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Absorption of optical and infrared radiation by small particles with sizes smaller than the electron mean 
free path is considered. Emission and absorption of the quanta occurs during collisions with the surface. It 
is shown that for a transparent dielectric the absorption is nonlinear and proceeds via cumulative 
ionization. The breakdown intensities are found to be proportional to the square of the frequency. If the 
electron energy losses due to inelasticity of the collisions with the walls are negligible (at a particle size R 
greatly exceeding a critical value R *, the breakdown threshold is proportional to R In( no 113 R) (no is the 
atom density in the particle) and inversely proportional to the pulse duration Tp. Under conditions when 
the energy losses in the collisions play the dominant role (R:S R *), the breakdown intensity is independent 
of R and T p and Ithr - 109 W / cm2 for all transparent dielectrics if optical pulses are employed. For metallic 
particles under continuous irradiation the absorption cross section (T .bs is proportional to R 2, and not to R 3 

as when the macroscopic conductivity is used in the theory of absorption by small particles (Landau and 
Lifshitz, Electrodynamics of Continuous Media, 1957, p. 384 of Russ. ed.). As a consequence, the 
breakdown threshold is independent of the particle size, whereas in the theory in which macroscopic 
constants are used the threshold strength increases with decreasing size. It is shown that for metallic 
particles (T .b. is inversely proportional to the square of the frequency; for optical radiation (T.bs is of the order 
of the geometric cross section, whereas for infrared radiation (1..-10 f.L) (T.bs is greater by three orders of 
magnitude. 

PACS numbers: 73.90.+f, 42.1O.Ke 

1. INTRODUCTION 

At present there are many problems the solutions of 
which call for knowledge of the character of the absorp
tion of electromagnetic radiation by small particles. 
These include 1) the study of the destruction of aerosols 
under the influence of radiation[1J; 2) the influence of 
impurity particles on the breakdown thresholds in 
gases[2] and in liquids[3\ 3) the role played by inclusion 
in solids in electron-heating processes and their in
fluence on the mechanism of damage to material. [41 In 
the second and third case there are experimental data 
that indicate that the breakdown thresholds are greatly 
reduced by the presence of small particles. 

In a theoretical analysis of the absorption by small 
particles, it is customary to use for them macroscopic 
constants (electriC conductivity, thermal conductivity) 
that are valid for bulky samples of the material. This 
approach is convenient only for particles with sufficient
ly large dimensions. For metallic particles these di
mensions are determined by the electron mean free path 
which, say for aluminum at room temperature, is l 
- 0.1 jJ.. (The estimate was obtained with the aid of the 
formula for the conductivity of a bulky sample a- e2nl/ 
mvF , where a:::: 1018 sec-1, [5] e and m are the charge 
and mass of the electron, while n and v F are the density 
and velocity of the electrons on the Fermi surface, 

with kF= 0.93 at. un. [61) If the particle dimension R< l, 
then the radiation can be absorbed only as a result of 
collisions with the surface of the particle, and not col
lisions with phonons, impurity ions, lattice defects, 
etc., which determine the absorption in the bulky sam-
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pIe. As a result, the dependence of the absorption 
cross section on the dimension R is radically altered. 

For particles of a transparent dielectric, the char
acter of these changes is even more radical. In a bulky 
dielectric, the absorption of the radiation is due to the 
following: 1) the electrons in the conduction band at 
thermodynamic equilibrium; 2) the transfer of the elec
trons from the easily-ionized impurities to the conduc
tion band; 3) resonant absorption by the impurities; 4) 
resonant absorption by color centers; 5) absorption by 
the lattice. The last mechanism is characteristic of the 
far-infrared region, which we shall not consider. In
asmuch as at room temperature the vacancy density is 
of the order of 107 cm-3, [7] we can neglect absorption 
by color centers for particles smaller than 0.01 cm. Ab
sorption by impurities becomes negligible if the particle 
dimension exceeds R1 =ni~3 (-10-5 cm for an impurity 
concentration n1mp -1015 cm-3). Under thermodynamic 
equilibrium the number of electrons in the conduction 
band, for a particle of volume V, is Vno exp( - E,/kB T), 
where no is the density of the electrons per unit volume, 
f, is the width of the forbidden band, kB is the Boltz
mann constant, and T is the temperature. There will 
be no linear absorption if the inequality Vnnexp(- e,/ 
kBT)< 1 is satisfied, i. e., R<R2 -n~1/3exp(f,/3kB T) 
(- 100 /l at room temperature at <, -1 eV). ThUS, if 
the dimension R of a small transparent particle is 
smaller than R1 or R2, then the absorption of electro
magnetic radiation has a nonlinear character, in 
contrast to absorption in the bulky sample, namely: the 
radiation is not absorbed after a certain intensity Imp 

at which the probability of multiphoton transition from 
the valence band to the conduction band during the time 
of the pulse becomes equal to unity; at I> Imp, the initial 
electrons produced as a result of the multiphoton ioniza-

Copyright © 1977 American Institute of Physics 1105 



tion become "heated" in the field of the wave and, reach
ing an energy larger than the width of the forbidden 
band, initiate an electron avalanche. If the particle 
dimension is smaller than the electron mean free path 
in the conduction band, then the electron absorbs quanta 
when colliding with the surface. 

Thus, a study of the singularities of the absorption 
of electromagnetic radiation by small particles is a 
pressing problem whenever the collision of the electron 
with the surface of the particle becomes significant. 
In this paper we construct a theory for the aforemen
tioned processes in the case of particles of transparent 
dielectrics and metals. 

We shall show that the absorption of radiation by 
small particles with dimensions smaller than the mean 
free path in the conduction band has the following fea
tures: in the case of small transparent-dielectric par
ticles there are no electrons in the conduction band, so 
that the absorption of the radiation is due to an electron 
avalanche that starts with a certain number of initial 
electrons produced by multiphoton transitions from the 
valence band to the conduction band. Consequently, the 
absorption of radiation by such particles and their de
struction have a threshold, with the threshold intensity 
proportional to the particle dimension, to the square of 
the radiation frequency, and to the reciprocal of the 
pulse direction. In the case of small metallic particles, 
the radiation is absorbed in collisions with the surface, 
the absorption cross section being proportional to R2, 
and not to R3 as in the case when the macroscopic con
ductivity is used. This is due to the fact that the time 
between collisions is not constant but is proportional to 
R. The damage threshold intensity is independent here 
of the particle dimension (since the amount of the heat 
removed is proportional to the surface area), whereas 
in a theory in which macroscopic constants are used the 
thresholds increase with increasing particle dimension. 

2. ABSORPTION OF RADIATION BY AN ELECTRON 
IN COLLISIONS WITH A WALL 

Inasmuch as the electron wave vectors k satisfy the 
inequality kR »1, we can consider the collision of an 
electron with a flat wall (we assume also for this pur
pose that ka« 1, where a is the distance between atoms). 
We introduce a potential barrier in the form U(x) 

= Uo (x< 0), U(x) = 0 (x> 0), and assume that the height 
Uo of the barrier is much larger than the energies of the 
incident and scattered electrons (we note that this as
sumption is perfectly valid for a boundary with a vacuum 
or a gas; if the particle is an inclusion in some matrix, 
it is necessary to consider a barrier of finite height). 
The x axis is chosen perpendicular to the plane surface, 
the y axis lies in the plane of the x axis and the vector 
k. By virtue of the inequality R «A, where A is the 
wavelength of the electromagnetic radiation, the field 
can be regarded as homogeneous: E = Eo sinwt; the vec
tor potential is chosen in the form A = - CW-1Eo coswt. 

The Schrodinger equation describing the scattering of 
the electron by the wall in the presence of the field is of 
the form 
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a1jJ (r, I) (1 _ - ) 
ili--at-= 2m p'+V(wl)+U(x) lj:(r,I), (1) 

V(wt)=~P(-"':"'A(wt») +_1_(-=-A(wI) )'. 
m c 2m" c 

(2) 

We carry out a unitary transformation of Eq. (1) with 
the aid of the operator 

(3) 

The function Sl/J(r, t) = cp(r, t) satisfies the equation 

o<p p> - -
ili-=-q;+SU(x)S-'<p. 

at 2m 
(4) 

Substituting the interaction V(w, t) of the electron with 
the field in the operator S, we find that the latter is a 
spatial-shift operator. Using the properties of the lat
ter, we write 

§U (x) 8-' =u (x-ad. sin wi), a,=eE,lmw'. j,= (Eo) ,/Eo. (5) 

Thus, the problem has been reduced to consideration 
of scattering by a potential wall oscillating with fre
quency w. 1) Changing over for the sake of simplicity 
to an impenetrable wall (U 0 - 00), we arrive at the follow
ing system of equations: 

'Ii iJ<p(r, t) _ p2 (t) m (a,.fx sin wi, 1)=0. ~ ~-~cpr, , 't' 

We represent the wave function cp(r, t) in the form of 
an incident plane wave and reflected plane waves: 

'I'(r,I)=exp [- ~(et+Pl)]+ 1:,a.exp [- ~ (e+nliw)t+ ~ P.l] , 

(6) 

(7) 

where p and e = p2/2m are the momentum and energy of 
the incident electron, ~ = 2m( e +nliw), (Pn)y = (p)y. The 
last term in (7) describes processes of multiphoton ab
sorption (emission) of an electron in collisions with a 
wall. We note that we can substitute the lower limit 
_00 in (7), since waves for which e + nliw < 0 attenuate 
rapidly near the surface. 

Substituting the function (7) in the boundary condition 
(6) and using for the Bessel functions the generating 
function 

exp(ict sin wt) = 1:, 1m (ct)exp (imwt) , (8) 

we obtain a system of equations for the amplitudes an: 

(9) 
1& __ _ 

For optical fields, the quantity ae reaches a value 1 A. 
only at high intensities (exceeding the breakdown thresh
old) 1- 1013 wi cm2• For infrared radiation this value is 
still quite large, 1-108 W Icm2 • We must therefore as
sume that O!k «1, by virtue of which, to determine the 
amplitude ak , it is necessary to use one of the equations 
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(9) in which ak is multiplied by a zero-order Bessel 
function, after substituting the obtained values of the 
amplitudes with indices from zero to (I k I -1) sign k. 
As a result of this iteration we obtain 

(10) 

As seen from (10), with increasing number k the am
plitudes decrease like (elj)k with a small numerical co
efficient. In the collision of an electron with the wall 
we can therefore confine ourselves to single-photon 
processes, the probability of which is the ratio of the 
flux of the reflected electrons to the incident flux: 

,1/ e+1i(J) 
W.=la.1 y--. 

e 
(8)1i00). (11) 

Averaging (11) over the position of the scattering plane, 
we get 

(12) 

When considering the "heating" of an electron as a 
result of collisions with the surface of a small particle, 
we must note the probability W~(f) of the absorption and 
emission of a photon per unit time; this probability is 
the product of W~( E) by the number f3v /R of collisions 
with the walls (R is the characteristic dimension of the 
particle, v is the electron velocity, and f3 is a coeffi
cient on the order of unity and depends on the shape of 
the particle). We thus obtain ultimately 

i.=i·,V2p~. 
m if 

3. DEVELOPMENT OF ELECTRON AVALANCHE 
IN THE CASE OF A SMALL TRANSPARENT 
PARTICLE 

(13) 

The absorption of the radiation by a small transparent 
particle, leading eventually to its destruction, is the 
result of the development of an electron avalanche in the 
conduction band. The avalanche begins with a certain 
number no of initial electrons (e. g., no = 1), produced 
as a result of a multiphoton transition from the valence 
band. 

We denote by n(e, t)de the number of electrons in the 
conduction band of the particle in the energy interval 
from e to B +de; we can then write down the equation 

dn(e. t) 
-az--=W +(e-hoo)n(e-noo, t)+W _(e+noo)n(e+hoo, t) 

-(W+(e)+W_(e»n(e,t). (14) 

When conSidering electron multiplication with the aid 
of Eq. (14), we neglect the energy loss due to the in
elasticity of the collisions of the electrons with the 
walls. A justification for this can be found in the next 
section. We assume that the width Be of the forbidden 
band is much larger than the quantum energy liw, so that 
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we can expand in powers of liw in (14). After substitut
ing (13) in (14) we obtain a diffusion equation of the Fok
ker-Planck type: 

dn(e, t) d d (r ( » 
-d-t - =8 de e de ene, t , 8=1.(1100)'. (15) 

We assume also that the doubling of the electrons takes 
place as soon as their energy reaches values exceeding 
the width Be of the forbidden band, and the electrons are 
"produced" with zero energy. Then the first boundary 
condition for Eq. (15), namely the condition for an in
finite sink at the point B = Be' [10.11) takes the form 

n (e" t) =0. (16) 

Since the electron flux along the energy axis, as seen 
from (15), was given by the formula 

d -
j (e, I) =-8e -,t;(Y en (e, I)), 

the second boundary condition, namely that the flux 
along the energy axis at the point e = 0 be equal to double 
the flux at e = ee (the condition for the doubling of the 
flux[10-12]) takes the form 

d - d -
e-d (l'e n(e, t» 1._o=2e -d (l'e n(e, I» 1.-•. 

e e ' 
(17) 

We seek the solution of (15) in the conventional form 

n(e, I)=exp (1ol)n(e). 

Then the function n(e) satisfies the equation 

10 
"(=

s 

and the boundary conditions 

n(e,) =0. d - d -
e-d Yen(e)I,_0=2e-d l'en(e)I._ •. 

e e' 

A solution of (19) is the expression[13]: 

n (e) =e-"'Zo(i4f'e'''), 

(18) 

(19) 

(20) 

(21) 

where Zo(e) is a Bessel function. Making the assump
tion f31=4y1/2e:/4»1 (the validity of which will be dem
onstrated later on), we can use the asymptotic form of 
the Bessel function, by virtue of which, after substitu
tion in the first boundary condition of (20), the solution 
(21) is expressed in terms of a Macdonald function: 

(22) 

With the aid of the second condition of (20) we obtain an 
equation for the quantity f'1 = 4yl/2d14: 

1 1/2lt ( 1 ) p 
- = y - - +~. e-', 
4 ~I 8 

(23) 

from which we get f31 = 2.82. Thus, the growth rate 'Yo 
of the avalanche is equal to 
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~I' ,/ m ( eEO)' ~ '10=--_-s=0.497 f- - -. 
161'e, eg mw R 

(24) 

Expression (24) shows that the growth rate of the 
avalanche (the reciprocal electron-multiplication time) 
increases in direct proportion to the decrease of the 
particle radius and in proportion to the square of Eo/w. 
On the other hand, it has a square-root dependence on 
the width of the forbidden band. Thus, 'Yo remains es
sentially unchanged on going from one transparent ma
terial to another (other conditions being equal). 

4. DAMAGE CRITERION 

Let us formulate the condition for the destruotion of 
a small transparent particle in analogy with the "forty
generation criterion" in a gas. [10.11] We assume that 
the destruction begins when all the particle atoms are 
ionized, 1. e., when the conduction band contains n. V 
electrons, where n. is the density of the atoms and V is 
the volume of the particles. To obtain this number of 
electrons it is necessary that 10g2(n. V) doublings take 
place, amounting to 26, 17, and 7 generations if R is 
equal to 10-5, 10-6, and 10-7 cm, respectively. 

Thus, we have the following condition for the break
down of a small transparent particle: 

or, if we use the expression for the intensity 1= cEo/87r, 

I thr 't'p I,. 
-w-,-""xRln(na R), 

3 l'megmc 
x""----

4rr ~e' ' 
(25) 

where 7, is the pulse duration, and}t is a constant that 
depends on the material and on the shape of the particle 
(if fir"" 10 eV and 13"" 1, then }t "" O. 35X 10-17 g/cm). 

For a particle with R - 10-6 cm, in the case of optical 
(X 0.5 J.l.) radiation of duration 7,-10 nsec, we have 
Ithr - 2 x 109 W / cm2; for infrared pulses (X - 10 J.l.) of the 
same duration we have I thr - O. 5 X 107 W /cm2 • 

Let us determine the conditions under which we can 
neglect the energy lost in the collisions of the electron 
with the walls, 1. e., let us find the region of applicabil
ity of the developed theory. 

The electron transfers energy to the molecules when 
it collides with the surface. If the collision time (-ti/c 
-10-16 sec) is small in comparison with the character
istic acoustic frequencies (-1013 sec-I), then the elec
tron loss energy in elastic collisions with approximately 
X:nsur atoms (Xe is the electron wave length and n.ur 
""n~/3 is the surface denSity of the atoms). Thus, in 
one collision of the electron with the surface the frac
tion of the electron energy converted into oscillation 
energy is 0 - 2m/M.X~n.ur (-10-5), where M. is the mass 
of the atom. This loss can be neglected if the energy 
tiw(W.1 - W_ 1) absorbed on the average in each collision2) 
is much larger than £0: 

If we introduce the average electron energy E (on the 
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order of several electron volts), then the breakdown 
condition (25) can be rewritten in the form 

, (Tioo) , l'me, 'I. 
"'llhr ----R--Rln(na R), 

~ Be,p 
(26) 

from which we get for e,. -10 eV at a pulse duration 7, 
-10 nsec, in the case of particles with R-1O-6 cm, a 
value Althr(tiw)2/E"-1O-\ 1. e., the elastic losses can be 
neglected (up to R - 50 A). If we increase the duration 
of the pulse, then a theory that does not take the losses 
into account is valid only for those particles whose di
mensions exceed the value R* determined from the equa· 
tion 

(27) 

Thus, for particle breakdown by pulses of duration 10 
J.l.sec and longer it is necessary to take into account the 
energy lost by scattering from the walls at all particle 
dimensions. 

If the particle radius is smaller than R*, the break
down criterion differs from (26) and takes the form 
X1(tiw)2je ~o, 1. e., 

(28) 

Expression (28) determines the condition under which the 
absorbed energy exceeds the losses in one collision. 
Thus, if R < R*, the threshold intensity is independent 
of the particle dimension and of the pulse duration, and 
is proportional to the square of the frequency. In the 
case of infrared radiation (X - 10 J.l.), Ithr - 4 x 106 W / cm2; 
for optical radiation (X - O. 5 J.l.) we have I thr - 1. 5 X 109 

W /cm2 (it is assumed in the estimates that e - 5 eV). 

The following remark is in order. The damage 
thresholds were determined by considering an electron 
avalanche, which presupposes the presence of initial 
electrons in the conduction band. Experiments on the 
photoconductivity in transparent materials under the 
influence of optical radiation show that free carriers 
appear in silicate glasses and in quartz at I"" 3. 5X 106 

W/cm2, and in ruby at I"" 1010 W/cm2. (14] Thus, de
struction of glass and quartz particles occurs in fields 
determined by the avalanche development. For ruby 
particles with R < 0.05 J.l., for which I thr < 1010 W /cm2, 

the destruction at threshold intensities will have a ran
dom character, since mUltiphonon ionization does not 
insure delivery of electrons to the conduction band. 

5. ABSORPTION OF RADIATION BY SMALL 
METALLIC PARTICLES 

As noted initially, if the dimension of a metallic par
ticle is smaller than the electron mean free path, then 
the absorption of radiation is due to collisions with the 
particle surface. Let us find the absorption cross sec
tion in this case. By virtue of the Fermi principle, 
the electrons cannot emit quanta in collisions; on the 
other hand, radiation can be absorbed by the electrons 
only in an energy interval on the order of the quantum 
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energy liw near the Fermi surface, and the number of 
these electrons is 

where V is the volume of the particle, and € F is the 
Fermi energy (we confine ourselves to single-photon 
processes). The energy absorbed per unit time is 

643 (B ) 2 8=tzOlrj!I~"F=-'- --f... H'I. 
411 hIt) 

cEo' 
1=-

8 . ., 

Thus, the cross section for the absorption of radiation 
by a small metallic particles takes the form 

(29) 

The main feature of formula (29) is the proportionality 
to R2, whereas in the theory that makes use of macro
scopic constants the cross section for absorption by 
small particles is proportional to R3. (15] Let us see 
how this changes the dependence of the threshold values 
on the dimension. 

The destruction of a particle under stationary irradia
tion takes place whenever the energy absorbed by the 
particle exceeds the energy removed to the external 
medium. To estimate the latter, we confine ourselves 
to aerosol particles. We assume that the air molecules, 
which have in collisions with the particle surface an 
energy (t)kBTo, where To is the temperature of the 
external medium, escapes with an energy (t)kB Tpart 
(Tpart is the particle temperature). It is assumed here 
that the dimension of the particles is much smaller than 
the mean free path of the air molecules (- 1 J.I. under 
normal conditions), so that heating of the particle does 
not change the thermal field of the air. For the energy 
removed per unit time we then obtain Newton's law 

(30) 

where nair is the denSity of the gas, vT is the thermal 
velocity of the gas molecules, and Ssur is the surface 
area of the particle. Solving the equation Uabithr = Qrem, 

we find that for metallic particles suspended in air the 
threshold intensity does not depend on the dimension 
(for all metals we have the order-of-magnitude value 
Ithr - 105 W /cm2 in the case of optical radiation and Ithr 

-103 W /cm2 if X -10 J.I.); on the other hand, when the ab
sorption is determined by using the macroscopic con
ductivity, the threshold is inversely proportional to the 
dimension. 

It is seen from (29) that in the case of optical irradia
tion uabs - U !180m = 1TR2, since liwopt -1-2 eV and E F- 10 eV. 
For infrared radiation (X -10 J.I., liw - O. 05 eV), uabs ex
ceeds u ... om by approximately three orders of magnitude. 

We note in conclusion that these singularities of the 
radiation absorption may turn out to be significant when 
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conSidering, for example, the destruction of a trans
parent solid matrix with absorbing inclusions, or else 
polycrystalline samples, by electromagnetic irradia
tion and also when ascertaining the nature of the damage 
to bulky dielectrics under the assumption that their in
ternal structure has a certain "graininess." The in
homogeneities then serve as point sources of heat or 
injectors of the electrons into the conduction band of 
the matrix. If we use short optical pulses (T I> - 10 
nsec), then the dimension of the particle can be deter
mined from the particle breakdown threshold, and on 
this basis one can design a dimension spectrometer for 
dielectric aerosols. 

HIt is possible to treat in similar fashion the problem of 
stimulated emission and absorption of optical photons in the 
scattering of a slow electron by an atom, [BI as well as the 
problem of ionization of a hydrogen-like atom in a strong 
electromagnetic field. [91 

2lThe energy loss in collisions of an electron with volume pho
nons can be neglected in comparison with the loss in colli
sions with the walls. In fact, the wave vector of typical 
phonons is k ~ R-l ~ 105_107 cm-1 , i. e., the phonon energy is 
eph ~nek ~ 10-5_10-3 eV (e ~ 105 cm/sec is the speed of sound>. 
Assuming by way of estimate that the change of the phonon 
energy in the collision is equal to B ph' we find that in one 
collision with the volume phonon the electron loses a fraction 
8 phi B ~ 10-6_10-4 of its energy. Since R < 1, the fraction of energy 
lost by the electron as a result of collisions with the volume pho
nons during the time from one collision with the wall to the other 
is 6ph ~ BphR/ el ~ 10-6• 
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