be high (see C16 ]), 

we shall, as before, include only the cyclotron rotation 
and ignore the drift velocities when we evaluate the in­
tegrals over the trajectories in the expressions for the 
currentji> [given by (9)]. This apparent contradiction 
is connected with the fact that, when the drift velocities 
are included in the evaluation of the total current, it is 
necessary to include also the so-called magnetization 
currenL C26] As a result, for the almost isotropic 
plasma distribution which we have chosen, the final 
expression will contain a small average-mass velocity 
of the plasma (v)-u j , the inclusion of which is unim­
portanL From integration with respect to the veloci­
ties, we pass on to the integration with respect to the 
total momentum and the field magnitude at the point of 
reflection. The time average of the oscillations be­
tween the magnetic mirrors is given by 

, 
<I/:>=t-1 J 1jJ[B(x(t), z(I)) jdt 

. 0 

( 
BM BdB ) -IBJ" B1\" (B) dB 

= J [(B'-Bn') (i-BIB.,,) J'" [(8'-B,,') (I-BIB,,) j .. (18) 
Btl B" 
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Moreover, the argument of the Bessel function in (18) 
is small in the region in which the drift approximation 
is valid, and we can therefore confine our attention to 
the first term in the expansion of it in terms of the 
small argumenL The result is 

b=~ 
B" ' 

x' 
h.". = ! + b't' . 

It is readily seen that, according to (19), the height 
of the potential barrier in the case of a magnetized neu­
tral sheet is no different from that given by the simple 
estimate (15) used previously inC15J • This estimate is 
therefore valid in both cases. However, in the case of 
a magnetized neutral layer, the main mass of particles 
can no longer penetrate the magnetic walls at x =±dj • 

It is clear from (19) that an expansion of the particle­
localization region corresponds to an increase in the 
width of the potential V~(x) (which is now determined by 
the parameter bL) as compared with the unmagnetized 
case, We thus finally have 

~.: 
I ejL h:::: e:' (unmagnetized neutral sheet) 
I bI, b > f;' (magnetized neutral sheet}. 

(20) 

It is important to note that calculations which we have 
carried out in a simple magnetohydrodynamic approxi­
mation, valid for the description of the particle motion 
in the neighborhood of the neutral sheet in the case of 
a magnetized layer, yield the same results as those ob­
tained above on the basis of the kinetic equation. [27] 

3. DISPERSION RELATION 

In Sec. 1, we obtained equation (8) for the perturba­
tions of the vector potential Ai (x), which has the form 
of a Schrodinger equation with energy E = - k 2 and an 
effective potential in the form of the Teller well Vo(x) 
at the center of which there are two superimposed nar­
row and tall humps V~(x) and V1(x) due to the electron 
and ion contributions of the singular region near the 
neutral sheet, respectively (Fig. 1). 

Without introducing additional assumptions about the 

V(x) 

! 

~~~----~~~r----~ 
Vo(X} 

FIG. 1. Shape of the effective potential V(x). The half-width 
of the humps V; and V~ at the center of the Teller well V o(.") is 
~e and ~i' respectively. 
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FIG. 2. The dispersion curve [corresponding to the solution 
of (24)] relating the position of the energy level E = - m 2 L -2 in 
the potential well of height V", and the width A of the potential 
hump at the center of the well. 

shape of the potential hump, the dispersion relation be­
tween the perturbation frequency and wavelength can be 
obtained only in the limit where the presence of the 
hump leads only to a slight level shift. Using the wave 
functions for the unperturbed state given in[lO], let us 
calculate the matrix elements corresponding to the per­
turbing potential V«x), and the correction to the unper­
turbed energy level Eo = - L -2. The result is 

(21) 

For a narrow hump on a symmetric potential, the 
dispersion relation can also be obtained for the case 
where the level shift is no longer small, but the level 
is still located inside the well. In other words, in this 
case, both humps can be looked upon as transparent for 
the perturbations: 

(22) 

where Ae, i are the widths of the two humps (see Sec. 2). 
In this case, the contributions of k2 and Vo(x) to (8) can 
be neglected in the internal region x« Ae, i' and the 
logarithmic derivative of the potential perturbation is 

. 
[A,«x)].'/A,«x)= J (V,«x)+V.«x»dx. 

The solution in the external region can be expressed 
in terms of the Legendre function 

If we match the logarithmic derivatives Ai(x) at a point 
well outside the internal potential humps (i. e., for Ai 
«x« L), we obtain the dispersion relation in the form 

L +~ i-m' - J (V.«x)+V,«x»dx=--. 
2 m 

(23) 

In this expression, rn = kL and we have used the well­
known result 

[ dP _m(,,) / ] i-m' , .. p,-m(!.l) =--. 
d!.l . ._ m 
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We thus see that, according to (23), the Teller well 
contains the single energy level Eo = - L -2 in the absence 
of the potential hump. The appearance of the hump 
leads to a gradual shift of the energy level toward the 
surface of the well, and when the barrier becomes com­
pletely opaque [i. e., when (22) is violated] it leaves the 
well altogether. 

The dispersion relation that provides the correct de­
scription of the exclusion of all the levels from the well 
can be obtained by further simplifying the shape of the 
potentials V< and by apprOXimating the actual shape of 
the humps by step functions with nonzero constants for 
I xl < AJ • [7] In actuality, the exclusion of a level can 
be due to either potential hump. It is therefore suffi­
cient to obtain the dispersion relation for the case of a 
single hump V< of width A. In the interior, where Ixl 
<A, the solution of (8) isA«x)-cosh(V<)1/2X (for V< 
»L-2 ) whereas, as already noted, the solution for the 
external region is given by 

P(x)_p,-m(th ~). 

If we match the logarithmic derivatives at the point 
x = .1« L, we obtain 

~ I-m' / ( f1 i-m') xthx=--- i +--- , 
L m L m 

where X=(V<)1/2A. 

(24) 

A graphical solution of this equation is shown in Fig. 
2. The approximate analytic solution is 

<_ { (l-m')/m~L; 
Von - -I/~', 

m>ML 
m«~/L 

4. ANALYSIS OF THE DISPERSION RELATION 

(25) 

It follows from the preceding discussion that there 
are two effects due to the presence of the magnetic­
field component perpendicular to the sheet which have a 
stabilizing influence on instability development: firstly, 
there is the suppression of resonance between perturba­
tion and particle and, secondly, there is the exclusion 
of the localized perturbation from the region of the neu­
tral sheet [i. e., the exclusion of the energy level from 
the effective potential well V o(x)]. 

Let us first estimate the critical values of the nor­
mal component of the magnetic field for which these two 
effects begin to be important for a given (ion or elec­
tron) perturbation mode with given energy level E = - k 2 

= - rn 2 / L2 (or wavelength 2rrL/rn). Since each of these 
effects is mostly due to the contribution of one of the 
plasma components, we shall analyze them in terms of 
the simplified dispersion relation (24) obtained for this 
case. The resonance interaction is disturbed when (12) 
is satisfied. This condition includes the instability 
growth rate Yj' which we shall obtain as a function of 
wavelength from the dispersion relation given by (24). 
To do this, let us substitute the estimated height of the 
potential hump taken from (11) into (24): 
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FIG. 3. Effective potentials formed in the neighborhood of the 
neutral sheet due to the Larmor rotation of particles in the 
normal field. For b1j (m) < b < b2j (m), the energy level 
E = - m 2L -2 is absent from the potential well (vJ> V m) and the 
instability is suppressed. In the gap (if present), the ion tear­
ing mode may develop between b2e (m) and b1i (m). When b> E 1'2, 
the expansion of the potential hump I::.j ~ bL must be taken into 
account, and this leads to a narrowing of the gap. 

where Vm,J is the formal solution of (24) for V<. 

We now estimate the magnitude of the parameter 
1 wlkvT I. The fact that this parameter is small was 
used in the derivation of the original equations in Sec. 
1, and this is indicated by the fact that 1 wlkvT 1 < E even 
for small m. This suggests that, contrary to[7], long­
wave perturbations with m < ella can be discussed within 
the framework of the theory which we have developed. 

Having found the growth rate Yj(m), we can readily 
obtain the critical vertical magnetic-field component 
for which the resonance between the perturbations and 
particles of type j is suppressed: 

(26) 

Hence, it follows that, for example, even for a very 
. weak vertical field b = ble (111), the electrons cannot in­

teract with perturbations with given 111 • The remaining 
weak (in comparison with the previous electron con­
tribution) interaction of these perturbations with ions 
cannot lead to instability because the height of the po­
tential hump V~ turns out to be equal to V m,e for this 
value of b=ble (l11) and, according to (24), this is suf­
ficient to exclude the energy level from the potential 
well. 

When the normal component is increased further, 
the height of the potential hump at first increases in 
proportion to b, in accordance with (16), and then, 
when b>mc., it falls in inv€rse proportion to ba, in ac­
cordance with (15) (Fig. 3). It follows that, for a cer­
tain value b = b2e (111), the energy level E = _111 2 L -2 reap­
pears in the potential well Vo(x). 

Subsequent behavior of the potential is determined by 
ions whose motion leads to the formation of a second 
potential hump which is lower by a factor of melMi as 
compared with the first. Thus, the resonance between 
the ions and the perturbations, and the exclusion of the 
level E = - ma L -2 by the ion potential hump, occur for 
b = blj (m) and, when b> bal (m), the level may reappear 
in the shallow well because of the reduction in height of 
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the ion potential barrier. The critical value b2j (m) can 
be found from (24), with the barrier height given by (15): 

V,<=m'x/b'J}'l,. 

and its width is given by (20). Using the approximate 
analytical expression for V m,J given by (25), we have 

b,,(m)= 

Thus, for ble (m)<b<b2e (m) and bli (m)<b<b2i (m) 
(Fig. 4), there is no localized solution of (8) with k 2 

= m 2 L -2, which corresponds to plasma stability against 
perturbations of the above wavelength. This means 
that the electron branch of the instability eXists, in 
agreement withCs,91, only for very weak vertical fields. 
Contrary to the statements inc9 1, the ion branch can be 
excited only for bae (/11 ) < bl i (m) and provided 

b,,.(m)<b<b,,(m). (28) 

This discrepancy is due to the fact that the effect of 
electrons trapped near the neutral sheet on the localized 
perturbation was ignored inCS' 9) • 

For vertical fields b > b2i (/11), we again have the pos­
sibility of a localized perturbation, the resonance of 
which with the untrapped (transit) magnetized particles 
in the external region (seeCiO )) can result in the develop­
ment of instability. However, for b>b2i , the condition 
b« 1, ensuring the validity of our theory, is usually 
violated and we shall not, therefore, consider this re­
gion here. 

5. DEVELOPMENT OF ION TEARING INSTABILITY 

As shown in the previous section, the ion tearing 
mode can develop only when there is a gap between 
b2e (m) and bli(m), and the region in which the ion tear-

s 

FIG. 4. Critical amplitudes of the normal field, bl(m) and 
b2(m), as functions of the wavelength of the perturbations m 
=kL. When b1j(m) < b < b2j (m), the energy level E = - m 2L-2 is 
excluded from the potential well and the development of the 
j-th instability mode with k = mL -I is, in principle, impOSSible. 
The expressions for the electron and ion modes differ only by 
the indices. The points separating regions on which the various 
approximations have to be used have the following coordinates: 
T(E1I2,1)f5/2), R(eI/2,xI/21)"1/2e), S(e 1l6 1)1/3,,-1I3, e1/2), 

Q{(1)/(1)+x)]1I2, [1)/(1)+>i)]1/2}. 
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FIG. 5. In terms of the coordinates (b, ell to each m =const, 
there corresponds a gap of definite shape. We show the gap 
shape for 

<['1.1(><,+11.)]''', 

where OABCDE is the envelope of the family of gaps for all 
possible wavelengths. Regions corresponding to the utilization 
of the different approximations described in the text are 
separated on the envelope by the following points: 

-'/5 l/lp 

In~l':'!Vl1" ~e ). 

When the wavelength of the tearing perturb~tions is restricted 
by the size of the system m > m *, the ion tearing instability cor­
responds to the region covered by the broken line NMCDE. 

ing instability can grow is determined by the set of in­
equalities given by (28). The appearance of the gap is 
possible only for an anisotropy exceeding a certain 
critical value: 

8i>JLI/IX~' (T)ell')-'\ (29) 
f,I=m,IM" 1]j=(T,+T,)ITj, X,= (1+1].) 12. 

When (29) is satisfied, the gap appears for long-wave 
perturbations 

Further increase in the anisotropy lOi results in an ex­
pansion of the region occupied by the gap toward greater 
m and b. It is clear from (26) and (27) that the gap 
parameters are very dependent on the wavelength m of 
the perturbations. When analytic expressions for the 
critical fields b2e (m) and bu (m) are available [see (26) 
and (27)], the determination of the shape of the gap in 
the space of the variables (b, lOl' m) presents no funda­
mental difficulties although it is quite laborious. 

Figure 5 shows sections through the gap by the m 
= const planes. A particular gap shape corresponds to 
each m and begins with certain critical values b*(m), 
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lO1'(m). Eliminating m from the expressions for b*(m) 
and ei(m), we obtain the curve b*(ej), which is the 
envelope of the family of gaps for different m. 

Over AB (O<m < /-L1/3 x ;/S-q;1/2), the shape of the en­
velope and the region occupied by the gap are given by 

Over BC (/-L1/3 x ;/S-q;1/2 <m < /-L1I10l{;3/1071!/5), we have, 
correspondingly, 

b'= (8,') 31];1, 1];' (X,+1].1].8. ") -'I" 

m' (1-m') -'X,1], -'<b<m8,'1]'. 

(30) 

(31) 

(32) 

Finally, over the segment DE, the envelope DE coin­
cides with the upper boundary of the gap b = m E~l1i for 
m =mmax =[11e/(x. + 11e)]1/2. 

Over AB and BC, the intersections of the curves 
b2c (m) and bll (m) occur always for m < E~/2 and, conse­
quently, only for the rising branch of the curve bu (m) 

=mf~l1i' Over CD, the pattern of the intersections may 
become more complicated for certain values of the pa­
rameters but, since this segment does not play an im­
portant role, we shall, as before, confine our attention 
to the intersection of the curves for m < fV2. Thus, 
over the segment CD 

this assumption will be valid if the plasma parameters 
x and 11 satisfy the inequality 

which is equivalent to the condition T/Te >..f2 -1. 

The development of the ion tearing mode with given 
m is possible in the regions occupied by the gaps de­
fined by (30)-(32). Under real conditions, the pertur­
bation wavelength is always restricted by the size of 
the system inhomogeneity m >m*. In terms of the co­
ordinates (b, cl), the region in which the ion tearing in­
stability can develop can be found as the combination of 
regions occupied by gaps corresponding to m* <m <mmax 
< 1. Thus, in terms of these coordinates, the complete 
region corresponding to instability is bounded by the 
curves b*(fi> (envelope of gap family) and b2e (f j ,m*) 
(Fig. 5). As noted above, the region in which the elec­
tron mode develops 

corresponds to very small b and, for simplicity, . it is 
not shown in Fig. 5. 

It is important to remember that our development of 
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FIG. 6. Form of unstable region on the (b, e j ) plane for 
m > m* ~ 0.6, The numerical values of the parameters cor­
respond to the conditions in the tail of the earth's magneto­
sphere. During the first phase of a substorm, the tail is 
reversibly taken from the stable state I to the metastable 
state II. The I - II transition corresponds to the accumulation 
of energy in the tail. The rapid development of the ion tear­
ing instability is associated with the sharp transition to the 
explosive phase of the substorm (energy dissipation phase). 
The tail returns to the initial state I through the re-establish­
ment phase III - I. 

the above theory was based on the assumption that the 
parameters b and Ej were small. This means that the 
results for values of band Fj approaching unity (top 
right-hand part of Fig. 5), i. e., results obtained by 
extrapolation from small values of these parameters, 
must be regarded as only qualitative. 

CONCLUSIONS 

One of the most important consequences of the theory 
developed above is the prediction of the possible exis­
tence of metastable states of a diffusive neutral sheet. CiS] 

States with b<b2e (Fj>m*) for fj> ci(m*) (i.e., states ly­
ing under the family of gaps) are metastable. Such 
states are stable against small perturbations but cannot 
be nonlinearly unstable against perturbations of finite 
amplitude Ab- b2e(m*) - b, which take the sheet into the 
unstable region. The perturbation Ab prodUCing insta­
bility can be either an external perturbation or an in­
trinsic thermal fluctuation in the plasma (in the case of 
states near the limit of stability). Plasma may remain 
in this metastable state for a relatively long time but, 
when a nonlinear instability is initiated in a short time 
'To - yj1 (where Yj - VTj E~/2 / L is the growth rate of the ion 
tearing mode), the plasma will take up a new stable 
state which, in general, depends on the form of the 
perturbation Ab and, in this sense, need not necessarily 
coincide with the upper boundary of the unstable region. 

In many cases, the state of the neutral sheet may be 
located in an unstable region as a result of a slow re­
versible evolution toward the instability boundary be­
cause, as the sheet is compressed, the increase in the 
anisotropy Ej and the reduction in b are accompanied by 
a reduction in the parameter m* = 21TL/L: and the at­
tendant downward shift of the lower instability bound­
ary bae(cj, m*). 

The conditions for the appearance of the gap are very 
critically dependent on the equilibrium current (sheet 
thickness). Even condition (29), necessary for the de­
velopment of only long-wave perturbations, is very 
stringent [for the magnetospheric tail, (29) yields ej 
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-0.1]. 

The development of the ion tearing mode in the neu­
tral sheet with constant or quasiconstant Bn may result 
in the formation of neutral lines. The dynamics of par­
ticles in the presence of such lines has a number of 
new distinctive features, and the subsequent process 
cannot, therefore, be analyzed within the framework of 
the above theory. Undoubtedly, however, fast sponta­
neous rearrangement of the magnetic-field topology 
near the neutral sheet is very important in the presence 
of an electric field. The development of the ion tearing 
instability in the case of a metastable sheet (sponta­
neous reconnection) may be the "trigger mechanism" 
which modifies the plasma flow and initiates intensive 
"stimulated reconnection" in the electric field (see(28]), 
which was forbidden in the magnetic-field topology of 
the initial state. 

Although the plasma-flOW distribution during this 
phase is determined by the applied electric field, the 
mechanism that is directly responsible for the tearing 
and reconnection of the lines of force in the neighbor­
hood of the neutral sheet is, as before, the ion tearing 
mode. Estimates ShOW(10] that, when the sheet current 
is large enough, the ion tearing mode is unstable in the 
nonlinear state as well. The high growth rate of this 
instability means that the lines of force at the neutral 
point can be rapidly ruptured and the plasma flow as­
sumes the hydrodynamic distribution with considerable 
reconnection rates even in the simple model of stimu­
lated reconnection analogous to the Parker-Sweet 
model. 

The theory which we have developed may find exten­
sive applications to processes occurring in the tail of 
the earth's magnetosphere. One of the most important 
and interesting processes in the magnetosphere is the 
magnetospheric substorm. (29] A substorm is a cyclic 
process, the initial phase of which corresponds to the 
accumulation of a large store of energy (1021 _1022 erg) 
in the tail of the magnetosphere. The second phase is 
called the explosive stage and corresponds to the rapid 
release of the stored energy. The system returns to 
the initial state during the third stage. 

The first phase, i. e., the accumulation of energy in 
the tail of the magnetosphere, has been investigated 
experimentally and theoretically, (11-14,29-311 but the 
"trigger" mechanism ensuring the rapid transition to 
the explosive phase remained an open question for a 
long time. The results reported here and in our pre­
vious papers(9,lo,l5] enable us to conclude that this phe­
nomenon is probably connected with the development 
of the ion tearing instability in the neutral sheet of the 
magnetospheric tail which is in the metastable state. 
Experimental dataU2 - 14 ] show that the evolution of the 
tail during the first phase of energy accumulation in­
volves a reversible transition to a metastable state. 
The reduction in the normal component and in the thick­
ness of the plasma sheet (increase in current) observed 
during the first phase takes the tail from the stable (1) 
to the metastable (II) state under the unstable region 
(Fig. 6). Since the tail remains stable during the 1- II 
transition, this state can be taken well into the meta-
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stable region so that a considerable store of energy can 
accumulate in the tail. 

. If we estimate the characteristic length of the section 
of the tail in which the instability develops as being L! 
-10L, we can determine the values of parameters cor­
responding to the metastable state II. The result is 
m* -0.6, Ej -0. 3, b-0.05, which is not inconsistent 
with experimental data. raJ Precise measurements of 
a small normal component En are difficult so that a 
more complete comparison with the theory is as yet 
impossible. 

The estimated value of the time To for the rearrange­
ment of the field topology (actually, the time of opera­
tion of the trigger mechanism) is To- yj1-10 sec, and 
this enables us to explain the exceedingly rapid, ex­
plosive character of the transition to the energy dissi­
pation phase. rU,20) The transition to this explosive 
phase is connected with the formation of a neutral line 
in the part of the tail of the magnetosphere that is 
nearest to the earth, and this corresponds to a rapid 
(T- To) "stimulated reconnection" which is accompanied 
by the diSSipation of the stored energy and a reduction 
in the excess magnetic flux stored in the tail. 

It is important to note that explosive processes con­
nected with neutral lines and sheets have been the sub­
ject of many simulation experiments involving the use 
of laboratory plasma. In most of these experi-
ments, [t, 32, 331 the neutral line was preset in advance by 
suitably choosing the geometry of conductors producing 
the magnetic field. In some experiments, r4,321 the elec­
tric field along the neutral line was produced by exter­
nal sources whereas, in other experiments, r33) it arose 
in a self-consistent fashion as a result of the reconnec­
tion of the magnetic field in the neighborhood of the 
neutral line. Thus, the sharp changes in the rate of re­
connection of magnetic lines of force in these experi­
ments were due to a change in the plasma resistance as 
a function of current and not due to the formation of an 
additional neutral line. 

A plane neutral sheet was also observedr4,321 during 
the flow of plasma in the neighborhood of a neutral line 
in the presence of an external electric field. The de­
cay of the plane neutral sheet into current filaments 
can probably be explained in terms of collisional insta­
bility with respect to the tearing mode. r351 

An attempt to investigate collisionless instability of 
a neutral sheet in an inverted theta pinch is described 
inr341 • However, because of the low initial temperature, 

. the plasma in the neutral sheet was compressed under 
the action of the magnetic pressure to such a small 
thickness that ion acoustic waves were efficiently ex­
cited, and this substantially increased the effective par­
ticle collision frequency. As a result, the collisionless 
parameter deteriorated substantially. Nevertheless, 
the experimental detection of tearing mode development 
in this installation can be satisfactorily explained by 
the development of collisionless instability in the limit­
ing case of thin (in comparison with the ion Larmor 
radius) short neutral sheets. 

Studies of the dependence of the instability threshold 

1122 SOy. Phys. JETP, Vol. 43, No.6, June 1976 

on the current and the normal magnetic-field compo­
nent require preliminary heating of the plasma, so that 
more diffusive neutral sheets with low current can be 
obtained and a transition can be made to long systems 
in which small magnetic-field components perpendicular 
to the sheet can be investigated. 

In conclusion, the authors wish to express their 
gratitude to R. Z. Sagdeev and C. F; Kennel for their 
interest in this research and for valuable advice. 

t)When the normal component is present, we shall interpret 
the phrase "neutral sheet" as referring to the magnetic-field 
inversion region, the position of which can be found by ne­
glecting the normal component of the magnetic field. 

2)Henceforth, the instability mode of a diffusive neutral sheet 
originating in the inverse resonance Landau interaction with 
electrons (ions) will be referred to as the electron (ion) 
tearing instability. 

3)For the sake of simplicity, we confine ourselves to the most 
unstable perturbations with ky= 0, so that k =kz. 

4 )We are indebted to R. Pellat for bringing this to our atten­
tion. 
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Quasilinear relaxation of a beam of fast ions in the 
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Quasilinear relaxation of a beam of fast ions produced in a tokamak upon injection of a beam of fast 
neutral atoms is investigated theoretically. Relaxation of this type is assumed to be due to interaction 
between the ions and Alfven waves. A beam moving along the magnetic field is considered. The shear of 
the magnetic force lines is neglected. It is shown that under these assumptions the quasilinear relaxation is 
much more rapid than the Coulomb relaxation due to pair collisions. It is concluded that the concept of a 
"two-component tokamak," which is based on the assumption of Coulomb relaxation of the fast ions, calls 
in general for revision. 

PACS numbers: 52.40.Mj, 52.55.Gb 

1. INTRODUCTION 

According to pre~ent-day concepts, one of the main 
methods of obtaining a plasma with thermonuclear pa­
rameters in a tokamak is to inject a beam of fast neu­
tral atoms (see, e. g., the reviews of Artsimovich[lJ 
and Furth[2J). It is therefore important to study the dy­
namics of fast ions produced by ionizing these atoms, 
and in particular to study the relaxation oOheir thermo­
dynamic non-equilibrium (non-Maxwellian) velocity dis­
tribution. 

The velOCity relaxation of fast ions in a tokamak has 
been the subject of many theoretical papers (reference 
to which can be found in[l,2J). Common to most hitherto 
performed theoretical investigations of the velocity re­
laxation of fast ions in a tokamak is the assumption that 
the only cause of this relaxation are the Coulomb col­
lisions. One of the essential consequences of these in­
vestigations is the concept of the possibility of produc­
ing a so-called "two-component" thermonuclear tokamak 
reactor, i. e., a tokamak reactor whose plasma con­
tains ions of two groups, "slow" (i. e., ions of the fun­
damental plasma component, obtained for example by 
Joule heating) and fast (injected) ions. The basis for 
this concept is the fact that the time of the Coulomb re­
laxation of the fast ions turns out to be just as long as 
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the characteristic operating time of the two-component 
tokamak reactor. 

It is clear from this that the concept of the two-com­
ponent tokamak reactor may turn out to be untenable if 
it turns out that the distribution function of the injected 
ions is unstable and that the velocity relaxation of the 
ions, due to the reaction of the growing nOise, turns out 
to be faster than the Coulomb relaxation. It is there­
fore important to carry out a thorough analysis of the 
instability of the ion beams and the associated pro­
cesses of non-Coulomb relaxation. The latter call for 
further development of turbulence theory, particularly 
the quasi-linear theory. 

Until recently, the linear approximation of plasma­
oscillation theory has revealed no instabilities present­
ing any danger whatever to the problem of the two-com­
ponent tokamak reaction (see, e. g., the article of 
Cordey and Houghton[SJ and the references cited there­
in). The problem of the instability of ion beams in a 
tokamak was considered recently more fully, with al­
lowance for the toroidal character of the magnetic field 
and the nonpotential character of the perturbations. [.J 
It was shown there that fast ions injected in a tokamak 
can lead to a buildup Alfven waves. The purpose of the 
present paper is to investigate the quasi-linear relaxa-
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